

Test Report

Prepared for: Radio Active Designs

Model: UV-1G Basestation

Description: Wireless Intercom System

FCC ID: 2AA6F-UV-1GBS

Part 15.236

Date of Issue: November 16, 2020

On the behalf of the applicant: Radio Active Designs

21 East Union Ave

East Rutherford, NJ 07073

Attention of: Geoff Shearing

Ph: (917)545-2680

E-Mail: gshearing@radioactiverf.com

Prepared By
Compliance Testing, LLC
1724 S. Nevada Way
Mesa, AZ 85204
(480) 926-3100 phone / (480) 926-3598 fax
www.compliancetesting.com

Project No: p2070003BS

Project Test Engineer

This report may not be reproduced, except in full, without written permission from Compliance Testing All results contained herein relate only to the sample tested.

Test Report Revision History

Revision	Date	Revised By	Reason for Revision
1.0	November 16, 2020		Original Document
2.0	November 18, 2020	Greg Corbin	Corrected error on page 8, changed 250 mw to 50 mw in test procedure.
3.0	December 1, 2020	Greg Corbin	Corrected guard band upper freq to 616 MHz on pg 5 Added RSS-210 to test report for ISED
4.0	January 13,2021	Greg Corbin	Added Frequency Stability test data, updated emission mask using avg detector and removed references to C2PC
5.0	January 25, 2021	Greg Corbin	Added final stage voltage / current to page 6
6.0	January 29, 2021	Greg Corbin	Updated output power table on page 8
7.0	February 23, 2021	Greg Corbin	Corrected EIRP in the output power table on page 8 Removed ISED from report, added CW output power table to page 9

Table of Contents

<u>Description</u>	<u>Page</u>
Standard Test Conditions and Engineering Practices	5
Test Result Summary	7
Statements of conformity	7
RF Output Power	8
Emission Mask	10
Spurious Emissions Transmitter	11
Occupied Bandwidth	13
Frequency Stability	14
Measurement Uncertainty	17
Test Equipment Utilized	18

ANAB

Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to the joint ISO-ILAC-IAF Communiqué dated January 2009).

The tests results contained within this test report all fall within our scope of accreditation, unless noted below.

Please refer to http://www.compliancetesting.com/labscope.html for current scope of accreditation.

FCC Site Reg. #349717

IC Site Reg. #2044A-2

Non-accredited tests contained in this report:

N/A

Test and Measurement Data

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Part 2, Subpart J, Part 15.236, ANSI C63.10-2015.

Standard Test Conditions and Engineering Practices

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI/C63.4-2014, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40°C (50° to 104°F), unless the particular equipment requirements specified testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Environmental Conditions					
Temperature (°C)	·				
26.4 – 28.6	16.1 – 38.2	960.8 – 966.4			

Measurement results, unless otherwise noted, are worst-case measurements.

EUT Description

Model: UV-1G Basestation

Description: Wireless Intercom System

Software: 3.1.4

Firmware: BASE201027A Serial Number: 101504

Additional Information:

The Radio Active Designs® UV-1G is a two-channel full-duplex UHF/VHF wireless intercom system that utilizes up to six wireless Belt Pack units per Base Station.

The system uses double sideband AM modulation.

The channel spacing for the basestation is 100 – 200 kHz.

This test report is to support adding FCC Part 15.236 rule section to the existing FCC ID: 2AA6F-UV-1GBS per FCC's Report and Order FCC 17-95.

Per the manufacturer, the changes to the equipment were firmware or software based with no changes to the hardware.

The frequency ranges of the basestation are listed below.

Frequency I (MHz)	Power limits	
TX	470 - 608	50 mW
TX (Guard Band)	614 - 616	20 mW
TX (Duplex Gap)	657 - 663	20 mw
RX	174 - 216	N/A

EUT Operation during Tests

The basestation has 2 TX output ports, TX1 and TX2. The basestation output power is adjustable from 20 – 50 mw.

All transmitter tests were performed using TX1 set to the maximum allowed transmit power per table on page 5.

The manufacturer installed a temporary switch to put the transmitter into CW mode to set the reference level for the emission mask test.

The basestation is powered by a AC to DC power supply operating with the following parameters:

Input: 100 – 240 VAC, 50 – 60 Hz

Output: + 18 vdc

The basestation antenna gain is 0 dB.

Per the manufacturer, the voltage and current for the final amplifier stage is 28 vdc @ 160 mA.

Accessories:

Qty	Description	Manufacturer	Model	S/N
1	Headset	Telex	300534	N/A
1	AC Adapter	N/A	AT 5090T-P180	N/A
1	Beltpack	Radio Active Designs	UV-1G Belt Pack	10790 (Conducted sample) 10789 (Radiated sample)
1	TX Antenna (Basestation)	SHURE Inc	UA8-500-560	N/A
1	RX Antenna (Basestation)	SHURE Inc	UA8-174-216	N/A

Cables: None

Modifications: None

Test Result Summary

Specification	Test Name	Pass, Fail, N/A	Comments
15.236 (d)(1)(2)	RF Output Power	Pass	
15.236(g)	Emission Mask	Pass	
15.236(g)	Spurious emissions transmitter	Pass	
N/A	Occupied Bandwidth	Pass	
15.236(f)(3)	Frequency Tolerance	Pass	

Statements of conformity

Statements of conformity are reported as:

- Pass the measured value is below the acceptance limit, *acceptance limit = test limit*.
- Fail the measured value is above the acceptance limit, *acceptance limit = test limit*.

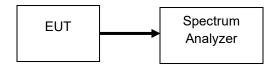
RF Output Power

Engineer: Greg Corbin **Test Date:** 1/29/2021

Test Procedure

The EUT was connected to a spectrum analyzer for the output power test.

The output power was set to 50 mw.


The modulated output power was measured using a QP detector per ANSI C63.10-2013 section 4.1.4.2.1.

The output power was measured at the low, middle, and high frequencies of the passband.

The cable loss from the EUT output to the spectrum analyzer input were input to the spectrum analyzer as correction factor before recording the output power.

RBW = 120 kHz VBW = 3 x RBW Detector = QP

Test Setup

Test Results

Frequency	Conducted Output Power	Antenna Gain	EIRP Output Power		Limit	Result
(MHz)	(dBm)	(dB)	(dBm)	(mW)	(mW)	(Pass/Fail)
470.025	15.48	0	15.48	35.32	50	Pass
539.025	15.01	0	15.01	31.70	50	Pass
607.975	15.58	0	15.58	36.14	50	Pass
614.025	11.48	0	11.48	14.06	20	Pass
615.975	11.38	0	11.38	13.74	20	Pass
653.025	11.15	0	11.15	13.03	20	Pass
662.975	11.19	0	11.19	13.15	20	Pass

CW output Power provided as reference only.

Frequency	Conducted Out	Limit	
(MHz)	(dBm)	(mW)	(mW)
470.025	16.87	48.64	50
539.025	16.58	45.50	50
607.975	16.89	48.87	50
614.025	12.9	19.50	20
615.975	12.76	18.88	20
657.025	12.63	18.32	20
662.975	12.55	17.99	20

Emission Mask

Engineer: Greg Corbin Test Date:11/13/2020

Test Procedure

This test references a necessary bandwidth test in the following document per FCC Part 15.236(g).

ETSI EN 300 422-1 v1.4.2 (2011-08), Electromagnetic compatibility and Radio spectrum Matters (ERM); Wireless microphones in the 25 MHz to 3 GHz frequency range; part 1: Technical characteristics and methods of measurement.

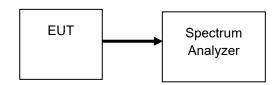
The EUT was connected to a spectrum analyzer with the ETSI 300 422-01 emission mask limits programmed into it to verify the EUT meets the emission mask requirements per FCC Part 15.236 section (g).

The CW output power was measured using a peak detector set to max hold.

This measurement is required to set the reference level for the emission mask test.

The channel spacing that meets the emission mask test is 100 – 200 kHz.

The worst case is the narrow channel spacing so the emission mask was measured at 100 kHz channel spacing.


The maximum allowed channel spacing is 200 kHz.

The EUT channel spacing is used in calculating the necessary bandwidth limits for the spectrum mask for analog systems per Figure 3 in the ETSI EN 300 422-1 standard.

The spectrum analyzer settings were as follows:

Center Frequency	fc: Transmitter (Tx) nominal frequency;
Span	fc - 1 MHz to fc + 1 MHz
Resolution BandWidth (RBW)	1 kHz
Detector	Peak, max hold

Test Setup

CW Output Power to set reference level

Frequency	Measured Output Power CW mode
(MHz)	(dBm)
470.025	16.9
539.025	16.6
607.975	16.9
614.025 (guard band)	12.9
615.975 (guard band)	12.8
657.025 (duplex gap)	12.6
662.975 (duplex gap)	12.6

The EUT met the emission mask requirements from 100 to 200 kHz channel spacing. Refer to Annex A for the Emission Mask test results.

Spurious Emissions Transmitter

Engineer: Greg Corbin **Test Date:** 11/16/2020

Test Procedure

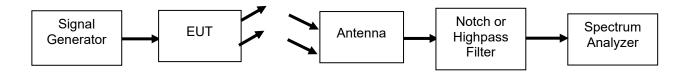
This test references a necessary bandwidth test limit in the following document per FCC Part 15.236(g).

ETSI EN 300 422-1 v1.4.2 (2011-08), Electromagnetic compatibility and Radio spectrum Matters (ERM); Wireless microphones in the 25 MHz to 3 GHz frequency range; part 1: Technical characteristics and methods of measurement.

The EUT was tested in a semi-anechoic chamber with the turntable set 3m from the receiving antenna. A spectrum analyzer was used to verify that the EUT met the requirements for transmitter spurious emissions. The EUT was tested by rotating it 360 degrees with the antenna in both the vertical and horizontal orientation while raised from 1 to 4 meters to ensure that the signal levels were maximized. All cable and antenna correction factors were input into the spectrum analyzer before recording the level of the spurious emissions.

The EUT is required to meet the ETSI 300 422-01 radiated spurious limits (Table 3).

Table 3: Limits for spurious emissions


	Frequency Range			
State	47 MHz to 74 MHz 87,5 MHz to 137 MHz 174 MHz to 230 MHz 470 MHz to 862 MHz	Other Frequencies below 1 000 MHz	Frequencies above 1 000 MHz	
Operating	4 nW	250 nW	1 uW	
Standby	2 nW	2 nW	20 nW	

The RBW was set to 100 kHz for measurements below 1 GHz and 1 MHz for measurements above 1 GHz. The VBW was set to 3 times the RBW.

For 30 – 1000 MHz, A notch filter was used for the transmit frequency at the receive antenna output.

For 1 – 7 GHz a 1 GHz Highpass filter was used at the receive antenna output

Test Setup

Radiated Spurious Test Results

Frequency Range	Tuned Frequency	Measured Spurious – Specific bands per table 3		Limit	Results
(MHz)	(MHz)	Frequency (MHz)	Level (nW)	(nW)	(Pass / Fail)
30 – 1000	470.025	522.3	0.454	4	Pass
30 – 1000	539.025	592.6	0.424	4	Pass
30 – 1000	607.975	556.2	0.544	4	Pass
30 – 1000	614.025	862.0	0.375	4	Pass
30 – 1000	615.975	837.5	0.288	4	Pass
30 – 1000	657.025	827.8	0.354	4	Pass
30 – 1000	662.975	840.0	0.303	4	Pass
Frequency Range	Tuned Frequency	Other Spurious b	elow 1000 MHz	Limit	Results
(MHz)	(MHz)	Frequency (MHz)	Level (nW)	(nW)	(Pass / Fail)
30 – 1000	470.025	940.055	172.1	250	Pass
30 – 1000	539.025	992.7	0.466	250	Pass
30 – 1000	607.975	990.3	0.481	250	Pass
30 – 1000	614.025	990.3	0.399	250	Pass
30 – 1000	615.975	990.3	0.454	250	Pass
30 – 1000	657.025	990.3	0.449	250	Pass
30 – 1000	662.975	990.3	0.388	250	Pass
Frequency Range	Tuned Frequency	Measured 9 1 – 7 (Limit	Results
(GHz)	(MHz)	Frequency (MHz)	Level (uW)	(uW)	(Pass / Fail)
1 - 7	470.025	6955	0.000900	1	Pass
1 - 7	539.025	6865	0.000909	1	Pass
1 - 7	607.975	6850	0.000825	1	Pass
1 - 7	614.025	6850	0.000740	1	Pass
1 - 7	615.975	6880	0.000858	1	Pass
1 - 7	657.025	6895	0.001027	1	Pass
1 - 7	662.975	6835	0.000882	1	Pass
Frequency Range	Standby	Measured Spurious Standby Mode		Limit	Results
(GHz)	•	Frequency (MHz) Level (nW)		(nW)	(Pass / Fail)
0.03 - 1	Standby	997.6	0.485	2	Pass
1 - 7	Standby	6865	0.827	20	Pass

All spurious emissions were below the limit.

Refer to Annex B for Radiated Spurious Emission test results.

Occupied Bandwidth
Engineer: Greg Corbin
Test Date: 12/1/2020

Test Procedure

The EUT was connected to a spectrum analyzer for the occupied bandwidth test. The output power was set to the maximum allowed for the frequency being testing.

The 99% occupied bandwidth was measured using the occupied bandwidth tool on the spectrum analyzer. The RBW was set between 1-5% of the occupied bandwidth.

The occupied bandwidth was measured at the low, middle, and high frequencies of the passband as required.

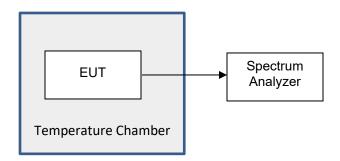
EUT Spectrum Analyzer

Occupied Bandwidth Test Summary Table

Tuned Frequency	Occupied Bandwidth
MHz	kHz
470.025	27.9
539.025	27.4
607.975	30.4
614.025	30.6
615.975	30.5
657.025	27.5
662.975	27.8

Refer to Annex C for Occupied Bandwidth test results

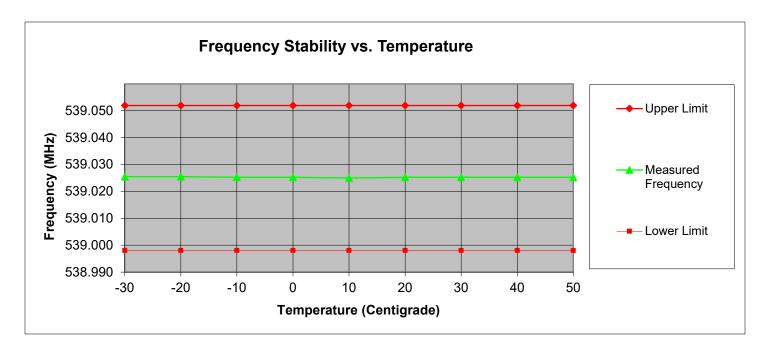
Frequency Stability
Engineer: Greg Corbin
Test Date: 1/23/2021


Measurement Procedure

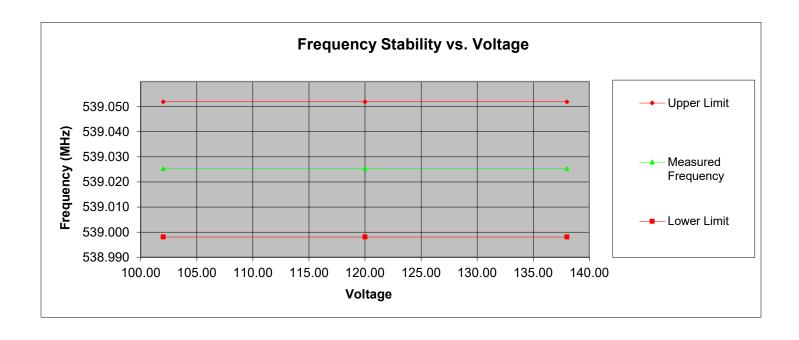
The EUT was placed in an environmental test chamber and the RF output was connected to a spectrum analyzer. The temperature was varied from -20°C to 50°C in 10°C increments. After a sufficient time for temperature stabilization the RF output frequency was measured.

At 20°C the power supply voltage to the EUT was varied from 85% to 115% of the nominal value and the RF output was measured.

The nominal input voltage is 120 vac for the basestation.


Test Setup

Frequency Stability Temperature Variation Measurement Results


Tuned Frequency	Temperature	Tolerance	Measured Frequency	Upper Limit	Lower Limit	Upper Margin	Lower Margin
(MHz)	(deg C)	(%)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
539.025	-20	0.005	539.0255000	539.0519513	538.9980488	0.0264513	0.0274513
539.025	-10	0.005	539.0255000	539.0519513	538.9980488	0.0264513	0.0274513
539.025	0	0.005	539.0252500	539.0519513	538.9980488	0.0267012	0.0272013
539.025	10	0.005	539.0252500	539.0519513	538.9980488	0.0267012	0.0272013
539.025	20	0.005	539.0250000	539.0519513	538.9980488	0.0269513	0.0269513
539.025	30	0.005	539.0252500	539.0519513	538.9980488	0.0267012	0.0272013
539.025	40	0.005	539.0252500	539.0519513	538.9980488	0.0267012	0.0272013
539.025	50	0.005	539.0252500	539.0519513	538.9980488	0.0267012	0.0272013

Frequency Stability Voltage Variation Measurement Results

Tuned Frequency	Tolerance	Voltage	Measured Frequency	Upper Limit	Lower Limit	Upper Margin	Lower Margin
(MHz)	(%)	(vac)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
539.025	0.005	102.00	539.0252500	539.0519513	538.9980488	-0.0267012	0.0272013
539.025	0.005	120.00	539.0252500	539.0519513	538.9980488	-0.0267012	0.0272013
539.025	0.005	138.00	539.0252500	539.0519513	538.9980488	-0.0267012	0.0272013

Measurement Uncertainty

Measurement Uncertainty for Compliance Testing is listed in the table below.

The reported expanded uncertainty has been estimated at a 95% confidence level (k=2)

Measurement Type	Expanded Uncertainty
Conducted Emissions, AC Powerline	± 3.28 dB
Radiated Emissions_30 – 1000 MHz	± 4.82 dB
Radiated Emissions_1 – 18 GHz	± 5.73 dB
Frequency Error	± 22 Hz
Conducted RF Power	± 0.98 dB
Conducted Spurious Emission	± 2.49 dB
AC Voltage	± 2.3 %
DC Voltage	± 0.12 %
Temperature	± 1.0 deg C
Humidity	± 4.32 %

Test Equipment Utilized

Description	Manufacturer	Model #	CT Asset #	Last Cal Date	Cal Due Date
Horn Antenna	ARA	DRG-118/A	i00271	8/3/20	8/3/21
Humidity / Temp Meter	Newport	IBTHX-W-5	i00282	8/28/20	8/28/21
Bi-Log Antenna	Schaffner	CBL 6111D	i00267	8/28/20	8/28/22
EMI Analyzer	Agilent	E7405A	i00379	1/21/20	1/21/21
Spectrum Analyzer	Textronix	RSA5126A	i00424	8/3/20	8/3/21
Band Reject Filter	Eagle	TNF-1	i00124	N/A	
1 GHz High Pass Filter	K&L	7IH40-980/6000-0/0	i00432	N/A	
Voltmeter	Fluke	179	i00488	5/18/20	5/18/21

In addition to the above listed equipment standard RF connectors and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation

END OF TEST REPORT