A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited

Haier International Business Corporation Limited Tablet PC

Page 1 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 2 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 3 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 4 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 5 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 6 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 7 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 8 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 9 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 10 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 11 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 12 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 13 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 14 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 15 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 16 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 17 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 18 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 19 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 20 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 21 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 22 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 23 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 24 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 25 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 26 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 27 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 28 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 29 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 30 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 31 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 32 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 33 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 34 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 35 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 36 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 37 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 38 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 39 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 40 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 41 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 42 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 43 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 44 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 45 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 46 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 47 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 48 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 49 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 50 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 51 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 52 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 53 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 54 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 55 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 56 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 57 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 58 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 59 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 60 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 61 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 62 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 63 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 64 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 65 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 66 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 67 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 68 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 69 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 70 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 71 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 72 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 73 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 74 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 75 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 76 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 77 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 78 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 79 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 80 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 81 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 82 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 83 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 84 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 85 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 86 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 87 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 88 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 89 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 90 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 91 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 92 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 93 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Page 94 of A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited

TEST REPORT
R/C……….:
47485
Report Reference No. .................... :
TRE18010046
FCC ID ............................................. :
2ALAVA81F
Applicant’s name ........................... :
Haier International Business Corporation Limited
Address.............................................:
Room 1602,16th Floor,Tower A,No. 1 Ke Yuan Wei Yi Road,Lao
Shan District,Qingdao,Shandong,China
Manufacturer......................................:
Haier International Business Corporation Limited
Address..............................................:
Room 1602,16th Floor,Tower A,No. 1 Ke Yuan Wei Yi Road,Lao
Shan District,Qingdao,Shandong,China
Test item description .................... :
Tablet PC
Trade Mark ....................................... :
Model/Type reference....................... :
A81F
Listed Model(s) ................................. :
Standard ......................................... :
FCC 47 CFR Part2.1093
IEEE 1528: 2013
ANSI/IEEE C95.1: 1999
Date of receipt of test sample……….:
Jan.05,2018
Date of testing………………………...:
Jan.06,2018-Jan.22,2018
Date of issue………………………….:
Jan.23,2018
Result .................. …………………...:
PASS
Compiled by
( position+printedname+signature) ...:
File administrators:Xiaodong Zhao
Supervised by
( position+printedname+signature) ...:
Test Engineer:
Xiaodong Zhao
Approved by
( position+printedname+signature) ...:
Manager:
Hans Hu
Testing Laboratory Name ............. :
Shenzhen Huatongwei International Inspection Co., Ltd
Address.............................................:
1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao,
Gongming, Shenzhen, China
Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.
This publication may be reproduced in whole or in part for non-commercial purposes as long as the
Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of
the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not
assume liability for damages resulting from the reader's interpretation of the reproduced material due to its
placement and context.
The test report merely correspond to the test sample.
Page: 1 of 80
Report No:
TRE18010046
Page: 2 of 80
Issued: 2018-01-23
Contents
1.
1.1.
1.2.
2.
2.1.
2.2.
3.
3.1.
3.2.
Test Standards and Report version
Test Standards
Report version
Summary
Client Information
Product Description
Test Environment
Test laboratory
Test Facility
4.
Equipments Used during the Test
5.
Measurement Uncertainty
6.
SAR Measurements System Configuration
6.1.
6.2.
6.3.
6.4.
7.
7.1.
7.2.
8.
8.1.
8.2.
9.
9.1.
9.2.
SAR Measurement Set-up
DASY5 E-field Probe System
Phantoms
Device Holder
SAR Test Procedure
Scanning Procedure
Data Storage and Evaluation
Position of the wireless device in relation to the phantom
Head Position
Body-supported device
System Check
Tissue Dielectric Parameters
SAR System Check
10
10
11
12
13
14
14
16
18
18
19
20
20
21
10.
SAR Exposure Limits
35
11.
Conducted Power Measurement Results
36
12.
Maximum Tune-up Limit
45
13.
RF Exposure Conditions (Test Configurations)
49
13.1. Antenna Location
13.2. Standalone SAR test exclusion considerations
49
50
14.
SAR Measurement Results
51
15.
Simultaneous Transmission analysis
72
16.
TestSetup Photos
79
17.
External and Internal Photos of the EUT
80
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 3 of 80
Issued: 2018-01-23
1 . Test Standards and Report version
1.1. Test Standards
The tests were performed according to following standards:
FCC 47 Part 2.1093 Radiofrequency Radiation Exposure Evaluation:Portable Devices
IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio
Frequency Electromagnetic Fields, 3 KHz to 300 GHz.
IEEE Std 1528™-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific
Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
Techniques.
KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100
MHz to 6 GHz
KDB 865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation
Considerations
KDB 447498 D01 General RF Exposure Guidance v06: Mobile and Portable Device RF Exposure Procedures
and Equipment Authorization Policies
KDB 248227 D01 802 11 Wi-Fi SAR v02r02: SAR Measurement Proceduresfor802.11 a/b/g Transmitters
KDB 941225 D01 3G SAR Procedures v03r01: SAR Measurement Procedures for 3G Devices
KDB 941225 D05 SAR for LTE Devices v02r05: SAR Evaluation Considerations for LTE Devices
KDB 648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets
KDB 941225 D06 Hotspot Mode v02r01: SAR Evaluation Procedures for Portable Devices with Wireless
Router Capabilities
616217 D04 SAR for laptop and tablets v01r02: SAR Evaluation Requirements for Laptop, Notebook, Netbook
and Tablet Computers
1.2. Report version
Version No.
Date of issue
Description
00
Jan.23, 2018
Original
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 4 of 80
Issued: 2018-01-23
2. Summary
2.1. Client Information
Applicant:
Haier International Business Corporation Limited
Address:
Room 1602,16th Floor,Tower A,No. 1 Ke Yuan Wei Yi Road,Lao Shan
District,Qingdao,Shandong,China
Manufacturer:
Haier International Business Corporation Limited
Address:
Room 1602,16th Floor,Tower A,No. 1 Ke Yuan Wei Yi Road,Lao Shan
District,Qingdao,Shandong,China
2.2. Product Description
Name of EUT:
Tablet PC
Trade Mark:
Model No.:
A81F
Listed Model(s):
Power supply:
DC 3.7V
Device Category:
Tablet PC
Product stage:
Production unit
RF Exposure Environment:
General Population / Uncontrolled
IMEI:
868758030000248
Device Class:
Hardware version:
L808WF_V1_20171129
Software version:
Ibirapita.PadA81F.GM20180126.SV1.0
Maximum SAR Value
Separation Distance:
Max Report SAR Value (1g):
Head: 0mm
Body: 0mm
Test location:
PCE
DTS/DSS/U-NII
Simultaneous TX
Head:
0.088 W/Kg
0.385 W/Kg
0.473 W/Kg
Body:
0.780 W/Kg
0.525 W/Kg
1.305 W/Kg
GSM
Support Network:
GSM, GPRS, EGPRS
Support Band:
GSM850, PCS1900
Modulation:
GSM/GPRS/EGPRS: GMSK
EGPRS: 8PSK
GPRS Class:
12
EGPRS Class:
12
Antenna type:
PIFA Antenna
WCDMA
Operation Band:
WCDMA Band V
Power Class:
Power Class 3
Modilation Type:
QPSK/16QAM/64QAM/HSUPA/HSDPA
DC-HSUPA Release Version:
Not Supported
Antenna type:
PIFA Antenna
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 5 of 80
Issued: 2018-01-23
LTE
Operation Band:
FDD Band 4
Modilation Type:
QPSK,16QAM
Antenna type:
PIFA Antenna
WIFI 2.4G
Supported type:
802.11b/802.11g/802.11n(HT20)/802.11n(HT40)
Modulation:
DSSS for 802.11b
OFDM for 802.11g/802.11n(HT20)/802.11n(HT40)
Operation frequency:
2412MHz~2462MHz
Channel number:
11
Channel separation:
5MHz
Antenna type:
PIFA Antenna
WIFI 5G
Supported type:
802.11a/802.11n(HT20)/802.11n(HT40)
Modulation:
BPSK, QPSK, 16QAM, 64QAM
Operation frequency:
Band 1:5150MHz~5250MHz
Band 3: 5725MHz~5850MHz
Supported Bandwidth:
20MHz: 802.11n, 802.11a
40MHz: 802.11n
Antenna type:
PIFA Antenna
Bluetooth
Version:
Supported BT4.0+EDR
Modulation:
GFSK, π/4DQPSK, 8DPSK
Operation frequency:
2402MHz~2480MHz
Channel number:
79
Channel separation:
1MHz
Antenna type:
PIFA Antenna
Bluetooth-BLE
Version:
Supported BT4.0+BLE
Modulation:
GFSK
Operation frequency:
2402MHz~2480MHz
Channel number:
40
Channel separation:
2MHz
Antenna type:
PIFA Antenna
Remark:
1. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform
power
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 6 of 80
Issued: 2018-01-23
3. Test Environment
3.1. Test laboratory
Laboratory:Shenzhen Huatongwei International Inspection Co., Ltd.
Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China
3.2. Test Facility
CNAS-Lab Code: L1225
Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance
with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to
ISO/IEC17025:2005 General Requirements) for the Competence of Testing and Calibration Laboratories
A2LA-Lab Cert. No. 3902.01
Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for
technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:
2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional
program requirements in the identified field of testing.
FCC-Registration No.: 762235
Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully
described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from
the FCC is maintained in our files.
IC-Registration No.:5377B
Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by
Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with
Registration No.: 5377B
ACA
Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the
Australian C-Tick mark as a result of our A2LA accreditation.
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 7 of 80
Issued: 2018-01-23
4. Equipments Used during the Test
Calibration
Test Equipment
Manufacturer
Type/Model
Serial Number
Last
Calibration
Calibration
Interval
Data Acquisition
Electronics DAEx
SPEAG
DAE4
1315
2017/08/15
E-field Probe
SPEAG
EX3DV4
3650
2017/07/21
System Validation
Dipole
SPEAG
D835V2
4d134
2017/10/27
System Validation
Dipole
SPEAG
D1750V2
1062
2017/10/26
System Validation
Dipole
SPEAG
D1900V2
5d150
2017/10/26
System Validation
Dipole
SPEAG
D2450V2
884
2017/10/26
System Validation
Dipole
SPEAG
D5GHzV2
1019
2017/08/20
Dielectric
Assessment Kit
SPEAG
DAK-3.5
1038
2016/08/25
Network analyzer
Agilent
N9923A
MY51491493
2017/09/05
Power meter
Agilent
N1914A
MY52090010
2017/03/23
Power sensor
Agilent
E9304A
MY52140008
2017/03/23
Power sensor
Agilent
E9301H
MY54470001
2017/06/02
Signal Generator
ROHDE &
SCHWARZ
SMBV100A
175248
2017/09/02
Universal Radio
Communication
Tester
ROHDE &
SCHWARZ
CMU200
112012
2017/10/21
Universal Radio
Communication
Tester
ROHDE &
SCHWARZ
CMW500
155690
2017/04/17
Dual Directional
Coupler
Agilent
772D
MY46151257
2017/03/23
Dual Directional
Coupler
Agilent
778D
MY48220612
2017/03/23
Power Amplifier
Mini-Circuits
ZHL-42W
QA1202003
2017/11/17
Power Amplifier
Mini-Circuits
ZVE-8G+
421401127
2017/03/23
Note:
1. The Probe,Dipole and DAE calibration reference to the Appendix A.
2. Referring to KDB865664 D01, the dipole calibration interval can be extended to 3 years with justifcatio.
The dipole are also not physically damaged or repaired during the interval.
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 8 of 80
Issued: 2018-01-23
5. Measurement Uncertainty
Measurement Uncertainty
No.
Error Description
Measurement System
Probe calibration
Axial
isotropy
Hemispherical
isotropy
Boundary
Effects
Probe
Linearity
Detection limit
RF ambient
conditions-noise
RF ambient
conditionsreflection
Type
Uncertainty
Value
Probably
Distribution
Div.
(Ci)
1g
(Ci)
10g
Std. Unc.
(1g)
Std. Unc.
(10g)
Degree of
freedom
6.0%
6.0%
6.0%
∞
4.70%
0.7
0.7
1.90%
1.90%
∞
9.60%
0.7
0.7
3.90%
3.90%
∞
1.00%
0.60%
0.60%
∞
4.70%
2.70%
2.70%
∞
1.00%
0.60%
0.60%
∞
0.00%
0.00%
0.00%
∞
0.00%
0.00%
0.00%
∞
Response time
0.80%
0.50%
0.50%
∞
10
Integration time
5.00%
2.90%
2.90%
∞
3.00%
1.70%
1.70%
∞
0.40%
0.20%
0.20%
∞
2.90%
1.70%
1.70%
∞
3.90%
2.30%
2.30%
∞
1.86%
1.86%
1.86%
∞
1.70%
1.70%
1.70%
∞
5.00%
2.90%
2.90%
∞
4.00%
2.30%
2.30%
∞
5.00%
0.64
0.43
1.80%
1.20%
∞
0.50%
0.64
0.43
0.32%
0.26%
∞
5.00%
0.64
0.43
1.80%
1.20%
∞
0.16%
0.64
0.43
0.10%
0.07%
∞
c u
9.79%
9.67%
∞
ue  2uc
K=2
19.57%
19.34%
∞
RF
ambient
Probe positioned
12
mech. restrictions
Probe positioning
13
with respect to
phantom shell
Max.SAR
14
evalation
Test Sample Related
Test sample
15
positioning
Device holder
16
uncertainty
Drift of output
17
power
Phantom and Set-up
Phantom
18
uncertainty
Liquid
19
conductivity
(target)
Liquid
20
conductivity
(meas.)
Liquid permittivity
21
(target)
Liquid
22
cpermittivity
(meas.)
11
22
Combined standard uncertainty
Expanded uncertainty
(confidence interval of 95 %)
uc 
i 1
2 2
i i
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 9 of 80
Issued: 2018-01-23
System Check Uncertainty
No.
Error Description
Measurement System
Probe calibration
Axial
isotropy
Hemispherical
isotropy
Boundary
Effects
Probe
Linearity
Detection limit
RF ambient
conditions-noise
RF ambient
conditionsreflection
Uncertainty
Value
Probably
Distribution
Div.
6.0%
4.70%
9.60%
Type
(Ci)
1g
(Ci)
10g
Std. Unc.
(1g)
Std. Unc.
(10g)
Degree of
freedom
6.0%
6.0%
∞
0.7
0.7
1.90%
1.90%
∞
0.7
0.7
3.90%
3.90%
∞
1.00%
0.60%
0.60%
∞
4.70%
2.70%
2.70%
∞
1.00%
0.60%
0.60%
∞
0.00%
0.00%
0.00%
∞
0.00%
0.00%
0.00%
∞
Response time
0.80%
0.50%
0.50%
∞
10
Integration time
5.00%
2.90%
2.90%
∞
3.00%
1.70%
1.70%
∞
0.40%
0.20%
0.20%
∞
2.90%
1.70%
1.70%
∞
3.90%
2.30%
2.30%
∞
1.58%
1.58%
1.58%
∞
1.35%
1.35%
1.35%
∞
4.00%
2.30%
2.30%
∞
4.00%
2.30%
2.30%
∞
0.50%
0.64
0.43
0.32%
0.26%
∞
0.16%
0.64
0.43
0.10%
0.07%
∞
c u
8.80%
8.79%
∞
ue  2uc
K=2
17.59%
17.58%
∞
RF
11
ambient
Probe positioned
12
mech. restrictions
Probe positioning
13
with respect to
phantom shell
Max.SAR
14
evalation
System validation source-dipole
Deviation of
experimental
15
dipole from
numerical dipole
Dipole axis to
16
liquid distance
Input power and
17
SAR drift
Phantom and Set-up
Phantom
18
uncertainty
Liquid
20
conductivity
(meas.)
Liquid
22
cpermittivity
(meas.)
22
Combined standard uncertainty
Expanded uncertainty
(confidence interval of 95 %)
uc 
i 1
2 2
i i
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 10 of 80
Issued: 2018-01-23
6. SAR Measurements System Configuration
6.1. SAR Measurement Set-up
The DASY5 system for performing compliance tests consists of the following items:
A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for
accommodating the data acquisition electronics (DAE).
A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating
liquid. The probe is equipped with an optical surface detector system.
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery
powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
A unit to operate the optical surface detector which is connected to the EOC.
The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of
the DAE. The EOC is connected to the DASY5 measurement server.
The DASY5 measurement server, which performs all real-time data evaluation for field measurements and
surface detection, controls robot movements and handles safety operation. A computer operating Windows
2003.
DASY5 software and SEMCAD data evaluation software.
Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
The generic twin phantom enabling the testing of left-hand and right-hand usage.
The device holder for handheld Mobile Phones.
Tissue simulating liquid mixed according to the given recipes.
System validation dipoles allowing to validate the proper functioning of the system.
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 11 of 80
Issued: 2018-01-23
6.2. DASY5 E-field Probe System
The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG),
designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification
Construction
Symmetrical design with triangular core
Interleaved sensors
Built-in shielding against static charges
PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration
ISO/IEC 17025 calibration service available.
Frequency
10 MHz to 6 GHz;
Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity
± 0.3 dB in HSL (rotation around probe axis)
± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range
10 µW/g to > 100 W/kg;
Linearity: ± 0.2 dB
Dimensions
Overall length: 337 mm (Tip: 20 mm)
Tip diameter: 2.5 mm (Body: 12 mm)
Distance from probe tip to dipole centers: 1.0 mm
Application
General dosimetry up to 6 GHz
Dosimetry in strong gradient fields
Compliance tests of Mobile Phones
Compatibility
DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Isotropic E-Field Probe
The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within
a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for
calibration will change.
The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 12 of 80
Issued: 2018-01-23
6.3. Phantoms
The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM
Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell
thickness (except the ear region, where shell thickness increases to 6mm).
System checking was performed using the flat section, whilst Head SAR tests used the left and right head
profile sections. Body SAR testing also used the flat section between the head profiles.
SAM Twin Phantom
Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30
MHz to 6 GHz. ELI isfully compatible with standard and all known tissuesimulating liquids. ELI has been
optimized regarding its performance and can beintegrated into our standard phantom tables. A cover prevents
evaporation ofthe liquid. Reference markings on the phantom allow installation of thecomplete setup, including
all predefined phantom positions and measurementgrids, by teaching three points. The phantom is compatible
with all SPEAGdosimetric probes and dipoles.
ELI4 Phantom
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 13 of 80
Issued: 2018-01-23
6.4. Device Holder
The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of
the DASY system.
The DASY device holder is designed to cope with the different positions given in the standard. It has two
scales for device rotation (with respect to the body axis) and device inclination (with respect to the line
between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus
the device needs no repositioning when changing the angles.
Device holder supplied by SPEAG
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 14 of 80
Issued: 2018-01-23
7. SAR Test Procedure
7.1. Scanning Procedure
The DASY5 installation includes predefined files with recommended procedures for measurements and
validation. They are read-only document files and destined as fully defined but unmeasured masks. All test
positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid
definition for the different test positions.
The “reference” and “drift” measurements are located at the beginning and end of the batch process. They
measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is
mainly the variation of the DUT’s output power and should vary max. ± 5 %.
The “surface check” measurement tests the optical surface detection system of the DASY5 system by
repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results.
The output gives the detecting heights of both systems, the difference between the two systems and the
standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of
the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only
executed when the liquid is free of air bubbles. The difference between the optical surface detection and the
actual surface depends on the probe and is specified with each probe (It does not depend on the surface
reflectivity or the probe angle to the surface within ± 30°.)
Area Scan
The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running
a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15
mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing
area scan, the field maxima within a range of 2 dB will be ascertained.
Zoom Scan
After the maximum interpolated values were calculated between the points in the cube, the SAR was
averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is
composed of three one-dimensional splines with the “Not a knot” condition (in x, y, and z directions). The
volume was then integrated with the trapezoidal algorithm.
Spatial Peak Detection
The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses
of 1g and 10g, as well as for user-specific masses.The DASY5 system allows evaluations that combine
measured data and robot positions, such as:
• maximum search
• extrapolation
• boundary correction
• peak search for averaged SAR
During a maximum search, global and local maxima searches are automatically performed in 2-D after each
Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR
gradient calculated by the Quadratic Shepard’s method. The algorithm will find the global maximum and all
local maxima within -2 dB of the global maxima for all SAR distributions.
Extrapolation routines are used to obtain SAR values between the lowest measurement points and the
inner phantom surface. The extrapolation distance is determined by the surface detection distance and the
probe sensor offset. Several measurements at different distances are necessary for the extrapolation.
Extrapolation routines require at least 10 measurement points in 3-D space.
They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the
inner phantom surface. The routine uses the modified Quadratic Shepard’s method for extrapolation.
A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found
during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm
steps.
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 15 of 80
Issued: 2018-01-23
Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v04
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 16 of 80
Issued: 2018-01-23
7.2. Data Storage and Evaluation
Data Storage
The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt
readings from the probe sensors),s together with all necessary software parameters for the data evaluation
(probe calibration data, liquid parameters and device frequency and modulation data) in measurement files
with the extension “.DA4”. The software evaluates the desired unit and format for output each time the data
is visualized or exported. This allows verification of the complete software setup even after the
measurement and allows correction of incorrect parameter settings. For example, if a measurement has
been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected
afterwards and the data can be re-evaluated.
The measured data can be visualized or exported in different units or formats, depending on the selected
probe type ([V/m], [A/m], [°C], [W/kg], [mW/cm²], [dBrel], etc.). Some of these units are not available in
certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero.
Raw data can also be exported to perform the evaluation with other software packages.
Data Evaluation
The SEMCAD software automatically executes the following procedures to calculate the field units from the
microvolt readings at the probe connector. The parameters used in the evaluation are stored in the
configuration modules of the software:
Probe parameters:
Sensitivity:
Normi, ai0, ai1, ai2
Conversion factor:
ConvFi
Diode compression point: Dcpi
Device parameters:
Frequency:
Crest factor:
cf
Media parameters:
Conductivity:
σ
Density:
ρ
These parameters must be set correctly in the software. They can be found in the component documents or
they can be imported into the software from the configuration files issued for the DASY5 components. In the
direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the
scan visualization and export modes, the parameters stored in the corresponding document files are used.
The first step of the evaluation is a linearization of the filtered input signal to account for the compression
characteristics of the detector diode. The compensation depends on the input signal, the diode type and the
DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest
factor of the signal must be known to correctly compensate for peak power. The formula for each channel
can be given as:
Vi:
Ui:
cf:
dcpi:
compensated signal of channel ( i = x, y, z )
input signal of channel ( i = x, y, z )
crest factor of exciting field (DASY parameter)
diode compression point (DASY parameter)
From the compensated input signals the primary field data for each channel can be evaluated:
Vi:
Normi:
ConvF:
aij:
f:
Ei:
Hi:
compensated signal of channel ( i = x, y, z )
sensor sensitivity of channel ( i = x, y, z ),
[mV/(V/m)2] for E-field Probes
sensitivity enhancement in solution
sensor sensitivity factors for H-field probes
carrier frequency [GHz]
electric field strength of channel i in V/m
magnetic field strength of channel i in A/m
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 17 of 80
Issued: 2018-01-23
The RSS value of the field components gives the total field strength (Hermitian magnitude):
The primary field data are used to calculate the derived field units.
SAR:
Etot:
σ:
ρ:
local specific absorption rate in W/kg
total field strength in V/m
conductivity in [mho/m] or [Siemens/m]
equivalent tissue density in g/cm3
Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density
of the simulation liquid.
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 18 of 80
Issued: 2018-01-23
8. Position of the wireless device in relation to the phantom
8.1. Head Position
The wireless device define two imaginary lines on the handset, the vertical centreline and the horizontal line,
for the handset in vertical orientation as shown in Figures 5a and 5b.
The vertical centreline passes through two points on the front side of the handset: the midpoint of the
width Wt of the handset at the level of the acoustic output (point A in Figures 5a and 5b), and the midpoint
of the width Wb of the bottom of the handset (point B).
The horizontal line is perpendicular to the vertical centreline and passes through the centre of the acoustic
output (see Figures 5a and 5b). The two lines intersect at point A.
Note that for many handsets, point A coincides with the centre of the acoustic output. However, the acoustic
output may be located elsewhere on the horizontal line. Also note that the vertical centreline is not
necessarily parallel to the front face of the handset (see Figure 5b), especially for clam-shell handsets,
handsets with flip cover pieces, and other irregularly shaped handsets.
Figures 5a
Wt
Wb
Figures 5b
Width of the handset at the level of the acoustic
Width of the bottom of the handset
Midpoint of the widthwt of the handset at the level of the acoustic output
Midpoint of the width wb of the bottom of the handset
Cheek position
Picture 2 Cheek position of the wireless device on the left side of SAM
Tilt position
Picture 3 Tilt position of the wireless device on the left side of SAM
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 19 of 80
Issued: 2018-01-23
8.2. Body-supported device
Other devices that fall into this category include tablet type portable computers and credit
card transaction authorisation terminals, point-of-sale and/or inventory terminals. Where these
devices may be torso or limb-supported, the same principles for body-supported devices are
applied.
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 20 of 80
Issued: 2018-01-23
9. System Check
9.1. Tissue Dielectric Parameters
The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been
proven to be suited for worst-case.The table 3 and table 4 show the detail solition.It’s satisfying the latest
tissue dielectric parameters requirements proposed by the KDB865664.
Tissue dielectric parameters for head and body phantoms
Target Frequency
(MHz)
835
1750
1800-2000
2450
5200
5800
Head
εr
41.5
40.1
40.0
39.2
36.0
35.3
Body
σ(s/m)
0.90
1.37
1.40
1.80
4.66
5.27
εr
55.2
53.4
53.3
52.7
49.0
48.2
σ(s/m)
0.97
1.49
1.52
1.95
5.30
6.00
Check Result:
Dielectric performance of Head tissue simulating liquid
Frequency
(MHz)
εr
σ(s/m)
Delta
(εr)
Delta
(σ)
Limit
Temp
(℃)
Date
Target
Measured
Target
Measured
835
41.50
41.62
0.90
0.92
0.29%
2.22%
±5%
21
2018-01-08
1750
40.10
40.73
1.37
1.41
1.57%
2.92%
±5%
21
2018-01-10
1900
40.00
40.05
1.40
1.42
0.12%
1.43%
±5%
21
2018-01-11
2450
39.20
39.11
1.80
1.79
-0.23%
-0.56%
±5%
21
2018-01-12
5200
36.00
36.27
4.66
4.71
0.75%
1.07%
±5%
21
2018-01-15
5800
35.30
35.22
5.27
5.25
-0.23%
-0.38%
±5%
21
2018-01-16
Dielectric performance of Body tissue simulating liquid
Frequency
(MHz)
εr
σ(s/m)
Delta
(εr)
Delta
(σ)
Limit
Temp
(℃)
Date
Target
Measured
Target
Measured
835
55.20
55.15
0.97
0.96
-0.09%
-1.03%
±5%
21
2018-01-09
1750
53.40
53.52
1.49
1.44
0.22%
-3.36%
±5%
21
2018-01-10
1900
53.30
53.12
1.52
1.53
-0.34%
0.66%
±5%
21
2018-01-11
2450
52.70
52.52
1.95
1.94
-0.34%
-0.51%
±5%
21
2018-01-12
5200
49.02
49.77
5.30
5.50
1.53%
3.77%
±5%
21
2018-01-15
5800
48.20
48.57
6.00
6.02
0.77%
0.33%
±5%
21
2018-01-16
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 21 of 80
Issued: 2018-01-23
9.2. SAR System Check
The purpose of the system check is to verify that the system operates within its specifications at the decice
test frequency.The system check is simple check of repeatability to make sure that the system works correctly
at the time of the compliance test;
System check results have to be equal or near the values determined during dipole calibration with the
relevant liquids and test system (±10%).
System check is performed regularly on all frequency bands where tests are performed with the DASY5
system.
Photo of Dipole Setup
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 22 of 80
Issued: 2018-01-23
Check Result:
Head
Frequency
(MHz)
1g SAR
10g SAR
Delta
(1g)
Delta
(10g)
Limit
Temp
(℃)
Date
Target
Measured
Target
Measured
835
2.38
2.34
1.54
1.52
-1.68%
-1.30%
±10%
21
2018-01-08
1750
9.14
9.62
4.86
4.98
5.25%
2.47%
±10%
21
2018-01-10
1900
10.10
9.72
5.23
5.16
-3.76%
-1.34%
±10%
21
2018-01-11
2450
12.90
12.40
6.07
5.80
-3.88%
-4.45%
±10%
21
2018-01-12
5200
8.04
8.07
2.30
2.20
0.37%
-4.35%
±10%
21
2018-01-15
5800
8.10
8.16
2.30
2.27
0.74%
-1.30%
±10%
21
2018-01-16
Delta
(1g)
Delta
(10g)
Limit
Body
Frequency
(MHz)
1g SAR
10g SAR
Temp
(℃)
Date
Target
Measured
Target
Measured
835
2.39
2.47
1.57
1.59
3.35%
1.27%
±10%
21
2018-01-09
1750
9.27
9.30
4.94
4.99
0.32%
1.01%
±10%
21
2018-01-10
1900
10.20
10.30
5.29
5.34
0.98%
0.95%
±10%
21
2018-01-11
2450
12.60
12.50
5.88
5.76
-0.79%
-2.04%
±10%
21
2018-01-12
5200
7.53
7.58
2.11
2.13
0.66%
0.95%
±10%
21
2018-01-15
5800
7.45
7.57
2.08
2.09
1.61%
0.48%
±10%
21
2018-01-16
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 23 of 80
Issued: 2018-01-23
Plots of System Performance Check
System Performance Check at 835 MHz Head
DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d134
Date: 2018-01-08
Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1
Medium parameters used (interpolated): f = 835 MHz; σ = 0.92 S/m; εr = 41.62; ρ = 1000 kg/m3
Phantom section: Flat Section
DASY5 Configuration:
•Probe: EX3DV4 - SN3650; ConvF(9.52, 9.52, 9.52); Calibrated: 2017/7/21;
•Sensor-Surface: 1.4mm (Mechanical Surface Detection)
•Electronics: DAE4 Sn1315; Calibrated: 2017/8/15
•Phantom: SAM 1; Type: SAM;
•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)
Area Scan (8x8x1):Measurement grid: dx=15.00 mm, dy=15.00 mm
Maximum value of SAR (interpolated) = 2.834 W/kg
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 49.865 V/m; Power Drift = -0.01 dB
Peak SAR (extrapolated) = 3.286 W/kg
SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.52 W/kg
Maximum value of SAR (measured) = 2.825 W/kg
System Performance Check 835MHz Head 250mW
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 24 of 80
Issued: 2018-01-23
System Performance Check at 835 MHz Body
DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d134
Date: 2018-01-09
Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1
Medium parameters used (interpolated): f = 835 MHz; σ = 0.96 S/m; εr = 55.15; ρ = 1000 kg/m3
Phantom section: Flat Section
DASY5 Configuration:
•Probe: EX3DV4 - SN3650; ConvF(9.70, 9.70, 9.70); Calibrated: 2017/7/21;
•Sensor-Surface: 1.4mm (Mechanical Surface Detection)
•Electronics: DAE4 Sn1315; Calibrated: 2017/08/15
•Phantom: ELI v4.0; Type: QDOVA001BB
•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)
Area Scan (7x7x1):Measurement grid: dx=15.00 mm, dy=15.00 mm
Maximum value of SAR (interpolated) = 2.888 W/kg
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 50.236 V/m; Power Drift = -0.02 dB
Peak SAR (extrapolated) = 3.339 W/kg
SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.59 W/kg
Maximum value of SAR (measured) = 2.871 W/kg
System Performance Check 835MHz 250mW
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 25 of 80
Issued: 2018-01-23
System Performance Check at 1750 MHz Head
DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1602
Date:2018-01-10
Communication System: CW; Frequency: 1750 MHz;Duty Cycle: 1:1
Medium parameters used (interpolated): f =1750 MHz; σ =1.41 S/m; εr =40.73; ρ =1000 kg/m3
Phantom section: Flat Section
DASY5 Configuration:
Probe: EX3DV4 - SN3650; ConvF(8.10, 8.10, 8.10); Calibrated: 2017/7/21;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1315; Calibrated: 2017/8/15
Phantom: SAM 1; Type: SAM;
Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)
Area Scan (8x8x1): Measurement grid: dx=15.00 mm, dy=15.00 mm
Maximum value of SAR (interpolated) = 12.6 W/kg
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 99.561 V/m; Power Drift = -0.03 dB
Peak SAR (extrapolated) = 16.828 W/kg
SAR(1 g) =9.62 W/kg; SAR(10 g) = 4.98 W/kg
Maximum value of SAR (measured) = 13.0 W/kg
System Performance Check 1750MHz 250mW
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 26 of 80
Issued: 2018-01-23
System Performance Check at 1750 MHz Body
DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1602
Date:2018-01-10
Communication System: CW; Frequency: 1750 MHz;Duty Cycle: 1:1
Medium parameters used (interpolated): f =1750 MHz; σ =1.44 S/m; εr =53.52; ρ =1000 kg/m3
Phantom section: Flat Section
DASY5 Configuration:
Probe: EX3DV4 - SN3650; ConvF(7.78, 7.78, 7.78); Calibrated: 2017/7/21;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1315; Calibrated: 2017/08/15
Phantom: ELI v4.0; Type: QDOVA001BB
Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)
AreaScan(7x7x1):Measurementgrid:dx=15mm,dy=15mm
Maximum value of SAR (interpolated) =13.354W/kg
ZoomScan(5x5x7)/Cube0:Measurementgrid:dx=8mm,dy=8mm,dz=5mm
ReferenceValue=87.582V/m;PowerDrift=-0.06dB
Peak SAR (extrapolated) = 16.752 W/kg
SAR(1 g) = 9.30 W/kg; SAR(10 g) = 4.99 W/kg
Maximum value of SAR (measured) = 13.273 W/kg
System Performance Check 1750MHz 250mW
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 27 of 80
Issued: 2018-01-23
System Performance Check at 1900 MHz Head
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d150
Date:2018-01-11
Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1
Medium parameters used (interpolated): f = 1900 MHz; σ = 1.42S/m; εr = 40.05; ρ = 1000 kg/m3
Phantom section: Flat Section
DASY5 Configuration:
Probe: EX3DV4 - SN3650; ConvF(7.92, 7.92, 7.92); Calibrated: 2017/7/21;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1315; Calibrated: 2017/8/15
Phantom: SAM 1; Type: SAM;
Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)
Area Scan (8x8x1):Measurement grid: dx=15.00 mm, dy=15.00 mm
Maximum value of SAR (interpolated) = 10.61 W/kg
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 94.79 V/m; Power Drift = -0.06 dB
Peak SAR (extrapolated) = 12.34 W/kg
SAR(1 g) = 9.72 W/kg; SAR(10 g) = 5.16 W/kg
Maximum value of SAR (measured) = 12.44 W/kg
System Performance Check 1900MHz Head 250mW
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 28 of 80
Issued: 2018-01-23
System Performance Check at 1900 MHz Body
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d150
Date:2018-01-11
Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1
Medium parameters used (interpolated): f = 1900 MHz; σ = 1.53S/m; εr = 53.12; ρ = 1000 kg/m3
Phantom section: Flat Section
DASY5 Configuration:
Probe: EX3DV4 - SN3650; ConvF(7.41, 7.41, 7.41); Calibrated: 2017/7/21;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1315; Calibrated: 2017/08/15
Phantom: ELI v4.0; Type: QDOVA001BB
Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)
Area Scan (7x7x1):Measurement grid: dx=15.00 mm, dy=15.00 mm
Maximum value of SAR (interpolated) = 15.187 W/kg
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 87.679 V/m; Power Drift = -0.14 dB
Peak SAR (extrapolated) = 19.027 W/kg
SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.34 W/kg
Maximum value of SAR (measured) = 15.09 W/kg
System Performance Check 1900MHz 250mW
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 29 of 80
Issued: 2018-01-23
System Performance Check at 2450 MHz Head
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 884
Date:2018-01-12
Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1
Medium parameters used (interpolated): f = 2450 MHz; σ = 1.79S/m; εr = 39.11; ρ = 1000 kg/m3
Phantom section: Flat Section
DASY5 Configuration:
Probe: EX3DV4 - SN3650; ConvF(7.18, 7.18, 7.18); Calibrated: 2017/7/21;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1315; Calibrated: 2017/8/15
Phantom: SAM 1; Type: SAM;
Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)
Area Scan (10x10x1):Measurement grid: dx=12.00 mm, dy=12.00 mm
Maximum value of SAR (interpolated) = 19.313 W/kg
Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 84.314 V/m; Power Drift = 0.02 dB
Peak SAR (extrapolated) = 25.703 W/kg
SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.8 W/kg
Maximum value of SAR (measured) = 18.871 W/kg
System Performance Check 2450MHz Head 250mW
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 30 of 80
Issued: 2018-01-23
System Performance Check at 2450 MHz Body
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 884
Date:2018-01-12
Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1
Medium parameters used (interpolated): f = 2450 MHz; σ = 1.94S/m; εr = 52.52; ρ = 1000 kg/m3
Phantom section: Flat Section
DASY5 Configuration:
Probe: EX3DV4 - SN3650; ConvF(6.81, 6.81, 6.81); Calibrated: 2017/7/21
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1315; Calibrated: 2017/08/15
Phantom: ELI v4.0; Type: QDOVA001BB
Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)
Area Scan (8x8x1):Measurement grid: dx=12.00 mm, dy=12.00 mm
Maximum value of SAR (interpolated) = 19.266 W/kg
Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 84.170 V/m; Power Drift = 0.03 dB
Peak SAR (extrapolated) = 26.174 W/kg
SAR(1 g) = 12.5 W/kg; SAR(10 g) = 5.76 W/kg
Maximum value of SAR (measured) = 19.27W/kg
System Performance Check 2450MHz 250mW
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 31 of 80
Issued: 2018-01-23
System Performance Check at 5200 MHz
DUT: Dipole 5200 MHz; Type: D5GHzV2; Serial: 1019
Date:2018-01-15
Communication System: CW; Frequency: 5200 MHz;Duty Cycle: 1:1
Medium parameters used (interpolated): f = 5200 MHz; σ = 4.71 S/m; εr = 36.27; ρ = 1000 kg/m3
Phantom section: Flat Section
DASY5 Configuration:
 Probe: EX3DV4 - SN3650; ConvF(5.31, 5.31, 5.31); Calibrated: 2017/7/21;
 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
 Electronics: DAE4 Sn1315; Calibrated: 2017/8/15
 Phantom: SAM 1; Type: SAM;
 Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)
Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm
Maximum value of SAR (measured) = 17.7 W/kg
Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 55.293 V/m; Power Drift = -0.16 dB
Peak SAR (extrapolated) = 32.0 W/kg
SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.2 W/kg
Maximum value of SAR (measured) = 18.6 W/kg
System Performance Check 5200MHz 100mW
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 32 of 80
Issued: 2018-01-23
System Performance Check at 5200 MHz Body
DUT: Dipole 5GHz; Type: 5GHzV2; Serial: 1019
Date:2018-01-15
Communication System: CW; Frequency: 5200 MHz;Duty Cycle: 1:1
Medium parameters used (interpolated): f = 5200 MHz; σ = 5.50S/m; εr = 49.77; ρ = 1000 kg/m3
Phantom section: Flat Section
DASY5 Configuration:
Probe: EX3DV4 - SN3650; ConvF(4.87, 4.87, 4.87); Calibrated: 2017/07/21;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1315; Calibrated: 2017/08/15
Phantom: ELI v4.0; Type: QDOVA001BB
Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)
Area Scan (7x7x1):Measurement grid: dx=10.00 mm, dy=10.00 mm
Maximum value of SAR (interpolated) = 20.3 W/kg
Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 55.29 V/m; Power Drift = -0.12 dB
Peak SAR (extrapolated) = 32.6 W/kg
SAR(1 g) = 7.58 W/kg; SAR(10 g) = 2.13 W/kg
Maximum value of SAR (measured) = 19.2 W/kg
System Performance Check 5200MHz 100mW
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 33 of 80
Issued: 2018-01-23
System Performance Check at 5800 MHz
DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: 1019
Date:2018-01-16
Communication System: CW; Frequency: 5800 MHz;Duty Cycle: 1:1
Medium parameters used (interpolated): f = 5800 MHz; σ = 5.25 S/m; εr = 35.22; ρ = 1000 kg/m3
Phantom section: Flat Section
DASY5 Configuration:
 Probe: EX3DV4 - SN3650; ConvF(4.86, 4.86, 4.86); Calibrated: 2017/7/21;
 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
 Electronics: DAE4 Sn1315; Calibrated: 2017/8/15
 Phantom: SAM 1; Type: SAM;
 Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)
Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm
Maximum value of SAR (measured) = 17.7 W/kg
Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 55.293 V/m; Power Drift = -0.16 dB
Peak SAR (extrapolated) = 32.0 W/kg
SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.27 W/kg
Maximum value of SAR (measured) = 18.6 W/kg
System Performance Check 5800MHz 100mW
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 34 of 80
Issued: 2018-01-23
System Performance Check at 5800 MHz Body
DUT: Dipole 5GHz; Type: 5GHzV2; Serial: 1019
Date:2018-01-16
Communication System: CW; Frequency: 5800 MHz;Duty Cycle: 1:1
Medium parameters used (interpolated): f = 5800 MHz; σ = 6.02S/m; εr = 48.57; ρ = 1000 kg/m3
Phantom section: Flat Section
DASY5 Configuration:
Probe: EX3DV4 - SN3650; ConvF(4.40, 4.40, 4.40); Calibrated: 2017/07/21;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1315; Calibrated: 2017/08/15
Phantom: ELI v4.0; Type: QDOVA001BB
Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)
Area Scan (7x7x1):Measurement grid: dx=10.00 mm, dy=10.00 mm
Maximum value of SAR (interpolated) = 19.7 W/kg
Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 50.298 V/m; Power Drift = 0.19 dB
Peak SAR (extrapolated) = 33.4 W/kg
SAR(1 g) = 7.57 W/kg; SAR(10 g) = 2.09 W/kg
Maximum value of SAR (measured) = 18.0 W/kg
System Performance Check 5800MHz 100mW
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 35 of 80
Issued: 2018-01-23
10. SAR Exposure Limits
SAR assessments have been made in line with the requirements of ANSI/IEEE C95.1-1992
Type Exposure
Limit (W/kg)
General Population /
Occupational /
Uncontrolled Exposure Environment Controlled Exposure Environment
Spatial Average SAR
(whole body)
0.08
0.4
Spatial Peak SAR
(1g cube tissue for head and trunk)
1.60
8.0
Spatial Peak SAR
(10g for limb)
4.0
20.0
Population/Uncontrolled Environments: are defined as locations where there is the exposure of individual who
have no knowledge or control of their exposure.
Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred
by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 36 of 80
Issued: 2018-01-23
11. Conducted Power Measurement Results
GSM Conducted Power
1.
2.
3.
Per KDB 447498 D01, the maximum output power channel is used for SAR testing and further SAR test
reduction
Per KDB 941225 D01, considering the possibility of e.g. 3rd party VoIP operation for Head and Bodyworn SAR test reduction for GSM and GPRS modes is determined by the source-base time-averaged
output power including tune-up tolerance. The mode with highest specified time-averaged output power
should be tested for SAR compliance in the applicable exposure conditions. For modes with the same
specified maximum output power and tolerance, the higher number time-slot configuration should be
tested. Therefore, the EUT was set in GPRS (4Tx slots) for GSM850 and GPRS (4Tx slots) for PCS1900.
Per KDB941225 D01, for hotspot SAR test reduction for GPRS modes is determined by the sourcebased time-averaged output power including tune-up tolerance, For modes with the same specified
maximum output power and tolerance, the higher number time-slot configuration should be tested.
Therefore, the EUT was set in GPRS (4Tx slots) for GSM850 and GPRS (4Tx slots) for PCS1900.
Conducted Power (dBm)
Mode: GSM850
CH128
CH190
CH251
824.2MHz
836.6MHz
848.8MHz
GSM
1TXslot
2TXslots
GPRS
(GMSK) 3TXslots
4TXslots
1TXslot
EGPRS 2TXslots
(8PSK) 3TXslots
4TXslots
33.58
33.25
32.13
29.69
27.21
26.28
25.43
23.98
21.86
33.65
33.29
32.37
29.40
27.30
26.26
25.55
23.77
21.94
33.70
33.29
31.98
29.82
27.38
26.43
25.78
23.96
22.21
Mode: PCS1900
CH512
CH661
CH810
1850.2MHz
1880.0MHz
1909.8MHz
29.82
29.81
29.22
27.47
25.81
25.48
24.92
23.58
21.81
29.86
29.80
29.34
27.49
25.85
25.58
25.26
23.83
22.08
29.74
29.70
29.16
27.43
25.79
25.96
25.43
24.18
22.51
Averager Power (dBm)
Division
Factors
CH128
CH190
CH251
824.2MHz
836.6MHz
848.8MHz
-9.03
-9.03
-6.02
-4.26
-3.01
-9.03
-6.02
-4.26
-3.01
24.55
24.22
26.11
25.43
24.20
17.25
19.41
19.72
18.85
24.62
24.26
26.35
25.14
24.29
17.23
19.53
19.51
18.93
24.67
24.26
25.96
25.56
24.37
17.40
19.76
19.70
19.20
Division
Factors
CH512
CH661
CH810
1850.2MHz
1880.0MHz
1909.8MHz
20.79
20.78
23.20
23.21
22.80
16.45
18.90
19.32
18.80
20.83
20.77
23.32
23.23
22.84
16.55
19.24
19.57
19.07
20.71
20.67
23.14
23.17
22.78
16.93
19.41
19.92
19.50
Conducted Power (dBm)
GSM
1TXslot
2TXslots
GPRS
(GMSK) 3TXslots
4TXslots
1TXslot
EGPRS 2TXslots
(8PSK) 3TXslots
4TXslots
Averager Power (dBm)
-9.03
-9.03
-6.02
-4.26
-3.01
-9.03
-6.02
-4.26
-3.01
Note:
1) Division Factors
To average the power, the division factor is as follows:
1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB
2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB
3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB
4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 37 of 80
Issued: 2018-01-23
WCDMA Conducted Power
1.
The following tests were conducted according to the test requirements outlines in 3GPP TS34.121
specification.
2. The procedures in KDB 941225 D01 are applied for 3GPP Rel. 6 HSPA to configure the device in the
required sub-test mode to determine SAR test exclusion
A summary of thest setting are illustrated belowe:
HSDPA Setup Configureation:
a) The EUT was connected to base station RS CMU200 referred to the setup configuration
b) The RF path losses were compensated into the measurements
c) A call was established between EUT and base station with following setting:
i. Set Gain Factors (βc and βd) and parameters were set according to each specific sub-test in the
following table, C10.1.4, Quoted from the TS 34.121
ii. Set RMC 12.2Kbps + HSDPA mode
iii. Set Cell Power=-86dBm
iv. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
v. Select HSDPA uplink parameters
vi. Set Delta ACK, Delta NACK and Delta CQI=8
vii. Set Ack-Nack repetition Factor to 3
viii. Set CQI Feedback Cycle (K) to 4ms
ix. Set CQI repetition factor to 2
x. Power ctrl mode= all up bits
d) The transmitter maximum output power waw recorded.
Setup Configuration
HSUPA Setup Configureation:
a) The EUT was connected to base station RS CMU200 referred to the setup configuration
b) The RF path losses were compensated into the measurements
c) A call was established between EUT and base station with following setting:
i. Call configs = 5.2b, 5.9b, 5.10b, and 5.13.2B with QPSK
ii. Set Gain Factors (βc and βd) and parameters (AG index) were set according to each specific subtest in the following table, C11.1.3, Quoted from the TS 34.121
iii. Set Cell Power=-86dBm
iv. Set channel type= 12.2Kbps + HSPA mode
v. Set UE Target power
vi. Set Ctrl mode=Alternating bits
vii. Set and observe the E-TFCI
viii. Confirm that E-TFCI is equal the target E-TFCI of 75 for Sub-test 1, and other subtest’s E-TFCI
d) The transmitter maximum output power waw recorded.
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 38 of 80
Issued: 2018-01-23
Setup Configuration
General Note:
1. Per KDB 941225 D01, SAR for Head / Hotsport / Body-worn Exposure is measured using a 12.2Kbps
RMC with TPC bit ocnfigured to all 1s
2. Per KDB 941225 D01 RMC12.2Kbps setting is used to evaluate SAR. If the maximum output power and
Tune-up tolerance specified for production units in HSDPA/HSUPA is ≦1/4dB higher than RMC
12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio fo specified
maximum output power and tune-up tolerance of HSDPA / HSUPA to RMC 12.2Kbps and the adjusted
SAR is ≦1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA.
WCDMA Band V
Conducted Power (dBm)
Mode
AMR 12.2K
RMC 12.2K
Subtest-1
Subtest-2
HSDPA
Subtest-3
Subtest-4
Subtest-1
Subtest-2
HSUPA
Subtest-3
Subtest-4
Subtest-5
CH4132
CH4183
CH4233
826.4
836.6
846.6
25.59
25.62
24.55
24.07
24.11
24.01
21.52
22.56
22.56
21.60
22.56
25.68
25.72
24.59
24.10
24.13
24.11
21.60
22.60
22.62
21.62
22.61
25.55
25.56
24.58
24.04
24.08
24.05
21.55
22.58
22.58
21.69
22.58
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 39 of 80
Issued: 2018-01-23
LTE Conducted Power
General Note:
1. CMW500 base station simulator was used to setup the connection with EUT; the frequency band,
channel,bandwidth, RB allocation configuration, modulation type are set in the base station simulator to
configure EUTtransmitting at maximum power and at different configurations which are requested to be
reported to FCC, forconducted power measurement and SAR testing.
2. Per KDB 941225 D05v02r03, when a properly configured base station simulator is used for the SAR and
powermeasurements, spectrum plots for each RB allocation and offset configuration is not required.
3. Per KDB 941225 D05v02r03, start with the largest channel bandwidth and measure SAR for QPSK with 1
RBallocation, using the RB offset and required test channel combination with the highest maximum output
power for RBoffsets at the upper edge, middle and lower edge of each required test channel.
4. Per KDB 941225 D05v02r03, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation
procedure.
5. Per KDB 941225 D05v02r03, for QPSK with 100% RB allocation, SAR is not required when the highest
maximumoutput power for 100 % RB allocation is less than the highest maximum output power in 50% and 1
RB allocations andthe highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR
is measured for the highestoutput power channel; and if the reported SAR is > 1.45 W/kg, the remaining
required test channels must also betested.
6. Per KDB 941225 D05v02r03, 16QAM output power for each RB allocation configuration is > not ½ dB
higher than thesame configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg;
Per KDB 941225D05v02r03, 16QAM SAR testing is not required.
7. Per KDB 941225 D05v02r03, smaller bandwidth output power for each RB allocation configuration is > not
½ dBhigher than the same configuration in the largest supported bandwidth, and the reported SAR for the
largest supportedbandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, smaller bandwidth SAR testing is
not required.
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 40 of 80
Actual output Power
(dBm)
LTE-FDD Band 4
Bandwidth
RBallocation
RBoffset
Issued: 2018-01-23
Modulation
Low
Middle
High
QPSK
23.68
23.65
23.58
16QAM
23.74
23.68
23.67
QPSK
23.64
23.63
23.58
16QAM
23.71
23.72
23.68
QPSK
23.72
23.63
23.64
16QAM
23.72
23.68
23.61
QPSK
22.70
22.63
22.58
16QAM
22.93
22.96
22.82
QPSK
23.04
23.07
22.91
16QAM
22.92
22.98
22.82
QPSK
22.88
22.67
22.70
16QAM
22.86
22.62
22.66
QPSK
22.84
22.68
22.69
16QAM
21.69
21.57
21.71
QPSK
23.59
23.57
23.56
16QAM
23.61
23.58
23.56
QPSK
23.54
23.52
23.50
16QAM
22.68
22.61
22.60
QPSK
22.65
22.62
22.59
16QAM
22.67
22.66
22.62
QPSK
22.61
22.59
22.58
16QAM
22.90
22.86
22.80
QPSK
22.91
22.94
22.81
16QAM
22.85
22.86
22.76
QPSK
21.76
21.59
21.59
16QAM
21.75
21.62
21.56
QPSK
21.70
21.66
21.58
16QAM
21.64
21.59
21.61
Low
1RB
Middle
High
1.4MHz
Low
3RB
Middle
High
6RB
Low
1RB
Middle
High
3MHz
Low
8RB
Middle
High
15RB
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 41 of 80
Issued: 2018-01-23
QPSK
23.79
23.74
23.75
16QAM
23.78
23.76
23.76
QPSK
23.69
23.67
23.69
16QAM
22.79
22.74
22.71
QPSK
22.74
22.72
22.67
16QAM
22.75
22.73
22.65
QPSK
22.71
22.69
22.58
16QAM
23.06
22.92
22.92
QPSK
23.06
22.98
22.92
16QAM
22.96
22.93
22.85
QPSK
21.87
21.86
21.68
16QAM
21.82
21.85
21.65
QPSK
21.84
21.86
21.67
16QAM
21.73
21.71
21.70
QPSK
23.71
23.67
23.71
16QAM
23.70
23.72
23.71
QPSK
23.65
23.66
23.64
16QAM
22.76
22.69
22.68
QPSK
22.73
22.69
22.67
16QAM
22.72
22.70
22.66
QPSK
22.67
22.71
22.66
16QAM
23.01
22.96
23.01
QPSK
22.96
23.08
23.00
16QAM
22.87
23.09
22.93
QPSK
21.78
21.75
21.73
16QAM
21.75
21.76
21.71
QPSK
21.72
21.74
21.69
16QAM
21.72
21.78
21.63
Low
1RB
Middle
High
5MHz
Low
12RB
Middle
High
25RB
Low
1RB
Middle
High
10MHz
Low
25RB
Middle
High
50RB
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 42 of 80
Issued: 2018-01-23
QPSK
23.63
23.63
23.67
16QAM
23.57
23.62
23.65
QPSK
23.56
23.59
23.61
16QAM
22.70
22.75
22.72
QPSK
22.73
22.75
22.70
16QAM
22.73
22.74
22.71
QPSK
22.75
22.76
22.72
16QAM
22.93
22.80
22.97
QPSK
22.82
22.89
22.94
16QAM
22.74
22.94
22.85
QPSK
21.69
21.71
21.70
16QAM
21.67
21.74
21.69
QPSK
21.66
21.75
21.69
16QAM
21.71
21.70
21.71
QPSK
23.77
23.62
23.78
16QAM
23.77
23.63
23.80
QPSK
23.84
23.67
23.79
16QAM
22.73
22.70
22.75
QPSK
22.68
22.70
22.72
16QAM
22.68
22.74
22.73
QPSK
22.66
22.71
22.74
16QAM
23.19
22.83
22.97
QPSK
23.04
22.91
23.01
16QAM
23.09
23.03
22.96
QPSK
21.78
21.72
21.75
16QAM
21.74
21.74
21.73
QPSK
21.74
21.78
21.75
16QAM
21.69
21.72
21.74
Low
1RB
Middle
High
15MHz
Low
36RB
Middle
High
75RB
Low
1RB
Middle
High
20MHz
Low
50RB
Middle
High
100RB
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 43 of 80
Issued: 2018-01-23
WLAN Conducted Power
For 2.4GHz WLAN SAR testing, highest average RF output power channel for the lowest data rate for
802.11b were for SAR evaluation. 802.11g/n were not investigated since the average putput powers over all
channels and data rates were not more than 0.25dB higher than the tested channel in the lowest data rate of
802.11b mode.
The maximum output power specified for production units are determined for all applicable 802.11
transmission modes in each standalone and aggregated frequency band. Maximum output power is measured
for the highest maximum output power configuration(s) in each frequency band according to the default power
measurement procedures
WIFI 2.4G
Mode
802.11b
802.11g
802.11n(HT20)
802.11n(HT40)
Channel
Frequency (MHz)
Conducted Average Power
(dBm)
01
2412
13.73
06
2437
13.57
11
2462
13.66
01
2412
11.80
06
2437
12.06
11
2462
11.93
01
2412
10.71
06
2437
10.85
11
2462
11.01
03
2422
9.99
06
2437
10.05
09
2452
10.28
WIFI 5G U-NII-1
Bandwidth
Mode
802.11n
20M
802.11a
40M
802.11n
Channel
Frequency (MHz)
Conducted Average Power
(dBm)
36
5180
8.07
40
5200
7.28
48
5240
6.94
36
5180
9.72
40
5200
9.07
48
5240
8.70
38
5190
6.26
46
5230
5.72
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 44 of 80
Issued: 2018-01-23
WIFI 5G U-NII-3
Bandwidth
Mode
Channel
Frequency (MHz)
Conducted Average Power
(dBm)
149
5745
8.08
157
5785
6.81
165
5825
6.15
149
5745
9.74
157
5785
8.43
165
5825
7.86
151
5755
6.06
159
5795
5.46
802.11n
20M
802.11a
40M
802.11n
Bluetooth Conducted Power
Bluetooth
Mode
GFSK
π/4QPSK
8DPSK
BLE
Channel
Frequency (MHz)
Conducted power (dBm)
2402
2.93
39
2441
3.54
78
2480
2.26
2402
2.04
39
2441
2.69
78
2480
1.40
2402
2.21
39
2441
2.83
78
2480
1.52
2402
2.79
19
2440
3.30
39
2480
2.00
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 45 of 80
Issued: 2018-01-23
12. Maximum Tune-up Limit
GSM
Mode
Maximum Tune-up (dBm)
GSM850
PCS1900
GSM (GMSK, 1Tx Slot)
34.00
30.00
GPRS (GMSK, 1Tx Slot)
33.50
30.00
GPRS (GMSK, 2Tx Slot)
32.50
29.50
GPRS (GMSK, 3Tx Slot)
30.00
27.50
GPRS (GMSK, 4Tx Slot)
28.00
26.00
EGPRS (8PSK, 1Tx Slot)
26.50
26.00
EGPRS (8PSK, 2Tx Slot)
25.70
25.50
EGPRS (8PSK, 3Tx Slot)
24.00
24.20
EGPRS (8PSK, 4Tx Slot)
22.00
22.60
WCDMA
Mode
Maximum Tune-up (dBm)
WCDMA Band V
AMR 12.2Kbps
25.80
RMC 12.2Kbps
25.80
HSDPA Subtest-1
24.70
HSDPA Subtest-2
24.50
HSDPA Subtest-3
24.50
HSDPA Subtest-4
24.50
HSUPA Subtest-1
22.00
HSUPA Subtest-2
22.70
HSUPA Subtest-3
22.70
HSUPA Subtest-4
22.00
HSUPA Subtest-5
22.70
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 46 of 80
Issued: 2018-01-23
LTE
Fequency Band
Band-width(MHz)
Modulation
QPSK
1.4
16QAM
QPSK
16QAM
QPSK
16QAM
LTE Band 4
QPSK
10
16QAM
QPSK
15
16QAM
QPSK
20
16QAM
Shenzhen Huatongwei International Inspection Co., Ltd.
RB allocation
Maximum Tuneup (dBm)
24.00
24.00
23.00
23.10
23.00
22.00
24.00
23.00
15
23.00
23.00
22.00
15
22.00
24.00
12
23.00
25
23.00
23.10
12
22.00
25
22.00
24.00
25
23.00
50
23.00
23.10
25
22.00
50
22.00
24.00
38
23.00
75
23.00
23.00
38
22.00
75
22.00
24.00
50
23.00
100
23.00
23.20
50
22.00
100
22.00
Report Template Version: H01 (2017-09)
Report No:
Modulation
QPSK
QPSK
16 QAM
16 QAM
TRE18010046
Page: 47 of 80
Issued: 2018-01-23
LTE MPR will followup 3GPP setting as below:
Channel bandwidth / Transmission bandwidth (NRB)
1.4MHz
≤5
>5
≤5
>5
3.0MHz
5MHz
10MHz
15MHz
20MHz
MPR
(dB)
≤4
>4
≤4
>4
≤8
>8
≤8
>8
≤ 12
> 12
≤ 12
> 12
≤ 16
> 16
≤ 16
> 16
≤ 18
> 18
≤ 18
> 18
WLAN 2.4G
Mode
Maximum Tune-up (dBm)
Burst Average Power
802.11b
14.00
802.11g
12.20
802.11n(HT20)
11.20
802.11n(HT40)
10.50
WLAN 5G U-NII-1
Mode
Maximum Tune-up (dBm)
Burst Average Power
802.11n(HT20)
8.10
802.11a
9.80
802.11n(HT40)
6.30
WLAN 5G U-NII-3
Mode
Maximum Tune-up (dBm)
Burst Average Power
802.11n(HT20)
8.10
802.11a
9.80
802.11n(HT40)
6.10
Note:
When the same maximum power is specified for multiple transmission modes in a frequency band, the largest
channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used
for SAR measurement, on the highest measured output power channel in the initial test configuration, for each
frequency band.
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 48 of 80
Issued: 2018-01-23
Bluetooth
Mode
Maximum Tune-up (dBm)
GFSK
3.70
π/4QPSK
2.70
8DPSK
2.90
BLE
3.50
Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100MHz to 6GHz at test
separation distances ≦50mm are determined by:
[(max. Power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] *
[√f(GHz)] ≦3.0 for 1-g SAR
Band/Mode
F(GHz)
Position
SAR test
exclusion
threshold (mW)
RF output power
dBm
3.70
14.00
SAR test
exclusion
mW
2.34
25.12
2.45
Bluetooth
Head
10
Yes
2.45
WLAN 2.4G
Head
10
No
WLAN 5G U5.2
9.80
9.55
Head
No
NII-1
WLAN 5G U5.8
9.80
9.55
Head
No
NII-3
Per KDB 447498 D01, when the minimum test separation distance is <5mm, a distance of 5mm is
applied to determine SAR test exclusion.
The test exclusion thereshold is ≦3, SAR testing is not required.
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 49 of 80
Issued: 2018-01-23
13. RF Exposure Conditions (Test Configurations)
13.1. Antenna Location
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 50 of 80
Issued: 2018-01-23
13.2. Standalone SAR test exclusion considerations
KDB 447498 with KDB 616217:
a) For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g SAR test exclusion thresholds
are determined by the following:
[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance,
mm)] · [√f(GHz)] ≤ 3.0 for 1-g SAR
When the minimum test separation distance is < 5 mm, a distance of 5 mm according is applied to
determine SAR test exclusion.
b) For 100 MHz to 6 GHz and test separation distances > 50 mm, the 1-g and 10-g SAR test exclusion
thresholds are determined by the following :
1) {[Power allowed at numeric threshold for 50 mm in step a)] + [(test separation distance - 50
mm)·(f(MHz)/150)]} mW, for 100 MHz to 1500 MHz
2) {[Power allowed at numeric threshold for 50 mm in step a)] + [(test separation distance - 50 mm)·10]}
mW, for > 1500 MHz and ≤6 GHz
Output Power
Tx
Frequency
(MHz)
dBm
836.6
Rear Face
Left Side
Right Side
Top Side
Bottom Side
mW
separation
distances
(mm)
Calculated
Result
separation
distances
(mm)
Calculated
Result
separation
distances
(mm)
Calculated
Result
separation
distances
(mm)
Calculated
Result
separation
distances
(mm)
Calculated
Result
32.50
447
1.4
82
28
15
28
15
190
945
1.8
82
1880
29.50
224
1.4
61
28
11
28
11
190
945
1.8
61
WCDMA
B5
836.6
25.80
380
1.4
70
28
12
28
12
190
1509
1.8
70
LTE B4
1732.5
24.00
251
1.4
66
28
12
28
12
190
1514
1.8
66
WIFI 2.4G
2437
14.00
25
1.4
95
546
1.5
195
1546
WIFI 5G UNII-1
5180
9.80
10
1.4
95
516
1.5
195
1516
WIFI 5G UNII-3
5745
9.80
10
1.4
95
513
1.5
195
1513
Bluetooth
2480
3.70
1.4
95
545
1.5
195
1545
Interface
GPRS850
2 Slots
GPRS1900
2 Slots
Positions for SAR tests
Test Configurations
Rear Face
Left Side
Right Side
Top Side
Bottom Side
GPRS850
4 Slots
Yes
Yes
Yes
No
Yes
GPRS1900
4 Slots
Yes
Yes
Yes
No
Yes
WCDMA B5
Yes
Yes
Yes
No
Yes
LTE B4
Yes
Yes
Yes
No
Yes
WIFI 2.4G
Yes
No
Yes
Yes
No
WIFI 5G U-NII-1
Yes
No
Yes
Yes
No
WIFI 5G U-NII-3
Yes
No
Yes
Yes
No
Bluetooth
No
No
No
No
No
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 51 of 80
Issued: 2018-01-23
14. SAR Measurement Results
Head SAR
GSM850
Frequency
Mode
Test
Position
LeftCheek
Left-Tilt
GPRS
(2Tx
slot)
RightCheek
RightTilt
Tune
up limit
(dBm)
Tune
up
scaling
factor
Power
Drift(dB)
Measured
SAR(1g)
(W/kg)
Report
SAR(1g)
(W/kg)
Test
Plot
CH
MHz
Conducted
Power
(dBm)
128
824.2
32.13
32.50
1.09
190
836.6
32.37
32.50
1.03
0.17
0.052
0.054
H1
251
848.8
31.98
32.50
1.13
128
824.2
32.13
32.50
1.09
190
836.6
32.37
32.50
1.03
-0.19
0.040
0.041
251
848.8
31.98
32.50
1.13
128
824.2
32.13
32.50
1.09
190
836.6
32.37
32.50
1.03
-0.08
0.048
0.050
251
848.8
31.98
32.50
1.13
128
824.2
32.13
32.50
1.09
190
836.6
32.37
32.50
1.03
0.10
0.037
0.038
251
848.8
31.98
32.50
1.13
PCS1900
Frequency
Mode
Test
Position
LeftCheek
Left-Tilt
GPRS
(2Tx
slot)
RightCheek
RightTilt
Tune
up limit
(dBm)
Tune
up
scaling
factor
Power
Drift(dB)
Measured
SAR(1g)
(W/kg)
Report
SAR(1g)
(W/kg)
Test
Plot
CH
MHz
Conducted
Power
(dBm)
512
1850.2
29.22
29.50
1.07
661
1880.0
29.34
29.50
1.04
0.18
0.048
0.050
H2
810
1909.8
29.16
29.50
1.08
512
1850.2
29.22
29.50
1.07
661
1880.0
29.34
29.50
1.04
0.13
0.039
0.040
810
1909.8
29.16
29.50
1.08
512
1850.2
29.22
29.50
1.07
661
1880.0
29.34
29.50
1.04
-0.09
0.046
0.048
810
1909.8
29.16
29.50
1.08
512
1850.2
29.22
29.50
1.07
661
1880.0
29.34
29.50
1.04
-0.11
0.036
0.038
810
1909.8
29.16
29.50
1.08
Note:
Per KDB865664 D01v01r04, Repeated measurement is not required when the original highest measured SAR
is < 0.80 W/kg
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 52 of 80
Issued: 2018-01-23
WCDMA Band V
Frequency
Mode
Test
Position
LeftCheek
Left-Tilt
RMC
12.2K
bps
RightCheek
RightTilt
Tune
up limit
(dBm)
Tune
up
scaling
factor
Power
Drift(dB)
Measured
SAR(1g)
(W/kg)
Report
SAR(1g)
(W/kg)
Test
Plot
CH
MHz
Conducted
Power
(dBm)
4132
826.4
25.62
25.80
1.04
4183
836.6
25.72
25.80
1.02
0.10
0.041
0.042
H3
4233
846.6
25.56
25.80
1.06
4132
826.4
25.62
25.80
1.04
4183
836.6
25.72
25.80
1.02
0.06
0.033
0.034
4233
846.6
25.56
25.80
1.06
4132
826.4
25.62
25.80
1.04
4183
836.6
25.72
25.80
1.02
-0.14
0.040
0.040
4233
846.6
25.56
25.80
1.06
4132
826.4
25.62
25.80
1.04
4183
836.6
25.72
25.80
1.02
-0.05
0.031
0.032
4233
846.6
25.56
25.80
1.06
Note:
Per KDB865664 D01v01r04, Repeated measurement is not required when the original highest measured SAR
is < 0.80 W/kg
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 53 of 80
Issued: 2018-01-23
LTE Band 4
Frequency
Mode
Test
Position
LeftCheek
Left-Tilt
20M_
1RB
RightCheek
RightTilt
LeftCheek
Left-Tilt
20M_
50RB
RightCheek
RightTilt
CH
MHz
Conducted
Power
(dBm)
20050
20175
20300
20050
20175
20300
20050
20175
20300
20050
20175
20300
20050
20175
20300
20050
20175
20300
20050
20175
20300
20050
20175
20300
1720.0
1732.5
1745.0
1720.0
1732.5
1745.0
1720.0
1732.5
1745.0
1720.0
1732.5
1745.0
1720.0
1732.5
1745.0
1720.0
1732.5
1745.0
1720.0
1732.5
1745.0
1720.0
1732.5
1745.0
23.84
23.67
23.79
23.84
23.67
23.79
23.84
23.67
23.79
23.84
23.67
23.79
22.68
22.74
22.73
22.68
22.74
22.73
22.68
22.74
22.73
22.68
22.74
22.73
Tune
up limit
(dBm)
Tune
up
scaling
factor
Power
Drift(dB)
Measured
SAR(1g)
(W/kg)
Report
SAR(1g)
(W/kg)
Test
Plot
24.00
24.00
24.00
24.00
24.00
24.00
24.00
24.00
24.00
24.00
24.00
24.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
1.04
1.08
1.05
1.04
1.08
1.05
1.04
1.08
1.05
1.04
1.08
1.05
1.08
1.06
1.06
1.08
1.06
1.06
1.08
1.06
1.06
1.08
1.06
1.06
-0.11
0.02
0.05
-0.03
0.09
-0.07
-0.04
0.05
0.082
0.061
0.080
0.062
0.053
0.042
0.048
0.034
0.088
0.066
0.086
0.067
0.056
0.044
0.051
0.036
H4
Note:
1. Per KDB865664 D01v01r04, Repeated measurement is not required when the original highest measured
SAR is < 0.80 W/kg
2. Per KDB 941225 D05v02r03, for QPSK with 100% RB allocation, SAR is not required when the highest
maximumoutput power for 100 % RB allocation is less than the highest maximum output power in 50%
and 1 RB allocations andthe highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg.
Otherwise, SAR is measured for the highestoutput power channel; and if the reported SAR is > 1.45
W/kg, the remaining required test channels must also betested.
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 54 of 80
Issued: 2018-01-23
WIFI 2.4G
Mode
Test
Positio
LeftCheek
LeftTilt
802.11b
1Mbps
RightCheek
RightTilt
Frequency
Tune up
limit
(dBm)
Tune
up
scaling
factor
Power
Drift(dB)
Measured
SAR(1g)
(W/kg)
Report
SAR(1g)
(W/kg)
Test
Plot
CH
MHz
Conducted
Power
(dBm)
01
2412
13.73
14.00
1.06
06
2437
13.57
14.00
1.10
0.10
0.344
0.380
H5
11
2462
13.66
14.00
1.08
01
2412
13.73
14.00
1.06
06
2437
13.57
14.00
1.10
-0.14
0.292
0.322
11
2462
13.66
14.00
1.08
01
2412
13.73
14.00
1.06
06
2437
13.57
14.00
1.10
-0.05
0.331
0.365
11
2462
13.66
14.00
1.08
01
2412
13.73
14.00
1.06
06
2437
13.57
14.00
1.10
0.07
0.278
0.307
11
2462
13.66
14.00
1.08
Note:
1. According to the above table, the initial test position for head is “LeftCheek”, and its reported SAR is≤
0.4W/kg. Thus further SAR measurement is not required for the other (remaining) test positions. Because
the reported SAR of the highest measured maximum output power channel for the exposureconfiguration
is ≤ 0.8W/kg, no further SAR testing is required for 802.11b DSSS in that exposureconfiguration.
2. When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and
test reduction procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM
conditions.
a) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
b) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified
maximum output power and the adjusted SAR is ≤ 1.2 W/kg,the 802.11g/n is not required.
WLAN 2.4G- Scaled Reported SAR
Mode
Test Position
802.11b
1Mbps
Left-Cheek
Left-Tilt
Right-Cheek
Right-Tilt
Frequency
CH
MHz
Actual duty
factor
2437
2437
2437
2437
98.64%
98.64%
98.64%
98.64%
maximum
duty factor
100%
100%
100%
100%
Reported
SAR
(1g)(W/kg)
0.380
0.322
0.365
0.307
Scaled
reported SAR
(1g)(W/kg)
0.385
0.327
0.370
0.311
Note:
1. According to the KDB 248227 D01, The reported SAR must be scaled to 100% transmission duty factor
to determine compliance at the maximum tune-up tolerance limit. A maximum transmission duty factor of
98.64% is achievable for WLAN in this project.
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 55 of 80
Issued: 2018-01-23
WLAN 5G
Frequency
Mode
U-NII-1
802.11a
U-NII-3
8.2.11a
Tune
up limit
(dBm)
Tune
up
scaling
factor
Power
Drift(dB)
Measured
SAR(1g)
(W/kg)
Report
SAR(1g)
(W/kg)
Test
Plot
CH
MHz
Conducted
Power
(dBm)
LeftCheek
36
5180
9.72
9.80
1.02
-0.13
0.242
0.246
H6
Left-Tilt
36
5180
9.72
9.80
1.02
0.18
0.205
0.209
RightCheek
36
5180
9.72
9.80
1.02
0.07
0.233
0.237
Right-Tilt
36
5180
9.72
9.80
1.02
-0.09
0.195
0.199
LeftCheek
149
5745
9.74
9.80
1.01
0.11
0.212
0.215
Left-Tilt
149
5745
9.74
9.80
1.01
-0.15
0.180
0.182
RightCheek
149
5745
9.74
9.80
1.01
-0.06
0.204
0.207
Right-Tilt
149
5745
9.74
9.80
1.01
0.08
0.171
0.173
Test
Position
Note:
When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and
aggregated frequency band is considered separately for SAR test reduction. When the same transmitter and
antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies.
a) When the same maximum output power is specified for both bands, begin SAR measurement in UNII-2A band by applying the OFDM SAR requirements.19 If the highest reported SAR for a test
configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode
and exposure condition); otherwise, each band is tested independently for SAR.
b) b) When different maximum output power is specified for the bands, begin SAR measurement in the
band with higher specified maximum output power. The highest reported SAR for the tested
configuration is adjusted by the ratio of lower to higher specified maximum output power for the two
bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum
output power in that test configuration; otherwise, each band is tested independently for SAR.
c)
WLAN 5G- Scaled Reported SAR
Mode
Test Position
U-NII-1
802.11a
Left-Cheek
Left-Tilt
Right-Cheek
Right-Tilt
Frequency
CH
MHz
36
36
36
36
5180
5180
5180
5180
Actual duty factor
maximum
duty factor
98.48%
98.48%
98.48%
98.48%
100%
100%
100%
100%
Reported
SAR
(1g)(W/kg)
0.246
0.209
0.237
0.199
Scaled
reported SAR
(1g)(W/kg)
0.250
0.212
0.240
0.202
Note:
According to the KDB 248227 D01, The reported SAR must be scaled to 100% transmission duty factor to
determine compliance at the maximum tune-up tolerance limit. A maximum transmission duty factor of 98.48%
is achievable for WLAN in this project.
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 56 of 80
Issued: 2018-01-23
Body SAR
GSM850
Frequency
Mode
Test
Position
Back
GPRS
(2Tx
slot)
Tune
up limit
(dBm)
Tune
up
scaling
factor
Power
Drift(dB)
Measured
SAR(1g)
(W/kg)
Report
SAR(1g)
(W/kg)
Test
Plot
CH
MHz
Conducted
Power
(dBm)
128
824.2
32.13
32.50
1.09
190
836.6
32.37
32.50
1.03
0.12
0.682
0.703
B1
251
848.8
31.98
32.50
1.13
Left
190
836.6
32.37
32.50
1.03
-0.07
0.488
0.503
Right
190
836.6
32.37
32.50
1.03
0.04
0.490
0.505
Top
190
836.6
32.37
32.50
1.03
Bottom
190
836.6
32.37
32.50
1.03
0.04
0.464
0.478
Power
Drift(dB)
Measured
SAR(1g)
(W/kg)
Report
SAR(1g)
(W/kg)
Test
Plot
PCS1900
Frequency
Mode
Test
Position
Back
GPRS
(2Tx
slot)
Tune
up limit
(dBm)
Tune
up
scaling
factor
CH
MHz
Conducted
Power
(dBm)
512
1850.2
29.22
29.50
1.07
661
1880.0
29.34
29.50
1.04
-0.06
0.560
0.581
B2
810
1909.8
29.16
29.50
1.08
Left
661
1880.0
29.34
29.50
1.04
0.03
0.338
0.351
Right
661
1880.0
29.34
29.50
1.04
0.02
0.347
0.360
Top
661
1880.0
29.34
29.50
1.04
Bottom
661
1880.0
29.34
29.50
1.04
-0.06
0.352
0.365
WCDMA Band V
Frequency
Mode
Test
Position
Back
RMC
12.2Kbps
Tune
up limit
(dBm)
Tune
up
scaling
factor
Power
Drift(dB)
Measured
SAR(1g)
(W/kg)
Report
SAR(1g)
(W/kg)
Test
Plot
CH
MHz
Conducted
Power
(dBm)
4132
826.4
25.62
25.80
1.04
4183
836.6
25.72
25.80
1.02
-0.17
0.699
0.713
B3
4233
846.6
25.56
25.80
1.06
Left
4183
836.6
25.72
25.80
1.02
0.13
0.425
0.433
Right
4183
836.6
25.72
25.80
1.02
-0.22
0.401
0.408
Top
4183
836.6
25.72
25.80
1.02
Bottom
4183
836.6
25.72
25.80
1.02
-0.09
0.423
0.432
Note:
Per KDB865664 D01v01r04, Repeated measurement is not required when the original highest measured SAR
is < 0.80 W/kg
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 57 of 80
Issued: 2018-01-23
LTE Band 4
Frequency
Mode
Power
Drift(dB)
Measured
SAR(1g)
(W/kg)
Report
SAR(1g)
(W/kg)
Test
Plot
MHz
20050
1720.0
23.84
24.00
1.04
20175
1732.5
23.67
24.00
1.08
0.15
0.723
0.780
B4
20300
1745.0
23.79
24.00
1.05
Left
20175
1732.5
23.67
24.00
1.08
-0.11
0.437
0.472
Right
20175
1732.5
23.67
24.00
1.08
0.02
0.414
0.447
Top
20175
1732.5
23.67
24.00
1.08
Bottom
20175
1732.5
23.67
24.00
1.08
0.05
0.443
0.478
20050
1720.0
22.68
23.00
1.08
20175
1732.5
22.74
23.00
1.06
0.11
0.519
0.551
Back
20M_50RB
Tune
up
scaling
factor
CH
Back
20M_1RB
Tune
up
limit
(dBm)
Conducted
Power
(dBm)
Test
Position
20300
1745.0
22.73
23.00
1.06
Left
20175
1732.5
22.74
23.00
1.06
-0.07
0.353
0.375
Right
20175
1732.5
22.74
23.00
1.06
0.01
0.326
0.346
Top
20175
1732.5
22.74
23.00
1.06
Bottom
20175
1732.5
22.74
23.00
1.06
0.03
0.343
0.365
Note:
1. Per KDB865664 D01v01r04, Repeated measurement is not required when the original highest measured
SAR is < 0.80 W/kg
2. Per KDB 941225 D05v02r03, for QPSK with 100% RB allocation, SAR is not required when the highest
maximumoutput power for 100 % RB allocation is less than the highest maximum output power in 50%
and 1 RB allocations andthe highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg.
Otherwise, SAR is measured for the highestoutput power channel; and if the reported SAR is > 1.45
W/kg, the remaining required test channels must also betested.
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 58 of 80
Issued: 2018-01-23
WLAN 2.4G
Frequency
Mode
Tune
up
scaling
factor
Power
Drift(dB)
Measured
SAR(1g)
(W/kg)
Report
SAR(1g)
(W/kg)
Test
Plot
CH
MHz
2412
13.73
14.00
1.06
2437
13.57
14.00
1.10
-0.12
0.469
0.518
B5
11
2462
13.66
14.00
1.08
Left
2437
13.57
14.00
1.10
Right
2437
13.57
14.00
1.10
-0.09
0.392
0.433
Top
2437
13.57
14.00
1.10
0.04
0.309
0.341
Bottom
2437
13.57
14.00
1.10
Back
802.11b
1Mbps
Tune
up limit
(dBm)
Conducted
Power
(dBm)
Test
Position
Note:
1. According to the above table, the initial test position for body is “Back”, and its reported SAR is≤ 0.4W/kg.
Thus further SAR measurement is not required for the other (remaining) test positions. Because the
reported SAR of the highest measured maximum output power channel for the exposureconfiguration is ≤
0.8W/kg, no further SAR testing is required for 802.11b DSSS in that exposureconfiguration.
2. When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and
test reduction procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM
conditions.
a) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
b) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified
maximum output power and the adjusted SAR is ≤ 1.2 W/kg. the 802.11g/n is not required
WLAN 2.4G- Scaled Reported SAR
Mode
802.11b
1Mbps
CH
MHz
Back
2437
98.64%
100%
Reported
SAR
(1g)(W/kg)
0.518
Right
2437
98.64%
100%
0.433
0.439
Top
2437
98.64%
100%
0.341
0.346
Test Position
Frequency
Actual duty factor
maximum
duty factor
Scaled
reported SAR
(1g)(W/kg)
0.525
Note:
1. According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to
determine compliance at the maximum tune-up tolerance limit. A maximum transmission duty factor of
98.23% is achievable for WLAN in this project.
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 59 of 80
Issued: 2018-01-23
WLAN 5G
Frequency
Mode
U-NII-1
802.11a
U-NII-3
8.2.11a
MHz
Conducted
Power
(dBm)
Tune
up limit
(dBm)
Tune
up
scaling
factor
Power
Drift(dB)
Measured
SAR(1g)
(W/kg)
Report
SAR(1g)
(W/kg)
Test
Plot
36
5180
9.72
9.80
1.02
0.11
0.319
0.325
B6
Test
Position
CH
Back
Left
36
5180
9.72
9.80
1.02
Right
36
5180
9.72
9.80
1.02
0.08
0.267
0.271
Top
36
5180
9.72
9.80
1.02
-0.04
0.210
0.214
Bottom
36
5180
9.72
9.80
1.02
Back
149
5745
9.74
9.80
1.01
0.08
0.307
0.311
Left
149
5745
9.74
9.80
1.01
Right
149
5745
9.74
9.80
1.01
0.06
0.257
0.260
Top
149
5745
9.74
9.80
1.01
-0.03
0.202
0.205
Bottom
149
5745
9.74
9.80
1.01
Note:
When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and
aggregated frequency band is considered separately for SAR test reduction. When the same transmitter and
antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies.
d) When the same maximum output power is specified for both bands, begin SAR measurement in UNII-2A band by applying the OFDM SAR requirements.19 If the highest reported SAR for a test
configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode
and exposure condition); otherwise, each band is tested independently for SAR.
e) b) When different maximum output power is specified for the bands, begin SAR measurement in the
band with higher specified maximum output power. The highest reported SAR for the tested
configuration is adjusted by the ratio of lower to higher specified maximum output power for the two
bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum
output power in that test configuration; otherwise, each band is tested independently for SAR.
f)
WLAN 5G- Scaled Reported SAR
Mode
U-NII-1
802.11a
CH
MHz
Back
36
5180
98.48%
100%
Reported
SAR
(1g)(W/kg)
0.325
Left
36
5180
98.48%
100%
0.271
0.275
Top
36
5180
98.48%
100%
0.214
0.217
Test Position
Frequency
Actual duty factor
maximum
duty factor
Scaled
reported SAR
(1g)(W/kg)
0.330
Note:
1. According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to
determine compliance at the maximum tune-up tolerance limit. A maximum transmission duty factor of
98.48% is achievable for WLAN in this project.
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 60 of 80
Issued: 2018-01-23
SAR Test Data Plots
Test mode:
GPRS850 2Tx slot
Test Position:
Left Head Cheek
Test Plot:
H1
Date:2018-01-08
Communication System: Customer System; Frequency: 836.6 MHz;Duty Cycle: 1:4
Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.953 mho/m; εr = 41.556; ρ = 1000 kg/m3
Phantom section: Left Section
DASY5 Configuration:
 Probe: EX3DV4 - SN3650; ConvF(9.52, 9.52, 9.52); Calibrated: 2017/7/21;
 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
 Electronics: DAE4 Sn1315; Calibrated: 2017/8/15
 Phantom: SAM 1; Type: SAM;
 Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)
Area Scan (101x151x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.0628 W/kg
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 4.248 V/m; Power Drift = 0.17 dB
Peak SAR (extrapolated) = 0.125 W/kg
SAR(1 g) = 0.052 W/kg; SAR(10 g) = 0.038 W/kg
Maximum value of SAR (measured) = 0.0637 W/kg
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Test mode:
GPRS1900 2Tx slot
Page: 61 of 80
Test Position:
Issued: 2018-01-23
Left Head Cheek
Test Plot:
H2
Date:2018-01-11
Communication System: Customer System; Frequency: 1880 MHz;Duty Cycle: 1:4
Medium parameters used: f = 1880 MHz; σ = 1.45 mho/m; εr = 39.74; ρ = 1000 kg/m3
Phantom section: Left Section
DASY5 Configuration:
 Probe: EX3DV4 - SN3650; ConvF(8.10, 8.10, 8.10); Calibrated: 2017/7/21;
 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
 Electronics: DAE4 Sn1315; Calibrated: 2017/8/15
 Phantom: SAM 1; Type: SAM;
 Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)
Area Scan (101x151x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.0681 W/kg
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 3.504 V/m; Power Drift = 0.18 dB
Peak SAR (extrapolated) = 0.203 W/kg
SAR(1 g) = 0.048 W/kg; SAR(10 g) = 0.026 W/kg
Maximum value of SAR (measured) = 0.0688 W/kg
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Test mode:
WCDMA Band V
Page: 62 of 80
Test Position:
Issued: 2018-01-23
Left Head Cheek
Test Plot:
H3
Date:2018-01-08
Communication System: WCDMA; Frequency: 836.6 MHz;Duty Cycle: 1:1
Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.953 mho/m; εr = 41.556; ρ = 1000 kg/m3
Phantom section: Left Section
DASY5 Configuration:
 Probe: EX3DV4 - SN3650; ConvF(9.52, 9.52, 9.52); Calibrated: 2017/7/21;
 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
 Electronics: DAE4 Sn1315; Calibrated: 2017/8/15
 Phantom: SAM 1; Type: SAM;
 Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)
Area Scan (101x151x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.0573 W/kg
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 5.240 V/m; Power Drift = 0.10 dB
Peak SAR (extrapolated) = 0.137 W/kg
SAR(1 g) = 0.041 W/kg; SAR(10 g) = 0.024 W/kg
Maximum value of SAR (measured) = 0.0576 W/kg
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Test mode:
LTE Band 4
Page: 63 of 80
Test Position:
Issued: 2018-01-23
Left Head Cheek
Test Plot:
H4
Date:2018-01-10
Communication System: Generic LTE; Frequency: 1732.5 MHz;Duty Cycle: 1:1
Medium parameters used (interpolated): f = 1732.5 MHz; σ = 1.363 mho/m; εr = 40.136; ρ = 1000 kg/m3
Phantom section: Left Section
DASY5 Configuration:
 Probe: EX3DV4 - SN3650; ConvF(8.59, 8.59, 8.59); Calibrated: 2017/7/21;
 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
 Electronics: DAE4 Sn1315; Calibrated: 2017/8/15
 Phantom: SAM 1; Type: SAM;
 Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)
Area Scan (101x151x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.110 W/kg
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 11.116 V/m; Power Drift = -0.11 dB
Peak SAR (extrapolated) = 0.263 W/kg
SAR(1 g) = 0.082 W/kg; SAR(10 g) = 0.050 W/kg
Maximum value of SAR (measured) = 0.113 W/kg
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Test mode:
WLAN 802.11b
Page: 64 of 80
Test Position:
Issued: 2018-01-23
Left Head Cheek
Test Plot:
H5
Date:2018-01-12
Communication System: WIFI 2.4G; Frequency: 2437 MHz;Duty Cycle: 1:1
Medium parameters used (interpolated): f = 2437 MHz; σ = 1.883 mho/m; εr = 38.021; ρ = 1000 kg/m3
Phantom section: Left Section
DASY5 Configuration:
 Probe: EX3DV4 - SN3650; ConvF(7.57, 7.57, 7.57); Calibrated: 2017/7/21;
 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
 Electronics: DAE4 Sn1315; Calibrated: 2017/8/15
 Phantom: SAM 1; Type: SAM;
 Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)
Area Scan (121x181x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm
Maximum value of SAR (interpolated) = 0.433 W/kg
Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 6.201 V/m; Power Drift = 0.10 dB
Peak SAR (extrapolated) = 0.665 W/kg
SAR(1 g) = 0.344 W/kg; SAR(10 g) = 0.177 W/kg
Maximum value of SAR (measured) = 0.436 W/kg
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Test mode:
WLAN 802.11a
Page: 65 of 80
Test Position:
Issued: 2018-01-23
Left Head Cheek
Test Plot:
H6
Date:2018-01-15
Communication System: WIFI 5G; Frequency: 5180 MHz;Duty Cycle: 1:1
Medium parameters used (interpolated): f = 5180 MHz; σ = 4.71 mho/m; εr = 36.27; ρ = 1000 kg/m3
Phantom section: Left Section
DASY5 Configuration:
 Probe: EX3DV4 - SN3650; ConvF(5.31, 5.31, 5.31); Calibrated: 2017/7/21;
 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
 Electronics: DAE4 Sn1315; Calibrated: 2017/8/15
 Phantom: SAM 1; Type: SAM;
 Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)
Area Scan (151x221x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
Maximum value of SAR (interpolated) = 0.274 W/kg
Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 11.116 V/m; Power Drift = -0.13 dB
Peak SAR (extrapolated) = 0.463 W/kg
SAR(1 g) = 0.242 W/kg; SAR(10 g) = 0.137 W/kg
Maximum value of SAR (measured) = 0.271 W/kg
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Test mode:
GPRS850 2Tx slot
Page: 66 of 80
Test Position:
Issued: 2018-01-23
Rear Side
Test Plot:
B1
Date:2018-01-09
Communication System: Customer System; Frequency: 836.6 MHz;Duty Cycle: 1:4
Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.96 mho/m; εr = 55.858; ρ = 1000 kg/m3
Phantom section: Flat Section
DASY 5 Configuration:
•Probe: EX3DV4 - SN3650; ConvF(9.70, 9.70, 9.70); Calibrated: 2017/7/21;
•Sensor-Surface: 1.4mm (Mechanical Surface Detection)
•Electronics: DAE4 Sn1315; Calibrated: 2017/8/15
•Phantom: ELI v4.0; Type: QDOVA001BB
•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)
Area Scan (101x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.712 W/kg
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 5.592 V/m; Power Drift = 0.12 dB
Peak SAR (extrapolated) = 1.415 W/kg
SAR(1 g) = 0.682 W/kg; SAR(10 g) = 0.407 W/kg
Maximum value of SAR (measured) = 0.718 W/kg
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Test mode:
GPRS1900 2Tx slot
Page: 67 of 80
Test Position:
Issued: 2018-01-23
Rear Side
Test Plot:
B2
Date:2018-01-11
Communication System: Customer System; Frequency: 1880 MHz;Duty Cycle: 1:4
Medium parameters used: f = 1880 MHz; σ = 1.57 mho/m; εr = 51.14; ρ = 1000 kg/m3
Phantom section: Flat Section
DASY5 Configuration:
•Probe: EX3DV4 - SN3650; ConvF(7.78, 7.78, 7.78); Calibrated: 2017/7/21;
•Sensor-Surface: 1.4mm (Mechanical Surface Detection)
•Electronics: DAE4 Sn1315; Calibrated: 2017/8/15
•Phantom: ELI v4.0; Type: QDOVA001BB
•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)
Area Scan (101x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.707 W/kg
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 3.158 V/m; Power Drift = -0.06 dB
Peak SAR (extrapolated) = 1.368 W/kg
SAR(1 g) = 0.560 W/kg; SAR(10 g) = 0.244 W/kg
Maximum value of SAR (measured) = 0.689 W/kg
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Test mode:
WCDMA Band V
Page: 68 of 80
Test Position:
Issued: 2018-01-23
Rear Side
Test Plot:
B3
Date:2018-01-09
Communication System: WCDMA; Frequency: 836.6 MHz;Duty Cycle: 1:1
Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.96 mho/m; εr = 55.86; ρ = 1000 kg/m3
Phantom section: Flat Section
DASY 5 Configuration:
•Probe: EX3DV4 - SN3650; ConvF(9.70, 9.70, 9.70); Calibrated: 2017/7/21;
•Sensor-Surface: 1.4mm (Mechanical Surface Detection)
•Electronics: DAE4 Sn1315; Calibrated: 2017/8/15
•Phantom: ELI v4.0; Type: QDOVA001BB
•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)
Area Scan (101x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.735 W/kg
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 12.747 V/m; Power Drift = -0.17 dB
Peak SAR (extrapolated) = 1.204 W/kg
SAR(1 g) = 0.699 W/kg; SAR(10 g) = 0.454 W/kg
Maximum value of SAR (measured) = 0.742 W/kg
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Test mode:
LTE Band 4
Page: 69 of 80
Test Position:
Issued: 2018-01-23
Rear Side
Test Plot:
B4
Date:2018-01-10
Communication System: Generic LTE; Frequency: 1732.5 MHz;Duty Cycle: 1:1
Medium parameters used (interpolated): f = 1732.5 MHz; σ = 1.459 mho/m; εr = 53.239; ρ = 1000 kg/m3
Phantom section: Flat Section
DASY5 Configuration:
•Probe: EX3DV4 - SN3650; ConvF(8.19, 8.19, 8.19); Calibrated: 2017/7/21;
•Sensor-Surface: 1.4mm (Mechanical Surface Detection)
•Electronics: DAE4 Sn1315; Calibrated: 2017/8/15
•Phantom: ELI v4.0; Type: QDOVA001BB
•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)
Area Scan (101x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.771 W/kg
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 10.933 V/m; Power Drift = 0.15 dB
Peak SAR (extrapolated) = 1.160 W/kg
SAR(1 g) = 0.723 W/kg; SAR(10 g) = 0.484 W/kg
Maximum value of SAR (measured) = 0.779 W/kg
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Test mode:
WLAN 802.11b
Page: 70 of 80
Test Position:
Issued: 2018-01-23
Rear Side
Test Plot:
B5
Date:2018-01-12
Communication System: wifi; Frequency: 2437 MHz;Duty Cycle: 1:1
Medium parameters used (interpolated): f = 2437 MHz; σ = 2.02 mho/m; εr = 50.719; ρ = 1000 kg/m3
Phantom section: Flat Section
DASY5 Configuration:
•Probe: EX3DV4 – SN3842; ConvF(7.21, 7.21, 7.21); Calibrated: 2017/7/21;
•Sensor-Surface: 1.4mm (Mechanical Surface Detection)
•Electronics: DAE4 Sn1315; Calibrated: 2017/8/15
•Phantom: ELI v4.0; Type: QDOVA001BB
•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)
Area Scan (121x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm
Maximum value of SAR (interpolated) = 0.483 W/kg
Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 2.904 V/m; Power Drift = -0.12 dB
Peak SAR (extrapolated) = 1.181 W/kg
SAR(1 g) = 0.469 W/kg; SAR(10 g) = 0.211 W/kg
Maximum value of SAR (measured) = 0.493 W/kg
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Test mode:
WLAN 802.11a
Page: 71 of 80
Test Position:
Issued: 2018-01-23
Rear Side
Test Plot:
B6
Date:2018-01-15
Communication System: wifi; Frequency: 5180 MHz;Duty Cycle: 1:1
Medium parameters used (interpolated): f = 5180 MHz; σ = 5.51 mho/m; εr = 49.47; ρ = 1000 kg/m3
Phantom section: Flat Section
DASY5 Configuration:
•Probe: EX3DV4 – SN3650; ConvF(4.87, 4.87, 4.87); Calibrated: 2017/7/21;
•Sensor-Surface: 1.4mm (Mechanical Surface Detection)
•Electronics: DAE4 Sn1315; Calibrated: 2017/8/15
•Phantom: ELI v4.0; Type: QDOVA001BB
•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)
Area Scan (151x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
Maximum value of SAR (interpolated) = 0.371 W/kg
Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 4.831 V/m; Power Drift = 0.11 dB
Peak SAR (extrapolated) = 0.535 W/kg
SAR(1 g) = 0.319 W/kg; SAR(10 g) = 0.186 W/kg
Maximum value of SAR (measured) = 0.375 W/kg
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 72 of 80
Issued: 2018-01-23
15. Simultaneous Transmission analysis
No.
Simultaneous Transmission Configurations
Head
Body
GSM(voice) + Bluetooth (data)
Yes
Yes
GSM(voice) + WIFI (data)
Yes
Yes
WCDMA(voice) + Bluetooth (data)
Yes
Yes
WCDMA(voice) + WIFI (data)
Yes
Yes
GPRS (data) + Bluetooth (data)
Yes
Yes
GPRS (data) + WIFI (data)
Yes
Yes
WCDMA (data) + Bluetooth (data)
Yes
Yes
WCDMA (data) + WIFI (data)
Yes
Yes
LTE + Bluetooth (data)
Yes
Yes
Note
10
LTE + WIFI (data)
Yes
Yes
General note:
1. WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously.
2. EUT will choose either GSM or WCDMA LTE according to the network signal condition; therefore, they
will not operate simultaneously at any moment.
3. The reported SAR summation is calculated based on the same configuration and test position
4. For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01 based on the
formula below
a) [(max. Power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] *
[√f(GHz)/x]W/kg for test separation distances ≦50mm; whetn x=7.5 for 1-g SAR, and x=18.75 for
10-g SAR.
b) When the minimum separation distance is <5mm, the distance is used 5mm to determine SAR test
exclusion
c) 0.4 W/kg for 1-g SAR and 1.0W/kg for 10-g SAR, when the test separation distances is >50mm.
Estimated SAR(W/kg)
Test Configurations
Rear Face
Left Side
Right Side
Top Side
Bottom Side
GPRS850 4 Slots
0.400
GPRS1900 4 Slots
0.400
WCDMA B5
0.400
LTE B4
0.400
WIFI 2.4G
0.400
0.400
WIFI 5G U-NII-1
0.400
0.400
WIFI 5G U-NII-3
0.400
0.400
Bluetooth
0.098
0.400
0.098
0.098
0.400
Bluetooth
Max power
Exposure position
Head
Test separation
0mm
3.70 dBm
Estimated SAR (W/kg)
0.098
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 73 of 80
Issued: 2018-01-23
Maximum reported SAR value for Head mode
WWAN PCE + WLAN DTS
WWAN Band
GSM850
GSM
PCS1900
WCDMA
Band V
B4
1RB
LTE
B4
50RB
Max SAR (W/kg)
Summed SAR
Exposure
Position
WWAN PCE
WLAN DTS
(W/kg)
Left Cheek
0.054
0.385
0.439
Left Tilted
0.041
0.327
0.367
Right Cheek
0.050
0.370
0.420
Right Tilted
0.038
0.311
0.349
Left Cheek
0.050
0.385
0.435
Left Tilted
0.040
0.327
0.367
Right Cheek
0.048
0.370
0.418
Right Tilted
0.038
0.311
0.349
Left Cheek
0.042
0.385
0.427
Left Tilted
0.034
0.327
0.360
Right Cheek
0.040
0.370
0.411
Right Tilted
0.032
0.311
0.343
Left Cheek
0.088
0.385
0.473
Left Tilted
0.066
0.327
0.393
Right Cheek
0.086
0.370
0.456
Right Tilted
0.067
0.311
0.378
Left Cheek
0.056
0.385
0.442
Left Tilted
0.044
0.327
0.371
Right Cheek
0.051
0.370
0.421
Right Tilted
0.036
0.311
0.347
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 74 of 80
Issued: 2018-01-23
WWAN PCE + Bluetooth
WWAN Band
GSM850
GSM
PCS1900
WCDMA
Band V
B4
1RB
LTE
B4
50RB
Max SAR (W/kg)
Summed SAR
Exposure
Position
WWAN PCE
Bluetooth
(W/kg)
Left Cheek
0.054
0.098
0.151
Left Tilted
0.041
0.098
0.139
Right Cheek
0.050
0.098
0.148
Right Tilted
0.038
0.098
0.135
Left Cheek
0.050
0.098
0.148
Left Tilted
0.040
0.098
0.138
Right Cheek
0.048
0.098
0.146
Right Tilted
0.038
0.098
0.135
Left Cheek
0.042
0.098
0.140
Left Tilted
0.034
0.098
0.131
Right Cheek
0.040
0.098
0.138
Right Tilted
0.032
0.098
0.130
Left Cheek
0.088
0.098
0.186
Left Tilted
0.066
0.098
0.164
Right Cheek
0.086
0.098
0.184
Right Tilted
0.067
0.098
0.164
Left Cheek
0.056
0.098
0.154
Left Tilted
0.044
0.098
0.142
Right Cheek
0.051
0.098
0.149
Right Tilted
0.036
0.098
0.134
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 75 of 80
Issued: 2018-01-23
WWAN PCE + WLAN U-NII
WWAN Band
GSM850
GSM
PCS1900
WCDMA
Band V
B4
1RB
LTE
B4
50RB
Max SAR (W/kg)
Summed SAR
Exposure
Position
WWAN PCE
WLAN U-NII
(W/kg)
Left Cheek
0.054
0.250
0.304
Left Tilted
0.041
0.212
0.253
Right Cheek
0.050
0.240
0.290
Right Tilted
0.038
0.202
0.239
Left Cheek
0.050
0.250
0.300
Left Tilted
0.040
0.212
0.252
Right Cheek
0.048
0.240
0.288
Right Tilted
0.038
0.202
0.239
Left Cheek
0.042
0.250
0.292
Left Tilted
0.034
0.212
0.246
Right Cheek
0.040
0.240
0.281
Right Tilted
0.032
0.202
0.234
Left Cheek
0.088
0.250
0.339
Left Tilted
0.066
0.212
0.278
Right Cheek
0.086
0.240
0.326
Right Tilted
0.067
0.202
0.268
Left Cheek
0.056
0.250
0.306
Left Tilted
0.044
0.212
0.256
Right Cheek
0.051
0.240
0.291
Right Tilted
0.036
0.202
0.238
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 76 of 80
Issued: 2018-01-23
Maximum reported SAR value for Body mode
WWAN Band
GSM850
GSM
PCS1900
WCDMA
Band V
B4
1RB
LTE
B4
50RB
WWAN PCE + WLAN DTS
Max SAR (W/kg)
Exposure
WWAN
Position
WLAN DTS
PCE
Back
0.703
0.525
Summed SAR
(W/kg)
1.228
Left side
0.503
0.400
0.903
Right side
0.505
0.439
0.944
Top side
0.400
0.346
0.746
Bottom side
0.478
0.400
0.878
Back
0.581
0.525
1.106
Left side
0.351
0.400
0.751
Right side
0.360
0.439
0.798
Top side
0.400
0.346
0.746
Bottom side
0.365
0.400
0.765
Back
0.713
0.525
1.238
Left side
0.433
0.400
0.833
Right side
0.408
0.439
0.847
Top side
0.400
0.346
0.746
Bottom side
0.432
0.400
0.832
Back
0.780
0.525
1.305
Left side
0.472
0.400
0.872
Right side
0.447
0.439
0.886
Top side
0.400
0.346
0.746
Bottom side
0.478
0.400
0.878
Back
0.551
0.525
1.076
Left side
0.375
0.400
0.775
Right side
0.346
0.439
0.785
Top side
0.400
0.346
0.746
Bottom side
0.365
0.400
0.765
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
WWAN Band
GSM850
GSM
PCS1900
WCDMA
Band V
B4
1RB
LTE
B4
50RB
Page: 77 of 80
Issued: 2018-01-23
WWAN PCE + Bluetooth
Max SAR (W/kg)
Exposure
WWAN
Position
Bluetooth
PCE
Back
0.703
0.098
Summed SAR
(W/kg)
0.801
Left side
0.503
0.400
0.903
Right side
0.505
0.098
0.603
Top side
0.400
0.098
0.498
Bottom side
0.478
0.400
0.878
Back
0.581
0.098
0.679
Left side
0.351
0.400
0.751
Right side
0.360
0.098
0.457
Top side
0.400
0.098
0.498
Bottom side
0.365
0.400
0.765
Back
0.713
0.098
0.811
Left side
0.433
0.400
0.833
Right side
0.408
0.098
0.506
Top side
0.400
0.098
0.498
Bottom side
0.432
0.400
0.832
Back
0.780
0.098
0.878
Left side
0.472
0.400
0.872
Right side
0.447
0.098
0.545
Top side
0.400
0.098
0.498
Bottom side
0.478
0.400
0.878
Back
0.551
0.098
0.649
Left side
0.375
0.400
0.775
Right side
0.346
0.098
0.444
Top side
0.400
0.098
0.498
Bottom side
0.365
0.400
0.765
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
WWAN Band
GSM850
GSM
PCS1900
WCDMA
Band V
B4
1RB
LTE
B4
50RB
Page: 78 of 80
Issued: 2018-01-23
WWAN PCE + WLAN U-NII
Max SAR (W/kg)
Exposure
WWAN
Position
WLAN U-NII
PCE
Back
0.703
0.330
Summed SAR
(W/kg)
1.032
Left side
0.503
0.400
0.903
Right side
0.505
0.275
0.781
Top side
0.400
0.217
0.617
Bottom side
0.478
0.400
0.878
Back
0.581
0.330
0.911
Left side
0.351
0.400
0.751
Right side
0.360
0.275
0.635
Top side
0.400
0.217
0.617
Bottom side
0.365
0.400
0.765
Back
0.713
0.330
1.042
Left side
0.433
0.400
0.833
Right side
0.408
0.275
0.684
Top side
0.400
0.217
0.617
Bottom side
0.432
0.400
0.832
Back
0.780
0.330
1.110
Left side
0.472
0.400
0.872
Right side
0.447
0.275
0.723
Top side
0.400
0.217
0.617
Bottom side
0.478
0.400
0.878
Back
0.551
0.330
0.881
Left side
0.375
0.400
0.775
Right side
0.346
0.275
0.621
Top side
0.400
0.217
0.617
Bottom side
0.365
0.400
0.765
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 79 of 80
Issued: 2018-01-23
16. TestSetup Photos
Liquid depth in the Body phantom
Liquid depth in the head phantom
Left Head Touch
Right Head Touch
Left Head Tilt (15o)
Right Head Tilt (15o)
Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Report No:
TRE18010046
Page: 80 of 80
Issued: 2018-01-23
Right Side (0mm)
Top Side (0mm)
Bottom Side (0mm)
Rear Side (0mm)
Left Side(0mm)
17. External and Internal Photos of the EUT
Please reference to the report No.: TRE1801004501
---------End of Report---------Shenzhen Huatongwei International Inspection Co., Ltd.
Report Template Version: H01 (2017-09)
Appendix A
A: Calibration
n Certificate
1.1. DAE
E4 Calibration Certifficate
1 of 66
Appendix A : Calibration
n Certificate
2 of 66
Appendix A : Calibration
n Certificate
3 of 66
Appendix A
A: Calibration
n Certificate
1.2. Prob
be Calibra
ation Certificate
4 of 66
Appendix A : Calibration
n Certificate
5 of 66
Appendix A : Calibration
n Certificate
6 of 66
Appendix A : Calibration
n Certificate
7 of 66
Appendix A : Calibration
n Certificate
8 of 66
Appendix A : Calibration
n Certificate
9 of 66
Appendix A : Calibration
n Certificate
10 of 66
Appendix A : Calibration
n Certificate
11 of 66
Appendix A : Calibration
n Certificate
12 of 66
Appendix A : Calibration
n Certificate
13 of 66
Appendix A : Calibration
n Certificate
14 of 66
Download: A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Mirror Download [FCC.gov]A81F Tablet PC RF Exposure Info EMC TRF Template Haier International Business Corporation Limited
Document ID3748833
Application IDoZ3bEcSrzoZBiqzUi3dbMg==
Document DescriptionSAR-1
Short Term ConfidentialNo
Permanent ConfidentialNo
SupercedeNo
Document TypeRF Exposure Info
Display FormatAdobe Acrobat PDF - pdf
Filesize394.32kB (4928963 bits)
Date Submitted2018-02-11 00:00:00
Date Available2018-02-11 00:00:00
Creation Date2018-01-31 14:21:28
Producing SoftwareAdobe Acrobat Pro 9.0.0
Document Lastmod2018-02-07 20:21:03
Document TitleEMC TRF Template
Document CreatorAdobe Acrobat Pro 9.0.0
Document Author: eie

Source Exif Data [exif.tools]:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : No
Author                          : eie
Create Date                     : 2018:01:31 14:21:28+08:00
Modify Date                     : 2018:02:07 20:21:03+08:00
Has XFA                         : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-20:48:00
Metadata Date                   : 2018:02:07 20:21:03+08:00
Creator Tool                    : Adobe Acrobat Pro 9.0.0
Format                          : application/pdf
Title                           : EMC TRF Template
Creator                         : eie
Document ID                     : uuid:5caf5f63-78c7-4fa4-9e4c-cafde59fcb80
Instance ID                     : uuid:fef9472e-c827-4559-9450-fb51daeaa511
Producer                        : Adobe Acrobat Pro 9.0.0
Page Count                      : 94