Tonal

TEST REPORT FOR

Trainer Model: T1522

Tested to The Following Standards:

FCC Part 15 Subpart E Section(s)

15.207 & 15.407 (NII 5.15 – 5.25GHz) Wi-Fi 5.1 GHz for Hydra Board for Main System

Report No.: 105488-28

Date of issue: February 15, 2022

Test Certificate #803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 94 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	2
Software Versions	2
Site Registration & Accreditation Information	2
Summary of Results	
Modifications During Testing	
Conditions During Testing	5
Equipment Under Test	θ
General Product Information	7
FCC Part 15 Subpart E	g
15.215 Occupied Bandwidth	
15.407(a)(1) Output Power	20
15.407(a)(1) Power Spectral Density	31
15.407(b) Radiated Emissions & Band Edge	42
15.207 AC Conducted Emissions	85
Supplemental Information	93
Measurement Uncertainty	93
Fmissions Test Details	ga

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Tonal Lisa Bevington
617 Bryant Street CKC Laboratories, Inc.
San Francisco, CA 94107 5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Lars Gilstrom Project Number: 105488

Customer Reference Number: PO1203

DATE OF EQUIPMENT RECEIPT: December 6,2021

DATE(S) OF TESTING:December 6-10, 13,17-21, 23-24, 2021
January 3-5, 7, 25-26, 2022

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Page 3 of 94 Report No.: 105488-28

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

^{*}CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 94 Report No.: 105488-28

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart E - 15.407 (NII)

Test Procedure	Description	Modifications	Results
15.215	Occupied Bandwidth	NA	PASS
15.407(a)(1)	Output Power	NA	PASS
15.407(a)(1)	Power Spectral Density	NA	PASS
15.407(a)(1)(iii)	EIRP at >30º Elevation	NA	NA1
15.407(g)	Frequency Stability	NA	NA1
15.407(b)	Radiated Emissions & Band Edge	Mods. #1, #2, #3 #4, #5, #6	PASS
15.207	AC Conducted Emissions	NA	PASS

NA = Not Applicable

NA1 = Not Applicable because the EUT is a client device.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

Radiated Emissions only; Configurations: 1 & 3

Mod. #1 = Copper tape between microphone PCBA gold-plated pads and chassis.

Mod. #2 = Screws on hydra backplane mounting bracket.

Mod. #3 = Copper tape on hydra backplane to display backplane.

Mod. #4 = Ferrite (1 each) 742-712-21 on upper lead to shunt.

Mod. #5 = Door bonding replaced with three (3) lug-to-lug wire strap.

Mod. #6 = Set display mode into spread spectrum.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

The Test Setup Photos are incorporated by reference 105488-28 Test Setup Photos.

Page 5 of 94 Report No.: 105488-28

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Under Test (* = EUT):

Device Name	Manufacturer	Model #	S/N
Trainer	Tonal System	T1522	02016558
Hydra Board	Tonal System	500-0801 Rev 008	080100702000476
Internal Power Supply	Artesyn Embedded Tech.	LCM1500W-T	K510UN001BBVC-8-416
			Revision: BV
			Firmware 6/2/2021
Direct Bond 2312 Touch	BOE	380-0015 Rev. 1-1	0000015
screen display		CJ238FSB-TG21	

Support Equipment:

Device Name	Manufacturer	Model #	S/N
None			

Configuration 3

Equipment Under Test (* = EUT):

Device Name	Manufacturer	Model #	S/N
Trainer	Tonal System	T1522	02016558
Hydra Board	Tonal System	500-0801 Rev 008	080100702000476
Internal Power Supply	Artesyn Embedded Tech.	LCM1500W-T	K510UN001BBVC-8-416
			Revision: BV
			Firmware 6/2/2021
Direct Bond 2312 Touch	BOE	380-0015 Rev. 1-1	0000015
screen display		CJ238FSB-TG21	

Support Equipment:

Device Name	Manufacturer	Model #	S/N
Laptop	Lenovo	X1 Carbon Gen 9	PF-37KBYM
Laptop Power Supply	Lenovo	SA10R16922	8SSA10R16922C2TJ-
			19M0G0G

Configuration 9

Equipment Under Test (* = EUT):

Device Name	Manufacturer	Model #	S/N
Hydra Board	Tonal System	500-0801 Rev 008	080100702000476

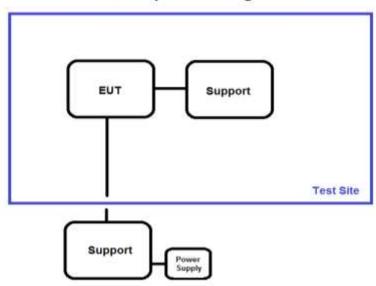
Support Equipment:

Device Name	Manufacturer	Model #	S/N
Laptop	Lenovo	X1 Carbon Gen 9	PF-37KBYM
Laptop Power Supply	Lenovo	SA10R16922	8SSA10R16922C2TJ-
			19M0G0G

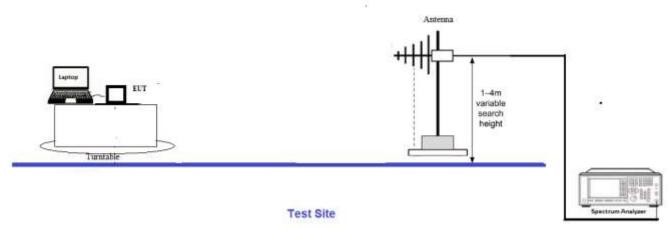
Page 6 of 94 Report No.: 105488-28

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	Wi-Fi 5.1GHz for Hydra Board for Main System
Operating Frequency Range:	5150-5250MHz
Modulation Type(s):	OFDM, HT20, HT40, HT80
Maximum Duty Cycle:	100%
Number of TX Chains:	2
Antenna Type(s) and Gain:	External 4.00dBi
Beamforming Type:	NA
Antenna Connection Type:	External Connector
Nominal Input Voltage:	15VDC
Firmware / Software used for Test:	QRCT (Qualcomm Radio Control Toolkit) Version 4


The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes full responsibility.

Page 7 of 94 Report No.: 105488-28



Block Diagram of Test Setup(s)

Test Setup Block Diagram

Radiated test setup

Page 8 of 94 Report No.: 105488-28

FCC Part 15 Subpart E

15.215 Occupied Bandwidth

Test Setup/Conditions				
Test Location:	Fremont Lab C3	Test Engineer:	Hoang Cao	
Test Method:	ANSI C63.10 (2013), KDB 789033	Test Date(s):	12/8/2021	
Configuration:	Configuration: 9			
Test Setup:	Test Setup: The EUT is placed non-conducted table. It is operated as intended. It is connected straight			
to a Spectrum Analyzer.				

Environmental Conditions					
Temperature (ºC)	Relative Humidity (%):	45			

Test Equipment						
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due	
03360	Cable	Astrolab	32022-2-29094- 36TC	4/9/2020	4/9/2022	
P06239	Attenuator	Weinschel	54A-10	6/17/2020	6/17/2022	
03471	Spectrum Analyzer	Agilent	E4440A	2/11/2020	2/11/2022	

26dB Occupied Bandwidth

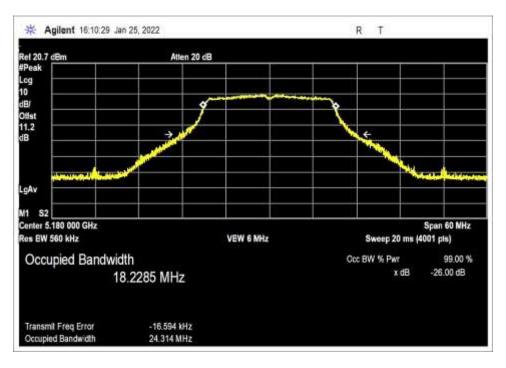
Test Data Summary						
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
5180	1	OFDM	24314			
5220	1	OFDM	24305	None	NA	
5240	1	OFDM	25254			
5180	1	HT20	25636			
5220	1	HT20	25482	None	NA	
5240	1	HT20	25629			
5190	1	HT40	41915	None	NA	
5230	1	HT40	41607	None	IVA	
5210	1	HT80	83556	None	NA	

Page 9 of 94 Report No.: 105488-28

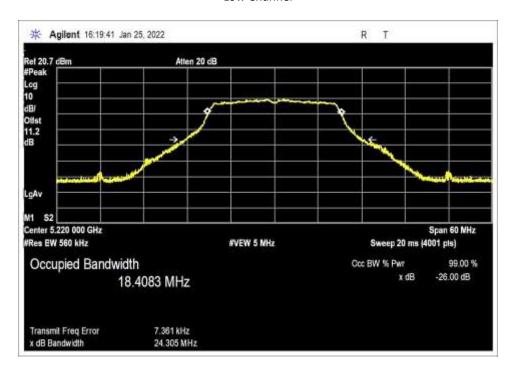
Test Data Summary						
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
5180	2	OFDM	24580			
5220	2	OFDM	24756	None	NA	
5240	2	OFDM	24267			
5180	2	HT20	22895			
5220	2	HT20	22778	None	NA	
5240	2	HT20	23008			
5190	2	HT40	41927	None	NIA	
5230	2	HT40	41797	None	NA	
5210	2	HT80	84432	None	NA	

99% Occupied Bandwidth

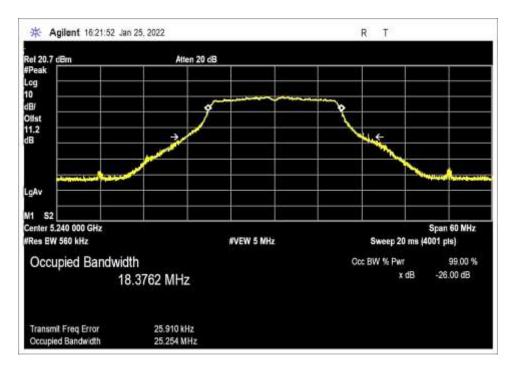
	Test Data Summary						
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results		
5180	1	OFDM	18228				
5220	1	OFDM	18408	None	NA		
5240	1	OFDM	18376				
5180	1	HT20	18379				
5220	1	HT20	18407	None	NA		
5240	1	HT20	18376				
5190	1	HT40	36322	None	NA		
5230	1	HT40	36348	none	INA		
5210	1	HT80	75650	None	NA		


	Test Data Summary						
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results		
5180	2	OFDM	18332				
5220	2	OFDM	18235	None	NA		
5240	2	OFDM	18245				
5180	2	HT20	18179				
5220	2	HT20	18176	None	NA		
5240	2	HT20	18205				
5190	2	HT40	36344	None	NA		
5230	2	HT40	36316	none	INA		
5210	2	HT80	75608	None	NA		

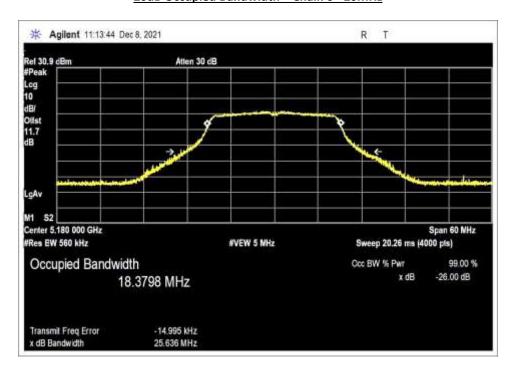
Page 10 of 94 Report No.: 105488-28

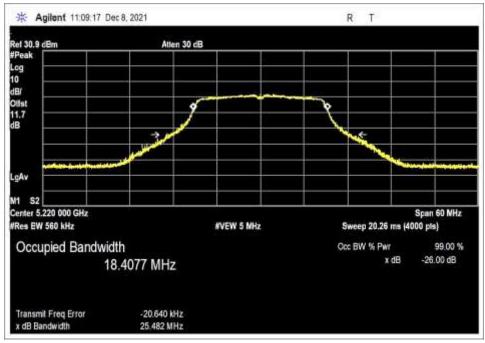


Plots

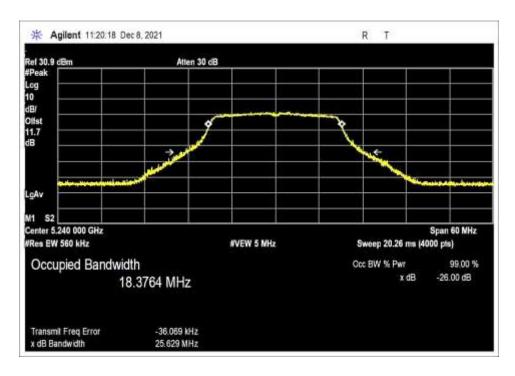

26dB Occupied Bandwidth - Chain 0 - OFDM

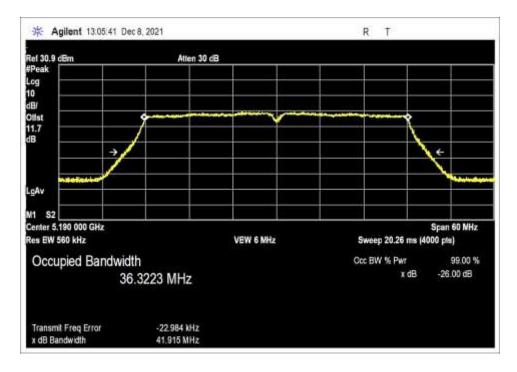
Low Channel

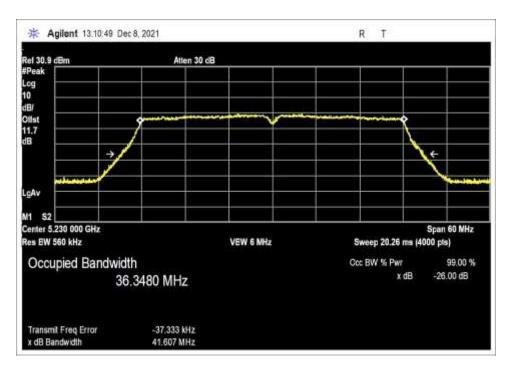




High Channel

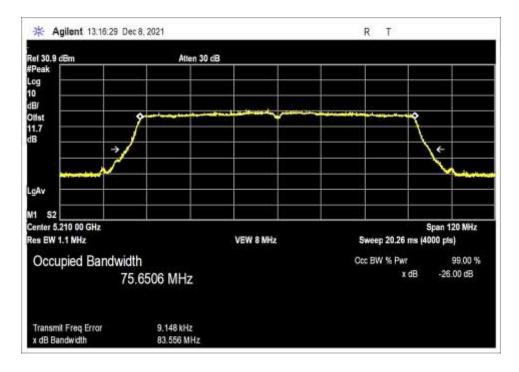

26dB Occupied Bandwidth - Chain 0 - 20MHz

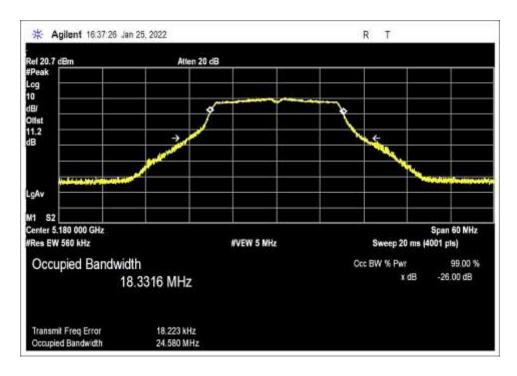

Middle Channel

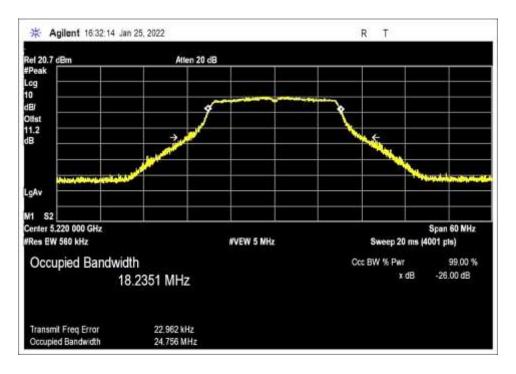


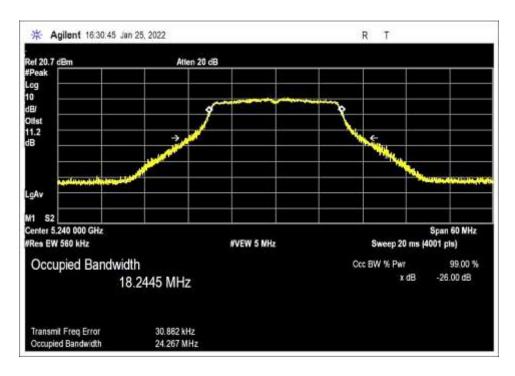
High Channel

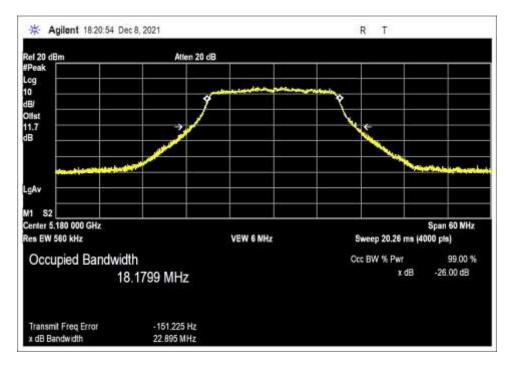
26dB Occupied Bandwidth - Chain 0 - 40MHz

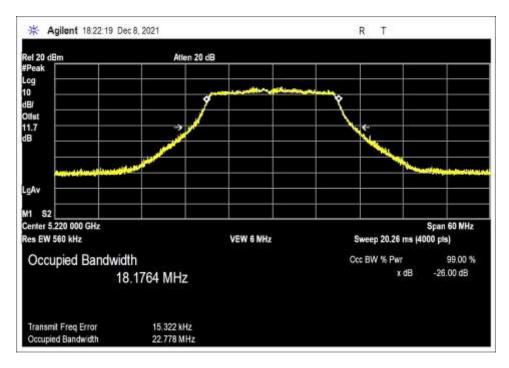


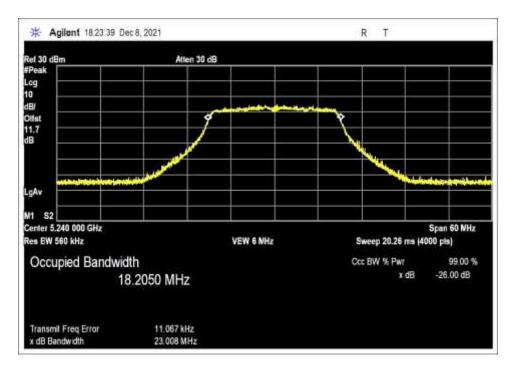

High Channel


Chain 0, 80MHz

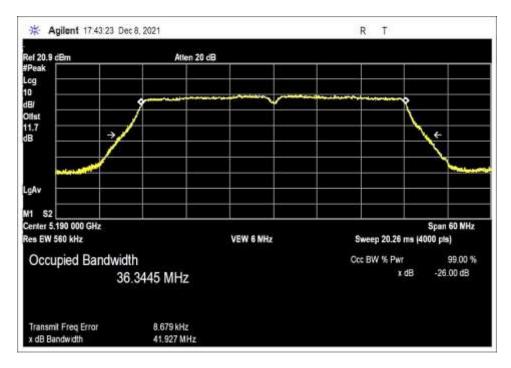

99% Occupied Bandwidth - Chain 1 - OFDM

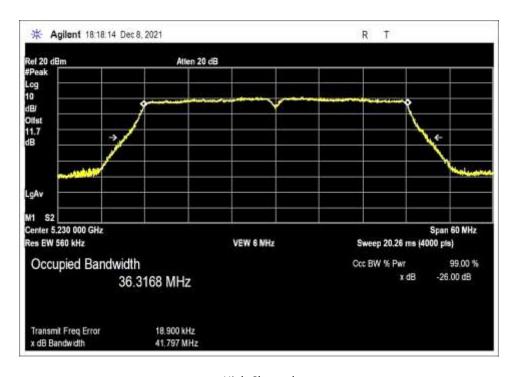

Middle Channel


High Channel


99% Occupied Bandwidth - Chain 1 - 20MHz

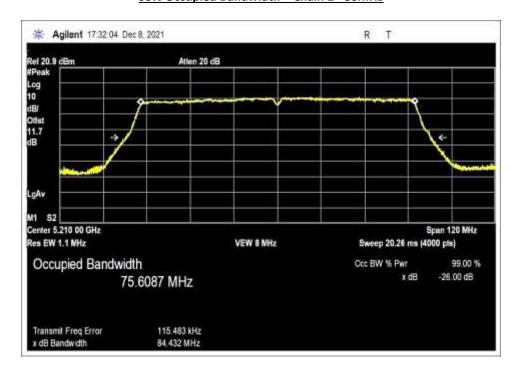
Low Channel





High Channel

99% Occupied Bandwidth - Chain 1 - 40MHz



High Channel

99% Occupied Bandwidth - Chain 1 - 80MHz

15.407(a)(1) Output Power

Test Setup/Conditions				
Test Location:	Fremont Lab C3	Test Engineer:	Hoang Cao	
Test Method:	ANSI C63.10 (2013), KDB 789033	Test Date(s):	12/8/2021	
Configuration:	9			
Test Setup:	Test Setup: The EUT is placed non-conducted table. It is operated as intended. It is connected straight			
to a Spectrum Analyzer.				

Environmental Conditions				
Temperature (ºC)	22.5	Relative Humidity (%):	45	

Test Equipment						
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due	
03360	Cable	Astrolab	32022-2-29094- 36TC	4/9/2020	4/9/2022	
P06239	Attenuator	Weinschel	54A-10	6/17/2020	6/17/2022	
03471	Spectrum Analyzer	Agilent	E4440A	2/11/2020	2/11/2022	

Test Data Summary - Voltage Variations						
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)	
5180	HT20/1	8.85	8.87	8.89	0.02	
5220	HT20/1	9.00	9.00	9.03	0.03	
5240	HT20/1	9.20	9.23	9.25	0.02	

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	15VDC
V _{Minimum} :	12.75VDC
V _{Maximum} :	17.25VDC

Page 20 of 94 Report No.: 105488-28

Test Data Summary - RF Conducted Measurement – Chain 0 Measurement Option: AVGSA-1					
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results
5180	OFDM	External 4.00dBi	6.28	≤23.9	Pass
5220	OFDM	External 4.00dBi	5.94	≤23.9	Pass
5240	OFDM	External 4.00dBi	6.34	≤23.9	Pass
5180	HT20	External 4.00dBi	8.19	≤23.9	Pass
5220	HT20	External 4.00dBi	8.10	≤23.9	Pass
5240	HT20	External 4.00dBi	8.03	≤23.9	Pass
5190	HT40	External 4.00dBi	8.69	≤23.9	Pass
5230	HT40	External 4.00dBi	8.42	≤23.9	Pass
5210	HT80	External 4.00dBi	8.17	≤23.9	Pass

Test Data Summary - RF Conducted Measurement – Chain 1						
Measurement Option: AVGSA-1						
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results	
5180	OFDM	External 4.00dBi	6.62	≤23.9	Pass	
5220	OFDM	External 4.00dBi	6.93	≤23.9	Pass	
5240	OFDM	External 4.00dBi	7.50	≤23.9	Pass	
5180	HT20	External 4.00dBi	8.87	≤23.9	Pass	
5220	HT20	External 4.00dBi	9.00	≤23.9	Pass	
5240	HT20	External 4.00dBi	9.23	≤23.9	Pass	
5190	HT40	External 4.00dBi	8.92	≤23.9	Pass	
5230	HT40	External 4.00dBi	9.11	≤23.9	Pass	
5210	HT80	External 4.00dBi	8.87	≤23.9	Pass	

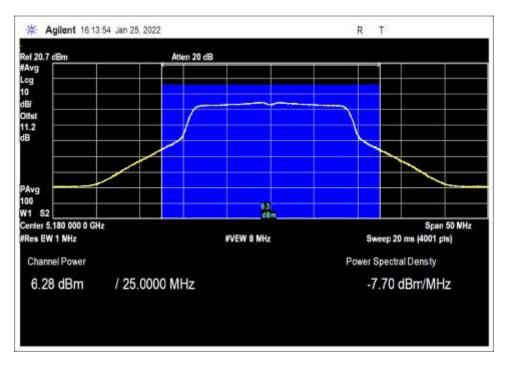
For access points using antennas other than in fixed point-to-point applications, the limit is calculated in accordance with 15.407(a)(1)(i):

Limit = 30 - Roundup(G - 6)

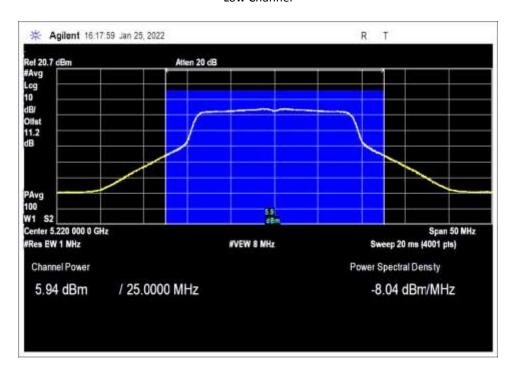
For access points using antennas in fixed point-to-point applications, the limit is calculated in accordance with 15.407(a)(1)(ii):

Limit = 30 - Roundup(G - 23)

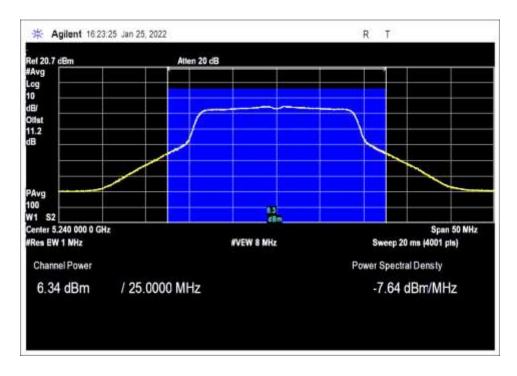
For client devices access points using antennas in fixed point-to-point applications, the limit is calculated in accordance with 15.407(a)(1)(iii):


Limit = 24 - Roundup(G - 6)

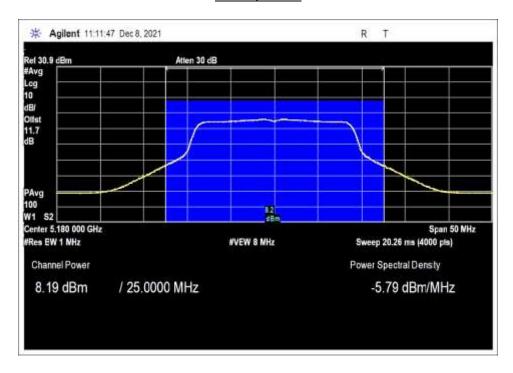
Page 21 of 94 Report No.: 105488-28

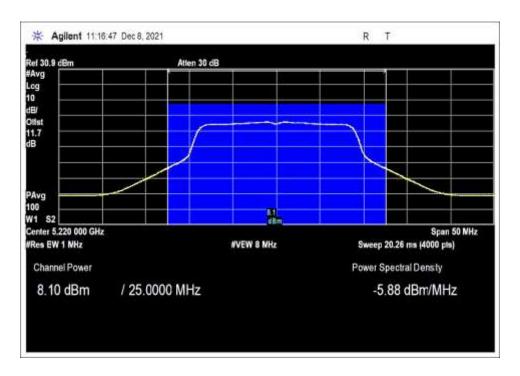


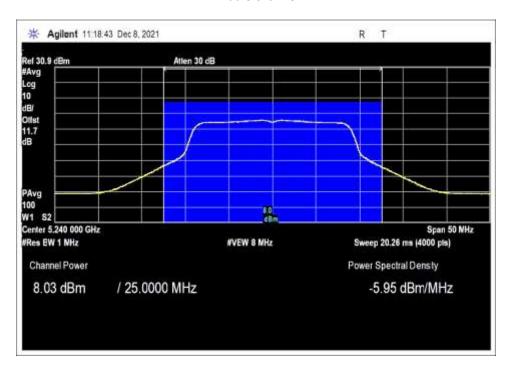
Plots


Chain 0, OFDM

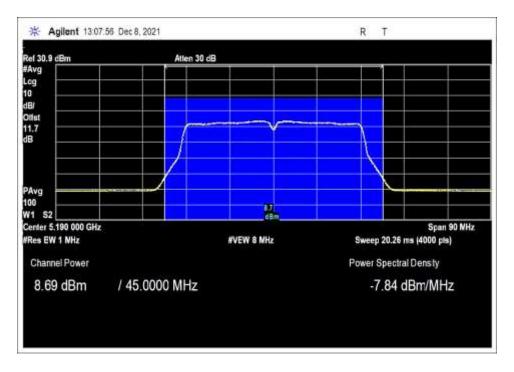
Low Channel

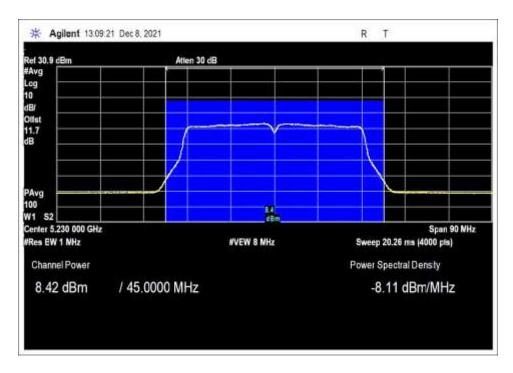





High Channel

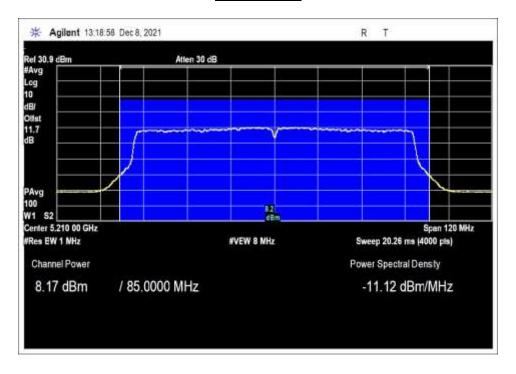
Chain 0, 20MHz

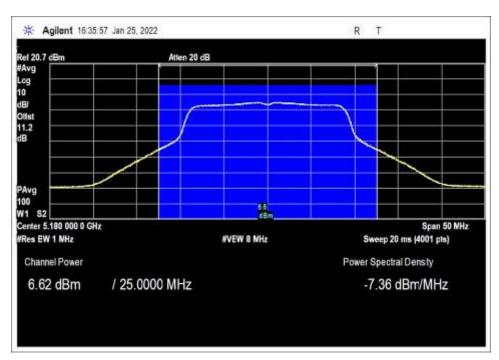




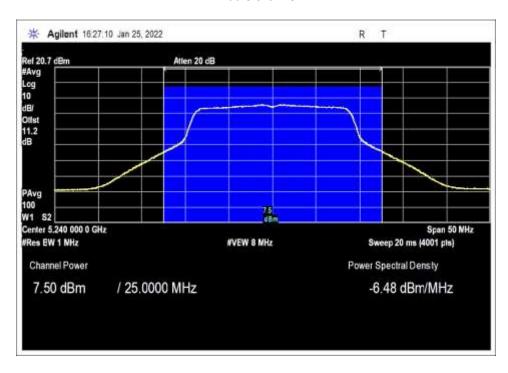
High Channel

Chain 0, 40MHz

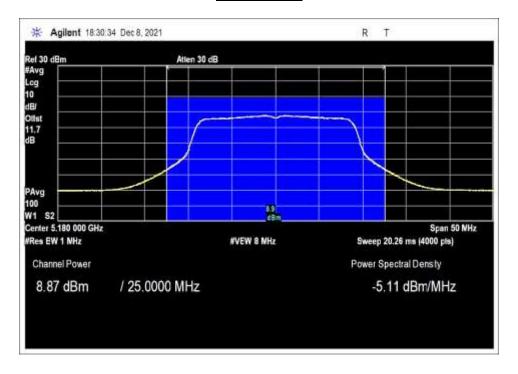


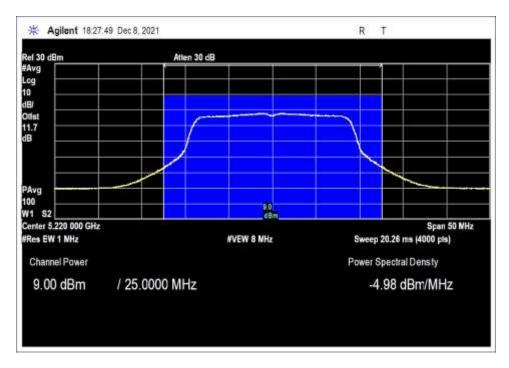

High Channel

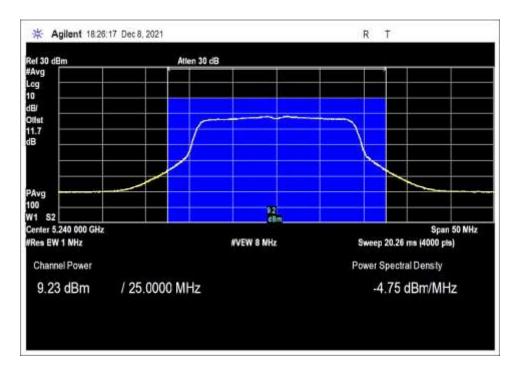
Chain 0, 80MHz



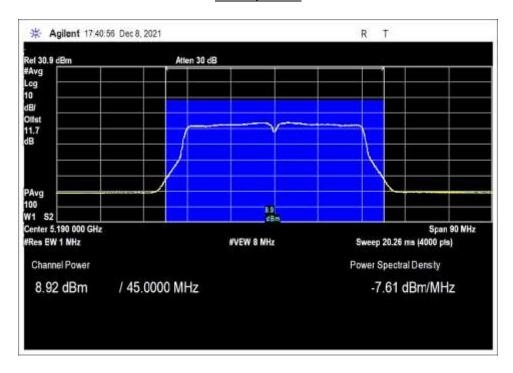
Chain 1, OFDM

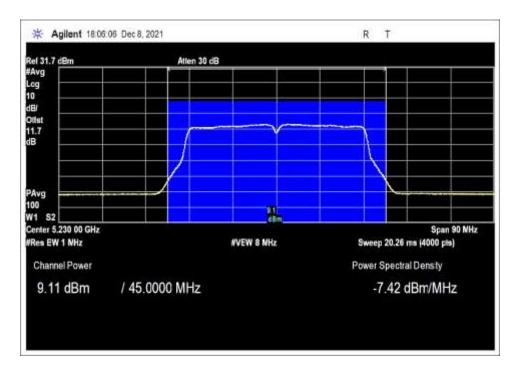



High Channel


Chain 1, 20MHz

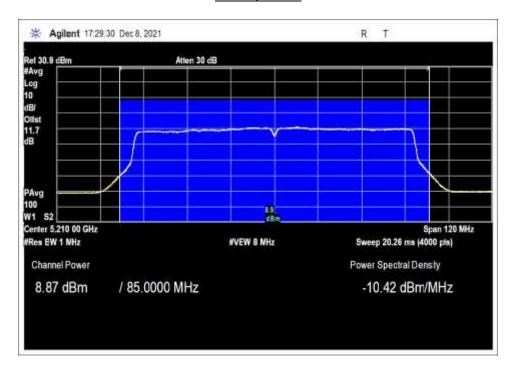
Low Channel





High Channel

Chain 1, 40MHz



High Channel

Chain 1, 80MHz

15.407(a)(1) Power Spectral Density

Test Setup/Conditions – RF Conducted Measurement					
Test Location:	Fremont Lab C3	Test Engineer:	Hoang Cao		
Test Method:	ANSI C63.10 (2013), KDB 789033	Test Date(s):	12/8/2021		
Configuration:	9				
Test Setup:	The EUT is placed non-conducted table. It is operated as intended. It is connected straight				
	to a Spectrum Analyzer.				

Environmental Conditions					
Temperature (ºC)	22.5	Relative Humidity (%):	45		

Test Equipment						
Asset# / Serial#	Description	Manufacturer	Model	Cal Date	Cal Due	
03360	Cable	Astrolab	32022-2-29094- 36TC	4/9/2020	4/9/2022	
P06239	Attenuator	Weinschel	54A-10	6/17/2020	6/17/2022	
03471	Spectrum Analyzer	Agilent	E4440A	2/11/2020	2/11/2022	

Test Data Summary - RF Conducted Measurement – Chain 0						
Measurement Option: AVGSA-1						
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm/MHz)	Limit (dBm/MHz)	Results	
5180	OFDM	External 4.00dBi	-7.70	≤11	Pass	
5220	OFDM	External 4.00dBi	-8.04	≤11	Pass	
5240	OFDM	External 4.00dBi	-7.64	≤11	Pass	
5180	HT20	External 4.00dBi	-5.79	≤11	Pass	
5220	HT20	External 4.00dBi	-5.88	≤11	Pass	
5240	HT20	External 4.00dBi	-5.95	≤11	Pass	
5190	HT40	External 4.00dBi	-7.84	≤11	Pass	
5230	HT40	External 4.00dBi	-8.11	≤11	Pass	
5210	HT80	External 4.00dBi	-11.12	≤11	Pass	

Page 31 of 94 Report No.: 105488-28

Test Data Summary - RF Conducted Measurement – Chain 1 Measurement Option: AVGSA-1						
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm/MHz)	Limit (dBm/MHz)	Results	
5180	OFDM	External 4.00dBi	-7.36	≤11	Pass	
5220	OFDM	External 4.00dBi	-7.05	≤11	Pass	
5240	OFDM	External 4.00dBi	-6.48	≤11	Pass	
5180	HT20	External 4.00dBi	-5.11	≤11	Pass	
5220	HT20	External 4.00dBi	-4.98	≤11	Pass	
5240	HT20	External 4.00dBi	-4.75	≤11	Pass	
5190	HT40	External 4.00dBi	-7.61	≤11	Pass	
5230	HT40	External 4.00dBi	-7.42	≤11	Pass	
5210	HT80	External 4.00dBi	-10.42	≤11	Pass	

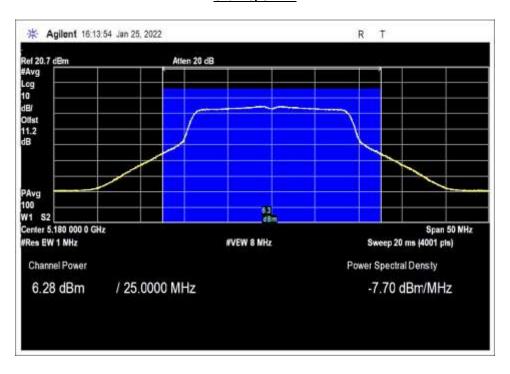
For access points using antennas other than in fixed point-to-point applications, the limit is calculated in accordance with 15.407(a)(1)(i):

Limit = 17 - Roundup(G - 6)

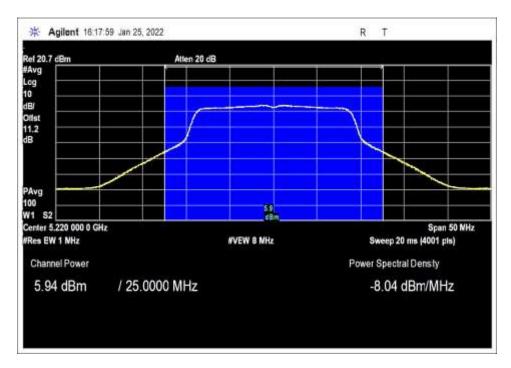
For access points using antennas in fixed point-to-point applications, the limit is calculated in accordance with 15.407(a)(1)(ii):

Limit = 17 - Roundup(G - 23)

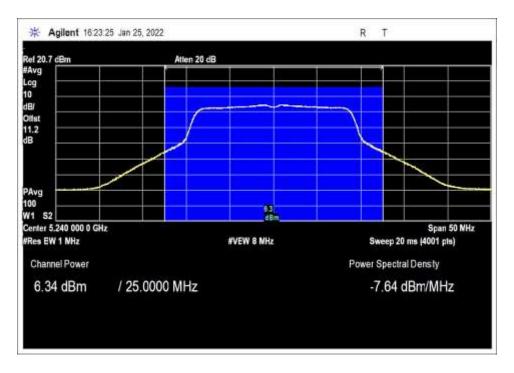
For client devices access points using antennas in fixed point-to-point applications, the limit is calculated in accordance with 15.407(a)(1)(iii):


Limit = 11 - Roundup(G - 6)

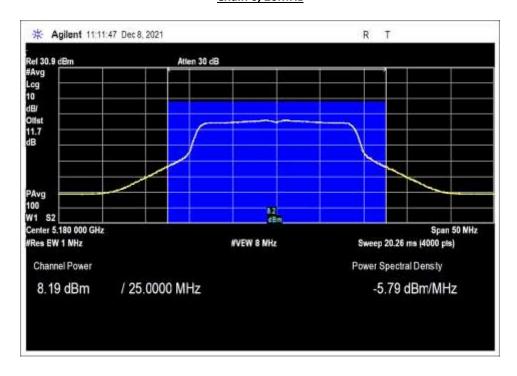
Page 32 of 94 Report No.: 105488-28

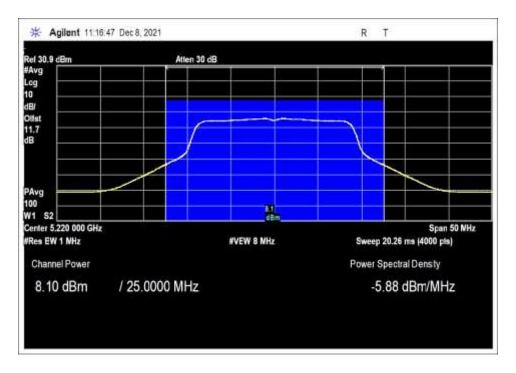


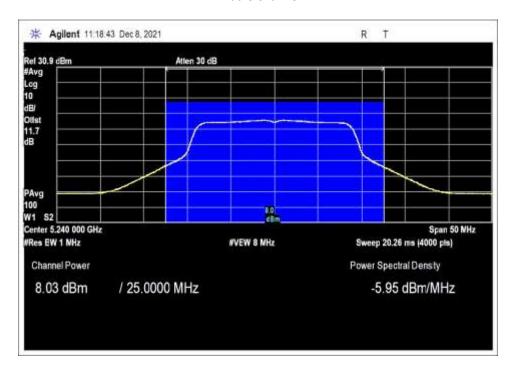
Plots


Chain 0, OFDM

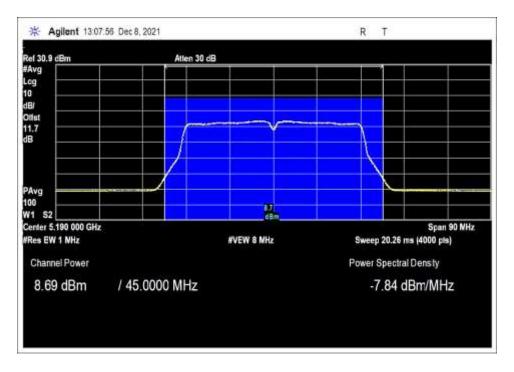
Low Channel

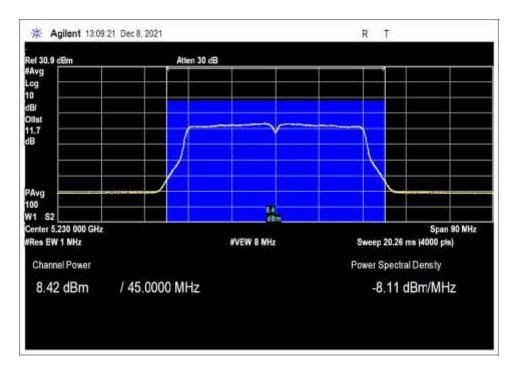





High Channel

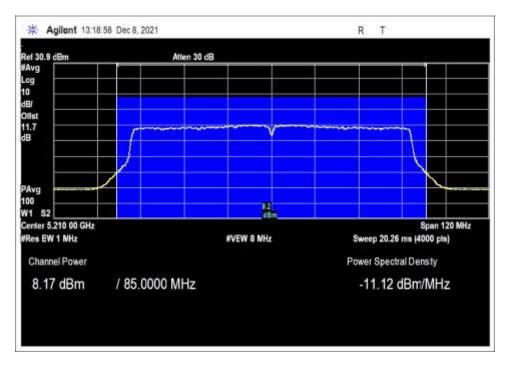
Chain 0, 20MHz

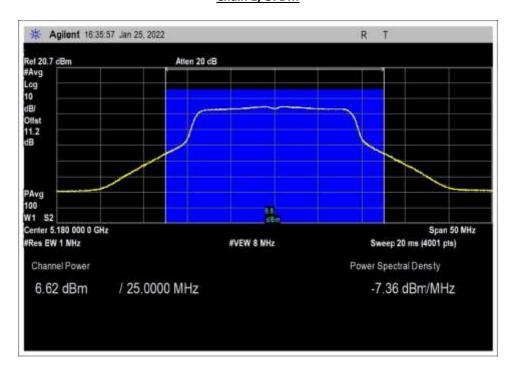




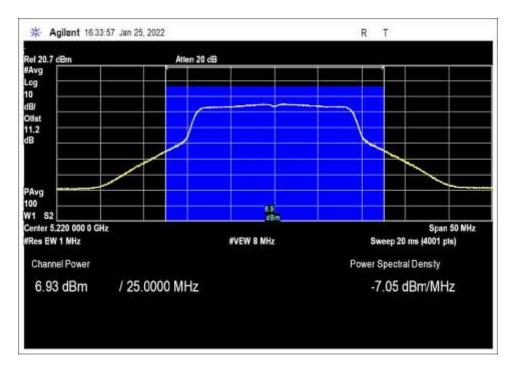
High Channel

Chain 0, 40MHz

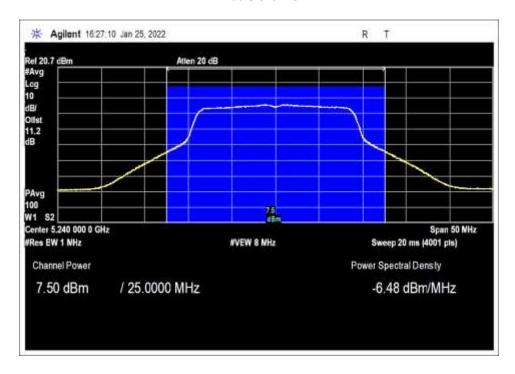



High Channel

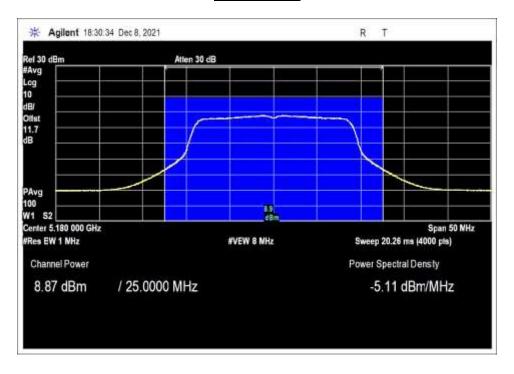
Chain 0, 80MHz

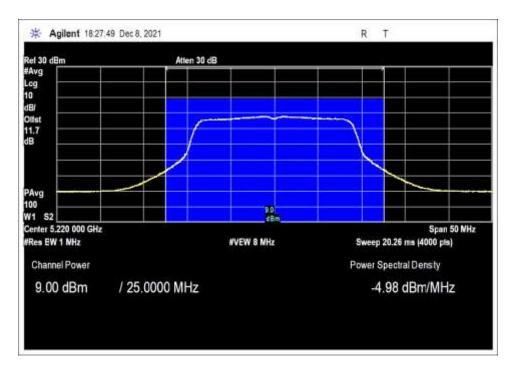


Chain 1, OFDM

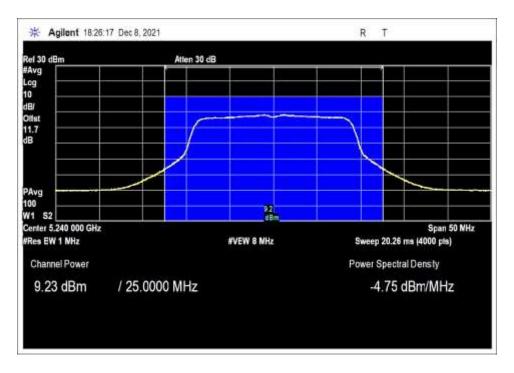


Low Channel

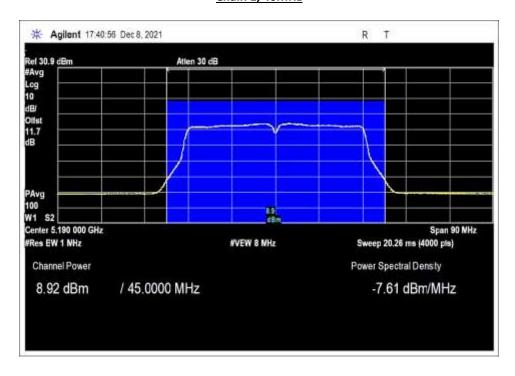

Middle Channel

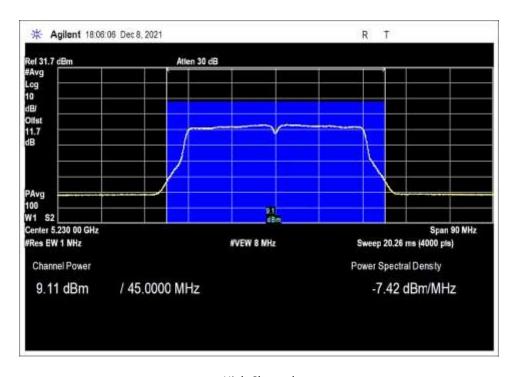

High Channel

Chain 1, 20MHz

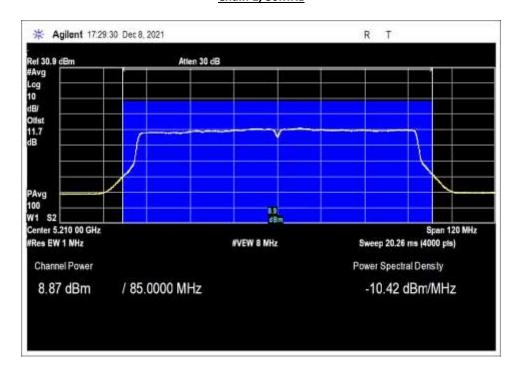


Low Channel


Middle Channel


High Channel

Chain 1, 40MHz


Low Channel

High Channel

Chain 1, 80MHz

15.407(b) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Note: Chain 0 is the worst case based on the investigation on RF output power before measuring Radiated Spurious Emissions.

Test Location: CKC Laboratories, Inc. • 1120 Fulton Pl • Fremont CA 94539 • 510-249-1170

Customer: **Tonal**

Specification: 15.209 Radiated Emissions

Work Order #: **105488** Date: 12/18/2021 Test Type: **Radiated Scan** Time: 10:05:16 PM

Tested By: Randy Clark Sequence#: 68

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Radiated Emission

Frequency Range: 9kHz to 1GHz

Environmental Conditions: Temperature: 21.4°C Humidity: 36%

Atmospheric Pressure: 101.9kPa Method: ANSI C63.10 2013

The unit is mounted to a floor standing rack as to simulate typical wall mounted setup. One weight line is extended to the floor.

WiFi is set to 5220 MHz with nonHT modulation type, 11MBPS at power level 10, chain 0 with repeating pattern of 0s and 1s with duty cycle at 98%.

Operational mode is representative of worst case.

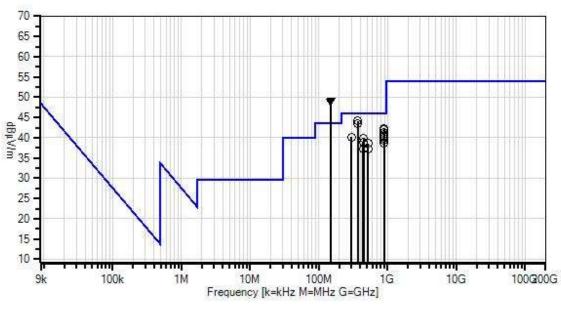
Measurements marked as Unintentional have been evaluated with radios turned off and determined not to be radio emissions. Indicated emissions are ignored for the purposes of this report.

Notes:

Touch screen display: Direct bond 2312

Power Supply: Artesyn

Display is showing home screen


Modifications: #1, #2, #3 #4, #5, #6 were in place during testing.

No emissions from EUT has been found in 20dB tolerance in the frequency range 9kHz to 30MHz.

Page 42 of 94 Report No.: 105488-28

Tonal WO#: 105548 Sequence#: 68 Date: 12/18/2021 15.209 Radiated Emissions Test Distance: 3 Meters Horiz

Readings

* Average Readings

1 - 15.209 Radiated Emissions

O Peak Readings ▼ Ambient

 QP Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP07508	Preamp	310N	7/9/2020	7/9/2022
T2	AN00852	Biconilog Antenna	CBL 6111C	4/14/2020	4/14/2022
T3	ANP06049	Attenuator	PE7002-6	5/11/2020	5/11/2022
T4	ANP01187	Cable	CNT-195	7/6/2020	7/6/2022
T5	ANP06691	Cable	PE3062-180	3/25/2020	3/25/2022
T6	ANP06694	Cable	PE3062-480	3/25/2020	3/25/2022
	AN02660	Spectrum Analyzer	E4446A	12/4/2020	12/4/2022
	AN00432	Loop Antenna	6502	7/19/2021	7/19/2023

Page 43 of 94 Report No.: 105488-28

Measu	rement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBμV/m	dB	Ant
1	149.402M	62.1	-32.0	+11.5	+5.9	+0.2	+0.0	49.2	43.5	+5.7	Horiz
	Ambient		+0.4	+1.1					Unintention	nal	
									Emissions		
2		62.0	-32.0	+11.5	+5.9	+0.2	+0.0	49.1	43.5	+5.6	Horiz
	Ambient		+0.4	+1.1					Unintention	ıal	
									Emissions		
3	370.302M	52.0	-31.9	+15.0	+6.0	+0.4	+0.0	44.1	46.0	-1.9	Horiz
			+0.7	+1.9							
4	372.104M	51.2	-31.9	+15.1	+6.0	+0.4	+0.0	43.4	46.0	-2.6	Horiz
	000 5 403 5	20.7	+0.7	+1.9		0.7	0.0	40.0	4.5.0	2.0	** .
5	888.740M	39.5	-31.4	+23.1	+5.9	+0.7	+0.0	42.2	46.0	-3.8	Horiz
	00465614	20.2	+1.2	+3.2	. 7.0	. 0.7	. 0. 0	10.0	46.0	4.0	
6	884.656M	39.3	-31.4	+23.1	+5.9	+0.7	+0.0	42.0	46.0	-4.0	Horiz
	000 26014	20.5	+1.2	+3.2	. 5.0	.07	.00	41.0	16.0	4.0	TT
7	888.260M	38.5	-31.4 +1.2	+23.1	+5.9	+0.7	+0.0	41.2	46.0	-4.8	Horiz
8	885.257M	38.1	-31.4	+3.2	+5.9	+0.7	+0.0	40.8	46.0	-5.2	Horiz
0	883.23/W	36.1	+1.2	+23.1	+3.9	+0.7	+0.0	40.8	40.0	-3.2	попх
9	893.185M	37.6	-31.4	+3.2	+5.9	+0.7	+0.0	40.4	46.0	-5.6	Horiz
9	693.163WI	37.0	+1.2	+23.2	+3.9	+0.7	+0.0	40.4	40.0	-3.0	попи
10	297.750M	50.3	-31.9	+13.2	+6.0	+0.4	+0.0	40.2	46.0	-5.8	Horiz
10	291.130W	30.3	+0.6	+13.2	+0.0	±0.4	+0.0	40.2	40.0	-3.6	110112
11	448.621M	45.5	-31.9	+17.0	+5.9	+0.5	+0.0	39.9	46.0	-6.1	Horiz
11	440.02111	73.3	+0.8	+2.1	13.7	10.5	10.0	37.7	40.0	0.1	HOHZ
12	446.579M	45.5	-31.9	+16.9	+5.9	+0.5	+0.0	39.8	46.0	-6.2	Horiz
12	110.57711	10.0	+0.8	+2.1	10.9	10.5	10.0	57.0	10.0	0.2	110112
13	896.428M	37.0	-31.4	+23.2	+5.9	+0.7	+0.0	39.8	46.0	-6.2	Horiz
10	0,01.1201.1	07.0	+1.2	+3.2			. 0.0	27.0		0.2	110112
14	897.269M	36.5	-31.4	+23.2	+5.9	+0.7	+0.0	39.3	46.0	-6.7	Horiz
			+1.2	+3.2							
15	444.416M	44.6	-31.9	+16.9	+5.9	+0.5	+0.0	38.9	46.0	-7.1	Horiz
			+0.8	+2.1							
16	894.866M	35.9	-31.4	+23.2	+5.9	+0.7	+0.0	38.7	46.0	-7.3	Horiz
			+1.2	+3.2							
17	518.530M	42.4	-31.9	+18.5	+5.9	+0.5	+0.0	38.6	46.0	-7.4	Horiz
			+0.9	+2.3							
18	895.347M	35.8	-31.4	+23.2	+5.9	+0.7	+0.0	38.6	46.0	-7.4	Horiz
			+1.2	+3.2							
19	443.215M	43.0	-31.9	+16.8	+5.9	+0.5	+0.0	37.2	46.0	-8.8	Horiz
			+0.8	+2.1							
20	516.128M	41.1	-31.9	+18.4	+5.9	+0.5	+0.0	37.2	46.0	-8.8	Horiz
			+0.9	+2.3							

Customer: Tonal

Specification: 15.209 Radiated Emissions

 Work Order #:
 105488
 Date:
 12/18/2021

 Test Type:
 Radiated Scan
 Time:
 10:22:04 PM

Tested By: Randy Clark Sequence#: 69

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Radiated Emission

Frequency Range: 9kHz to 1GHz

Environmental Conditions: Temperature: 21.4°C Humidity: 36%

Atmospheric Pressure: 101.9kPa

Method: ANSI C63.10 2013

The unit is mounted to a floor standing rack as to simulate typical wall mounted setup. One weight line is extended to the floor.

WiFi is set to 5220 MHz with nonHT modulation type, 11MBPS at power level 10, chain 0 with repeating pattern of 0s and 1s with duty cycle at 98%.

Operational mode is representative of worst case.

Notes:

Touch screen display: Direct bond 2312

Power Supply: Artesyn

Display is showing home screen

Modifications: #1, #2, #3 #4, #5, #6 were in place during testing.

No emissions from EUT has been found in 20dB tolerance in the frequency range 9kHz to 30MHz.

Page 45 of 94 Report No.: 105488-28

Tonal WO#: 105548 Sequence#: 69 Date: 12/18/2021 15.209 Radiated Emissions Test Distance: 3 Meters Vert

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP07508	Preamp	310N	7/9/2020	7/9/2022
T2	AN00852	Biconilog Antenna	CBL 6111C	4/14/2020	4/14/2022
Т3	ANP06049	Attenuator	PE7002-6	5/11/2020	5/11/2022
T4	ANP01187	Cable	CNT-195	7/6/2020	7/6/2022
T5	ANP06691	Cable	PE3062-180	3/25/2020	3/25/2022
T6	ANP06694	Cable	PE3062-480	3/25/2020	3/25/2022
	AN02660	Spectrum Analyzer	E4446A	12/4/2020	12/4/2022
	AN00432	Loop Antenna	6502	7/19/2021	7/19/2023

Page 46 of 94 Report No.: 105488-28

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	_	_	T5	T6					_	_	
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m \\$	dB	Ant
1	149.402M	50.0	-32.0	+11.5	+5.9	+0.2	+0.0	37.1	43.5	-6.4	Vert
			+0.4	+1.1							
2	446.579M	43.6	-31.9	+16.9	+5.9	+0.5	+0.0	37.9	46.0	-8.1	Vert
			+0.8	+2.1							
3	448.621M	43.1	-31.9	+17.0	+5.9	+0.5	+0.0	37.5	46.0	-8.5	Vert
			+0.8	+2.1							
4	444.416M	42.9	-31.9	+16.9	+5.9	+0.5	+0.0	37.2	46.0	-8.8	Vert
			+0.8	+2.1							
5	224.236M	49.0	-31.9	+10.9	+5.9	+0.3	+0.0	36.1	46.0	-9.9	Vert
			+0.5	+1.4							
6	442.495M	41.4	-31.9	+16.8	+5.9	+0.5	+0.0	35.6	46.0	-10.4	Vert
			+0.8	+2.1							
7	222.194M	48.5	-31.9	+10.8	+5.9	+0.3	+0.0	35.5	46.0	-10.5	Vert
			+0.5	+1.4							
8	379.071M	42.9	-31.9	+15.2	+6.0	+0.4	+0.0	35.2	46.0	-10.8	Vert
			+0.7	+1.9							
9	396.008M	42.2	-31.9	+15.6	+6.0	+0.5	+0.0	35.0	46.0	-11.0	Vert
			+0.7	+1.9							
10	35.590M	38.2	-32.0	+16.2	+5.9	+0.0	+0.0	28.9	40.0	-11.1	Vert
			+0.2	+0.4							
11	442.975M	40.6	-31.9	+16.8	+5.9	+0.5	+0.0	34.8	46.0	-11.2	Vert
			+0.8	+2.1							
12	336.909M	43.5	-31.9	+14.2	+6.0	+0.4	+0.0	34.7	46.0	-11.3	Vert
		4.50	+0.7	+1.8							
13	107.960M	45.8	-32.0	+11.0	+5.9	+0.1	+0.0	32.0	43.5	-11.5	Vert
			+0.3	+0.9					4.5.0		
14	950.162M	30.1	-30.9	+23.8	+5.9	+0.7	+0.0	34.2	46.0	-11.8	Vert
1.5	110.070) /	44.4	+1.3	+3.3	.	0.1	0.0	21.6	10.5	11.0	T. 7 .
15	119.972M	44.4	-32.0	+11.9	+5.9	+0.1	+0.0	31.6	43.5	-11.9	Vert
1.0	020 500) 5	20.4	+0.3	+1.0	.	0.7	0.0	24.1	460	11.0	T. 7 .
16	928.500M	30.4	-31.1	+23.6	+5.9	+0.7	+0.0	34.1	46.0	-11.9	Vert
1.7	0.45.27714	22.0	+1.3	+3.3	. 7.0	. 0.7	. 0. 0	24.0	46.0	10.0	X7 .
17	845.377M	32.0	-31.7	+22.8	+5.9	+0.7	+0.0	34.0	46.0	-12.0	Vert
10	226 42014	42.0	+1.2	+3.1	160	+0.4	+0.0	24.0	16.0	12.0	Vont
18	336.429M	42.8	-31.9	+14.2	+6.0	+0.4	+0.0	34.0	46.0	-12.0	Vert
10	050 00014	20.9	+0.7	+1.8	15 O	+0.7	10.0	24.0	16 N	12.0	Vont
19	958.802M	29.8	-30.9	+23.9	+5.9	+0./	+0.0	34.0	46.0	-12.0	Vert
20	022 40414	20.5	+1.3	+3.3	15 O	10.7	10.0	24.0	46.0	12.0	Mont
20	922.494M	30.5	-31.2	+23.5	+5.9	+0.7	+0.0	34.0	46.0	-12.0	Vert
			+1.3	+3.3							

Customer: Tonal

Specification: 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Client Devices

Work Order #: 105488 Date: 12/21/2021

Test Type: Radiated Scan Time: 15:55:47

Tested By: Hoang Cao Sequence#: 127

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Radiated Emission

Frequency Range: 1 to 40GHz

Environmental Conditions: Temperature: 22.6°C Humidity: 33%

Atmospheric Pressure: 101.8kPa

Method: ANSI C63.10 2013

The unit is mounted to a floor standing rack as to simulate typical wall mounted setup. One weight line is extended to the floor.

WiFi transmitting continuously with modulation type as listed with pattern of 0s and 1s at power level 10.

MIMO not enabled, manufacturer declares chain 0 and chain 1 transmit uncorrelated data.

Chain 0

Operational mode is representative of worst case.

UNII1 - OFDM

Low Channel

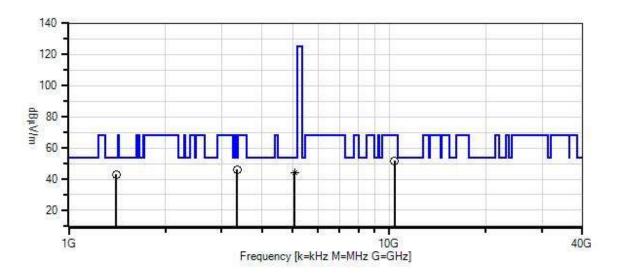
Notes:

Touch screen display: Direct bond 2312

Power Supply: Artesyn

Display is showing home screen

Modifications: #1, #2, #3 #4, #5, #6 were in place during testing.


Support laptop included in this setup to control WiFi operating mode; port is internal to the equipment for configuration only.

Unintentional emissions related to display and display controller increased due to external cable to laptop.

Page 48 of 94 Report No.: 105488-28

Tonal WO#: 105548 Sequence#: 127 Date: 12/21/2021 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Client Devices Test Distance: 3 Meters MAX

Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.20

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02660	Spectrum Analyzer	E4446A	12/4/2020	12/4/2022
T1	AN02812	Preamp	83017-69004	9/22/2020	9/22/2022
T2	AN02113	Horn Antenna- ANSI C63.5	3115	3/11/2021	3/11/2023
Т3	AN03302	Cable	32026-29094K- 29094K-72TC	1/9/2020	1/9/2022
T4	ANP01210	Cable	FSJ1P-50A-4A	11/2/2020	11/2/2022
T5	ANP06902	Cable	32022-29094K- 29094K-36TC	8/13/2020	8/13/2022
	AN02693	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	10/26/2021	10/26/2023
	AN02694	Horn Antenna	AMFW-5F- 18002650-20- 10P	10/26/2021	10/26/2023
	AN02695	Active Horn Antenna	AMFW-5F- 260400-33-8P	10/26/2021	10/26/2023
	ANP00928	Cable	various	1/9/2020	1/9/2022
	ANP00929	Cable	various	1/9/2020	1/9/2022
	ANP00930	Cable	various	1/9/2020	1/9/2022

Mea	surement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1 3351.899M	39.0	-29.3	+30.8	+1.5	+3.1	+0.0	46.1	54.0	-7.9	Horiz
			+1.0								
	2 5068.087M	34.6	-29.9	+32.8	+1.9	+3.8	+0.0	44.4	54.0	-9.6	Horiz
	Ave		+1.2								
	^ 5068.087M	44.8	-29.9	+32.8	+1.9	+3.8	+0.0	54.6	54.0	+0.6	Horiz
			+1.2								
	4 1404.769M	46.3	-32.0	+25.3	+0.9	+1.9	+0.0	43.0	54.0	-11.0	Horiz
			+0.6								
	5 10361.470	36.4	-31.7	+37.0	+2.8	+5.6	+0.0	51.8	68.2	-16.4	Horiz
	M		+1.7								

Page 50 of 94 Report No.: 105488-28

Customer: Tonal

Specification: 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Client Devices

Work Order #: 105488 Date: 12/21/2021

Test Type: Radiated Scan Time: 16:15:19

Tested By: Hoang Cao Sequence#: 130

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 3			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Radiated Emission

Frequency Range: 1 to 40GHz

Environmental Conditions: Temperature: 22.6°C Humidity: 33%

Atmospheric Pressure: 101.8kPa

Method: ANSI C63.10 2013

The unit is mounted to a floor standing rack as to simulate typical wall mounted setup. One weight line is extended to the floor.

WiFi transmitting continuously with modulation type as listed with pattern of 0s and 1s at power level 10.

MIMO not enabled, manufacturer declares chain 0 and chain 1 transmit uncorrelated data.

Chain 0

Operational mode is representative of worst case.

UNII1 - OFDM

Middle Channel

Notes:

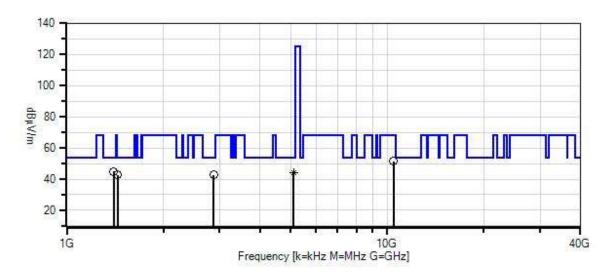
Touch screen display: Direct bond 2312

Power Supply: Artesyn

Display is showing home screen

Modifications: #1, #2, #3 #4, #5, #6 were in place during testing.

Support laptop included in this setup to control WiFi operating mode; port is internal to the equipment for


configuration only.

Unintentional emissions related to display and display controller increased due to external cable to laptop.

Page 51 of 94 Report No.: 105488-28

Tonal WO#: 105548 Sequence#: 130 Date: 12/21/2021 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Client Devices Test Distance: 3 Meters MAX

Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.20

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02660	Spectrum Analyzer	E4446A	12/4/2020	12/4/2022
T1	AN02812	Preamp	83017-69004	9/22/2020	9/22/2022
T2	AN02113	Horn Antenna- ANSI C63.5	3115	3/11/2021	3/11/2023
Т3	AN03302	Cable	32026-29094K- 29094K-72TC	1/9/2020	1/9/2022
T4	ANP01210	Cable	FSJ1P-50A-4A	11/2/2020	11/2/2022
T5	ANP06902	Cable	32022-29094K- 29094K-36TC	8/13/2020	8/13/2022
	AN02693	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	10/26/2021	10/26/2023
	AN02694	Horn Antenna	AMFW-5F- 18002650-20- 10P	10/26/2021	10/26/2023
	AN02695	Active Horn Antenna	AMFW-5F- 260400-33-8P	10/26/2021	10/26/2023
	ANP00928	Cable	various	1/9/2020	1/9/2022
	ANP00929	Cable	various	1/9/2020	1/9/2022
	ANP00930	Cable	various	1/9/2020	1/9/2022

	Meas	urement Data	ı: Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
	#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
				T5								
		MHz	dΒμV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
	1	1401.324M	48.1	-32.0	+25.3	+0.9	+1.9	+0.0	44.8	54.0	-9.2	Vert
				+0.6								
	2	5107.971M	34.4	-29.9	+32.8	+1.9	+3.8	+0.0	44.2	54.0	-9.8	Horiz
		Ave		+1.2								
	٨	5107.971M	45.0	-29.9	+32.8	+1.9	+3.8	+0.0	54.8	54.0	+0.8	Horiz
				+1.2								
	4	1440.078M	45.8	-31.9	+25.4	+0.9	+2.0	+0.0	42.8	54.0	-11.2	Horiz
				+0.6								
	5	2869.429M	38.7	-30.4	+29.3	+1.4	+2.8	+0.0	42.7	54.0	-11.3	Vert
				+0.9								
Γ	6	10440.000	35.8	-31.7	+37.1	+2.8	+5.7	+0.0	51.5	68.2	-16.7	Horiz
		M		+1.8								

Page 53 of 94 Report No.: 105488-28

Customer: Tonal

Specification: 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Client Devices

Work Order #: 105488 Date: 12/21/2021

Test Type: Radiated Scan Time: 16:34:18

Tested By: Hoang Cao Sequence#: 133

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 3			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Radiated Emission

Frequency Range: 1 to 40GHz

Environmental Conditions: Temperature: 22.6°C Humidity: 33%

Atmospheric Pressure: 101.8kPa

Method: ANSI C63.10 2013

The unit is mounted to a floor standing rack as to simulate typical wall mounted setup. One weight line is extended to the floor.

WiFi transmitting continuously with modulation type as listed with pattern of 0s and 1s at power level 10.

MIMO not enabled, manufacturer declares chain 0 and chain 1 transmit uncorrelated data.

Chain 0

Operational mode is representative of worst case.

UNII1 - OFDM

High Channel

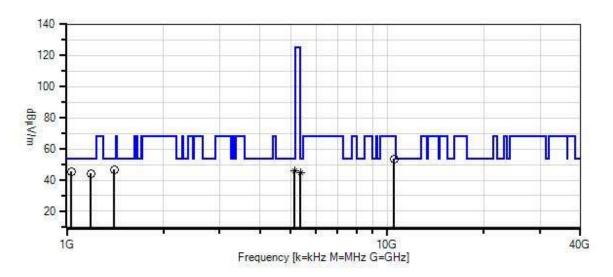
Notes:

Touch screen display: Direct bond 2312

Power Supply: Artesyn

Display is showing home screen

Modifications: #1, #2, #3 #4, #5, #6 were in place during testing.


Support laptop included in this setup to control WiFi operating mode; port is internal to the equipment for configuration only.

Unintentional emissions related to display and display controller increased due to external cable to laptop.

Page 54 of 94 Report No.: 105488-28

Tonal WO#: 105548 Sequence#: 133 Date: 12/21/2021 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Client Devices Test Distance: 3 Meters MAX

Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.20

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02660	Spectrum Analyzer	E4446A	12/4/2020	12/4/2022
T1	AN02812	Preamp	83017-69004	9/22/2020	9/22/2022
T2	AN02113	Horn Antenna-	3115	3/11/2021	3/11/2023
		ANSI C63.5			
Т3	AN03302	Cable	32026-29094K-	1/9/2020	1/9/2022
			29094K-72TC		
T4	ANP01210	Cable	FSJ1P-50A-4A	11/2/2020	11/2/2022
T5	ANP06902	Cable	32022-29094K-	8/13/2020	8/13/2022
			29094K-36TC		
	AN02693	Active Horn	AMFW-5F-	10/26/2021	10/26/2023
		Antenna	12001800-20-		
			10P		
	AN02694	Horn Antenna	AMFW-5F-	10/26/2021	10/26/2023
			18002650-20-		
			10P		
	AN02695	Active Horn	AMFW-5F-	10/26/2021	10/26/2023
		Antenna	260400-33-8P		
	ANP00928	Cable	various	1/9/2020	1/9/2022
	ANP00929	Cable	various	1/9/2020	1/9/2022
	ANP00930	Cable	various	1/9/2020	1/9/2022

Measi	irement Data:	Re	eading list	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBµV/m	dB	Ant
1	1408.213M	50.2	-32.0	+25.3	+0.9	+1.9	+0.0	46.9	54.0	-7.1	Horiz
			+0.6								
2	5128.379M	36.0	-29.9	+32.8	+1.9	+3.8	+0.0	45.8	54.0	-8.2	Horiz
	Ave		+1.2								
^	5128.379M	45.6	-29.9	+32.8	+1.9	+3.8	+0.0	55.4	54.0	+1.4	Horiz
			+1.2								
4	1034.448M	51.3	-33.5	+24.5	+1.2	+1.6	+0.0	45.5	54.0	-8.5	Vert
			+0.4								
5	5352.142M	34.5	-29.9	+33.1	+2.0	+3.9	+0.0	44.8	54.0	-9.2	Horiz
	Ave		+1.2								
^	5352.142M	44.7	-29.9	+33.1	+2.0	+3.9	+0.0	55.0	54.0	+1.0	Horiz
			+1.2								
7	1189.466M	48.7	-32.8	+24.9	+0.9	+1.8	+0.0	44.1	54.0	-9.9	Vert
			+0.6								
8	10480.000	37.9	-31.7	+37.1	+2.8	+5.7	+0.0	53.6	68.2	-14.6	Horiz
	M		+1.8								

Page 56 of 94 Report No.: 105488-28

Customer: Tonal

Specification: 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Client Devices

Work Order #: 105488 Date: 12/21/2021

Test Type: Radiated Scan Time: 16:59:10

Tested By: Hoang Cao Sequence#: 136

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Radiated Emission

Frequency Range: 1 to 40GHz

Environmental Conditions: Temperature: 22.6°C Humidity: 33%

Atmospheric Pressure: 101.8kPa

Method: ANSI C63.10 2013

The unit is mounted to a floor standing rack as to simulate typical wall mounted setup. One weight line is extended to the floor.

WiFi transmitting continuously with modulation type as listed with pattern of 0s and 1s at power level 10.

MIMO not enabled, manufacturer declares chain 0 and chain 1 transmit uncorrelated data.

Chain 0

Operational mode is representative of worst case.

UNII1 - HT20

Low Channel

Notes:

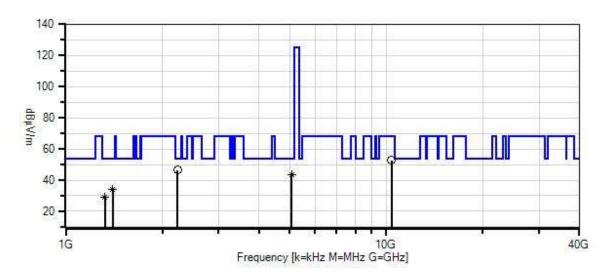
Touch screen display: Direct bond 2312

Power Supply: Artesyn

Display is showing home screen

Modifications: #1, #2, #3 #4, #5, #6 were in place during testing.

Support laptop included in this setup to control WiFi operating mode; port is internal to the equipment for


configuration only.

Unintentional emissions related to display and display controller increased due to external cable to laptop.

Page 57 of 94 Report No.: 105488-28

Tonal WO#: 105548 Sequence#: 136 Date: 12/21/2021 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Client Devices Test Distance: 3 Meters MAX

Readings

- O Peak Readings
- QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.20

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02660	Spectrum Analyzer	E4446A	12/4/2020	12/4/2022
T1	AN02812	Preamp	83017-69004	9/22/2020	9/22/2022
T2	AN02113	Horn Antenna-	3115	3/11/2021	3/11/2023
		ANSI C63.5			
Т3	AN03302	Cable	32026-29094K-	1/9/2020	1/9/2022
			29094K-72TC		
T4	ANP01210	Cable	FSJ1P-50A-4A	11/2/2020	11/2/2022
T5	ANP06902	Cable	32022-29094K-	8/13/2020	8/13/2022
			29094K-36TC		
	AN02693	Active Horn	AMFW-5F-	10/26/2021	10/26/2023
		Antenna	12001800-20-		
			10P		
	AN02694	Horn Antenna	AMFW-5F-	10/26/2021	10/26/2023
			18002650-20-		
			10P		
	AN02695	Active Horn	AMFW-5F-	10/26/2021	10/26/2023
		Antenna	260400-33-8P		
	ANP00928	Cable	various	1/9/2020	1/9/2022
	ANP00929	Cable	various	1/9/2020	1/9/2022
	ANP00930	Cable	various	1/9/2020	1/9/2022

Measi	urement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2231.478M	45.0	-30.7	+27.8	+1.2	+2.4	+0.0	46.5	54.0	-7.5	Vert
			+0.8								
2	5067.967M	33.4	-29.9	+32.8	+1.9	+3.8	+0.0	43.2	54.0	-10.8	Horiz
	Ave		+1.2								
^	5067.967M	44.5	-29.9	+32.8	+1.9	+3.8	+0.0	54.3	54.0	+0.3	Horiz
			+1.2								
4	10360.000	37.4	-31.8	+37.0	+2.8	+5.6	+0.0	52.7	68.2	-15.5	Horiz
	M		+1.7								
5	1400.565M	37.3	-32.0	+25.3	+0.9	+1.9	+0.0	34.0	54.0	-20.0	Horiz
	Ave		+0.6								
^	1400.565M	59.2	-32.0	+25.3	+0.9	+1.9	+0.0	55.9	54.0	+1.9	Horiz
			+0.6								
7	1327.152M	32.8	-32.3	+25.2	+0.9	+1.9	+0.0	29.1	54.0	-24.9	Horiz
	Ave		+0.6								
^	1327.152M	53.5	-32.3	+25.2	+0.9	+1.9	+0.0	49.8	54.0	-4.2	Horiz
			+0.6								

Page 59 of 94 Report No.: 105488-28

Customer: Tonal

Specification: 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Client Devices

Work Order #: 105488 Date: 12/21/2021

Test Type: Radiated Scan Time: 17:15:20

Tested By: Hoang Cao Sequence#: 139

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 3			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Radiated Emission

Frequency Range: 1 to 40GHz

Environmental Conditions: Temperature: 22.6°C Humidity: 33%

Atmospheric Pressure: 101.8kPa

Method: ANSI C63.10 2013

The unit is mounted to a floor standing rack as to simulate typical wall mounted setup. One weight line is extended to the floor.

WiFi transmitting continuously with modulation type as listed with pattern of 0s and 1s at power level 10.

MIMO not enabled, manufacturer declares chain 0 and chain 1 transmit uncorrelated data.

Chain 0

Operational mode is representative of worst case.

UNII1 - HT20

Middle Channel

Notes:

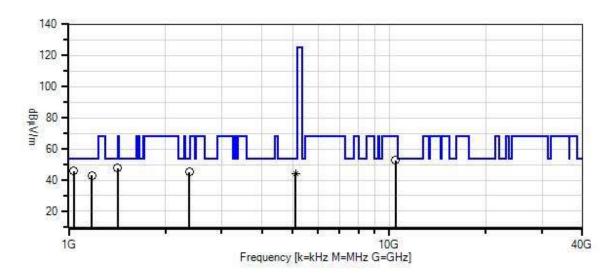
Touch screen display: Direct bond 2312

Power Supply: Artesyn

Display is showing home screen

Modifications: #1, #2, #3 #4, #5, #6 were in place during testing.

Support laptop included in this setup to control WiFi operating mode; port is internal to the equipment for


configuration only.

Unintentional emissions related to display and display controller increased due to external cable to laptop.

Page 60 of 94 Report No.: 105488-28

Tonal WO#: 105548 Sequence#: 139 Date: 12/21/2021 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Client Devices Test Distance: 3 Meters MAX

Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.20

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02660	Spectrum Analyzer	E4446A	12/4/2020	12/4/2022
T1	AN02812	Preamp	83017-69004	9/22/2020	9/22/2022
T2	AN02113	Horn Antenna- ANSI C63.5	3115	3/11/2021	3/11/2023
Т3	AN03302	Cable	32026-29094K- 29094K-72TC	1/9/2020	1/9/2022
T4	ANP01210	Cable	FSJ1P-50A-4A	11/2/2020	11/2/2022
T5	ANP06902	Cable	32022-29094K- 29094K-36TC	8/13/2020	8/13/2022
	AN02693	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	10/26/2021	10/26/2023
	AN02694	Horn Antenna	AMFW-5F- 18002650-20- 10P	10/26/2021	10/26/2023
	AN02695	Active Horn Antenna	AMFW-5F- 260400-33-8P	10/26/2021	10/26/2023
	ANP00928	Cable	various	1/9/2020	1/9/2022
	ANP00929	Cable	various	1/9/2020	1/9/2022
	ANP00930	Cable	various	1/9/2020	1/9/2022

Meas	surement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1 1419.409M	51.0	-32.0	+25.4	+0.9	+1.9	+0.0	47.8	54.0	-6.2	Horiz
			+0.6								
	2 1037.893M	51.7	-33.5	+24.5	+1.2	+1.6	+0.0	45.9	54.0	-8.1	Vert
			+0.4								
	3 2380.547M	43.4	-30.6	+28.0	+1.2	+2.5	+0.0	45.3	54.0	-8.7	Horiz
			+0.8								
	4 5108.141M	34.2	-29.9	+32.8	+1.9	+3.8	+0.0	44.0	54.0	-10.0	Horiz
	Ave		+1.2								
	^ 5108.141M	44.5	-29.9	+32.8	+1.9	+3.8	+0.0	54.3	54.0	+0.3	Horiz
			+1.2								
	6 1179.993M	47.7	-32.8	+24.8	+0.9	+1.8	+0.0	43.0	54.0	-11.0	Vert
			+0.6								
	7 10440.000	37.1	-31.7	+37.1	+2.8	+5.7	+0.0	52.8	68.2	-15.4	Horiz
	M		+1.8								

Page 62 of 94 Report No.: 105488-28

Customer: Tonal

Specification: 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Client Devices

Work Order #: 105488 Date: 12/21/2021

Test Type: Radiated Scan Time: 17:34:42

Tested By: Hoang Cao Sequence#: 142

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Radiated Emission

Frequency Range: 1 to 40GHz

Environmental Conditions: Temperature: 22.6°C Humidity: 33%

Atmospheric Pressure: 101.8kPa

Method: ANSI C63.10 2013

The unit is mounted to a floor standing rack as to simulate typical wall mounted setup. One weight line is extended to the floor.

WiFi transmitting continuously with modulation type as listed with pattern of 0s and 1s at power level 10.

MIMO not enabled, manufacturer declares chain 0 and chain 1 transmit uncorrelated data.

Chain 0

Operational mode is representative of worst case.

UNII1 - HT20

High Channel

Notes:

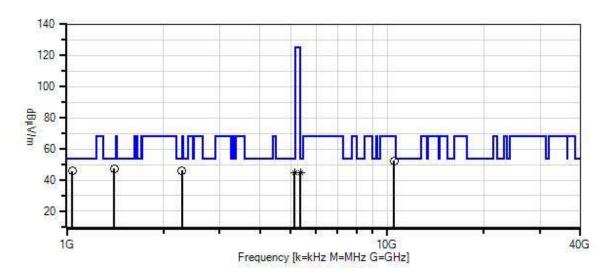
Touch screen display: Direct bond 2312

Power Supply: Artesyn

Display is showing home screen

Modifications: #1, #2, #3 #4, #5, #6 were in place during testing.

Support laptop included in this setup to control WiFi operating mode; port is internal to the equipment for


configuration only.

Unintentional emissions related to display and display controller increased due to external cable to laptop.

Page 63 of 94 Report No.: 105488-28

Tonal WO#: 105548 Sequence#: 142 Date: 12/21/2021 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Client Devices Test Distance: 3 Meters MAX

Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.20

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02660	Spectrum Analyzer	E4446A	12/4/2020	12/4/2022
T1	AN02812	Preamp	83017-69004	9/22/2020	9/22/2022
T2	AN02113	Horn Antenna- ANSI C63.5	3115	3/11/2021	3/11/2023
Т3	AN03302	Cable	32026-29094K- 29094K-72TC	1/9/2020	1/9/2022
T4	ANP01210	Cable	FSJ1P-50A-4A	11/2/2020	11/2/2022
T5	ANP06902	Cable	32022-29094K- 29094K-36TC	8/13/2020	8/13/2022
	AN02693	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	10/26/2021	10/26/2023
	AN02694	Horn Antenna	AMFW-5F- 18002650-20- 10P	10/26/2021	10/26/2023
	AN02695	Active Horn Antenna	AMFW-5F- 260400-33-8P	10/26/2021	10/26/2023
	ANP00928	Cable	various	1/9/2020	1/9/2022
	ANP00929	Cable	various	1/9/2020	1/9/2022
	ANP00930	Cable	various	1/9/2020	1/9/2022

Meas	surement Data	ı: Re	eading lis	ted by ma	argin.		Т	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	1405.630M	50.7	-32.0	+25.3	+0.9	+1.9	+0.0	47.4	54.0	-6.6	Horiz
			+0.6								
2	2285.976M	44.3	-30.7	+27.9	+1.2	+2.5	+0.0	46.0	54.0	-8.0	Horiz
			+0.8								
3	1042.199M	51.6	-33.5	+24.5	+1.1	+1.7	+0.0	45.8	54.0	-8.2	Vert
			+0.4								
4	5128.293M	35.2	-29.9	+32.8	+1.9	+3.8	+0.0	45.0	54.0	-9.0	Horiz
	Ave		+1.2								
^	5128.293M	44.9	-29.9	+32.8	+1.9	+3.8	+0.0	54.7	54.0	+0.7	Horiz
			+1.2								
6	5352.109M	34.5	-29.9	+33.1	+2.0	+3.9	+0.0	44.8	54.0	-9.2	Horiz
	Ave		+1.2								
^	5352.109M	44.5	-29.9	+33.1	+2.0	+3.9	+0.0	54.8	54.0	+0.8	Horiz
			+1.2								
8	10480.000	36.8	-31.7	+37.1	+2.8	+5.7	+0.0	52.5	68.2	-15.7	Horiz
	M		+1.8								

Page 65 of 94 Report No.: 105488-28

Customer: Tonal

Specification: 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Client Devices

Work Order #: 105488 Date: 12/21/2021

Test Type: Radiated Scan Time: 18:46:45

Tested By: Hoang Cao Sequence#: 146

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Radiated Emission

Frequency Range: 1 to 40GHz

Environmental Conditions: Temperature: 22.6°C Humidity: 33%

Atmospheric Pressure: 101.8kPa

Method: ANSI C63.10 2013

The unit is mounted to a floor standing rack as to simulate typical wall mounted setup. One weight line is extended to the floor.

WiFi transmitting continuously with modulation type as listed with pattern of 0s and 1s at power level 10.

MIMO not enabled, manufacturer declares chain 0 and chain 1 transmit uncorrelated data.

Chain 0

Operational mode is representative of worst case.

UNII1 - HT40

Low Channel

Notes:

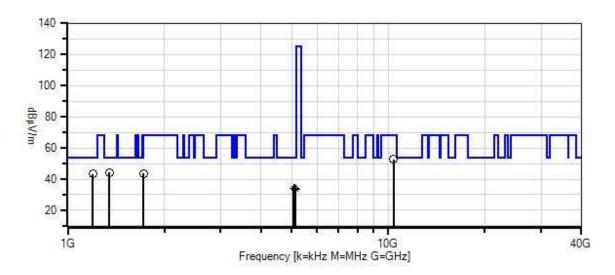
Touch screen display: Direct bond 2312

Power Supply: Artesyn

Display is showing home screen

Modifications: #1, #2, #3 #4, #5, #6 were in place during testing.

Support laptop included in this setup to control WiFi operating mode; port is internal to the equipment for


configuration only.

Unintentional emissions related to display and display controller increased due to external cable to laptop.

Page 66 of 94 Report No.: 105488-28

Tonal WO#: 105548 Sequence#: 146 Date: 12/21/2021 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Client Devices Test Distance: 3 Meters MAX

Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.20

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02660	Spectrum Analyzer	E4446A	12/4/2020	12/4/2022
T1	AN02812	Preamp	83017-69004	9/22/2020	9/22/2022
T2	AN02113	Horn Antenna- ANSI C63.5	3115	3/11/2021	3/11/2023
Т3	AN03302	Cable	32026-29094K- 29094K-72TC	1/9/2020	1/9/2022
T4	ANP01210	Cable	FSJ1P-50A-4A	11/2/2020	11/2/2022
T5	ANP06902	Cable	32022-29094K- 29094K-36TC	8/13/2020	8/13/2022
	AN02693	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	10/26/2021	10/26/2023
	AN02694	Horn Antenna	AMFW-5F- 18002650-20- 10P	10/26/2021	10/26/2023
	AN02695	Active Horn Antenna	AMFW-5F- 260400-33-8P	10/26/2021	10/26/2023
	ANP00928	Cable	various	1/9/2020	1/9/2022
	ANP00929	Cable	various	1/9/2020	1/9/2022
	ANP00930	Cable	various	1/9/2020	1/9/2022

Meas	surement Date	<i>i:</i> Re	eading lis	ted by ma	argin.		Тє	est Distance	e: 3 Meters		
#	Freq	Rdng	T1 T5	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	1347.929M	48.0	-32.2	+25.2	+0.9	+1.9	+0.0	44.4	54.0	-9.6	Vert
			+0.6								
2	1721.694M	44.9	-31.4	+26.4	+1.0	+2.1	+0.0	43.7	54.0	-10.3	Horiz
			+0.7								
3	1198.078M	47.8	-32.8	+24.9	+0.9	+1.8	+0.0	43.2	54.0	-10.8	Horiz
			+0.6								
4		37.1	-31.7	+37.0	+2.8	+5.7	+0.0	52.6	68.2	-15.6	Horiz
	M		+1.7								
5	5070.017M	24.5	-29.9	+32.8	+1.9	+3.8	+0.0	34.3	54.0	-19.7	Horiz
	Ave		+1.2								
^	5070.017M	49.2	-29.9	+32.8	+1.9	+3.8	+0.0	59.0	54.0	+5.0	Horiz
			+1.2								
7	5117.810M	24.4	-29.9	+32.8	+1.9	+3.8	+0.0	34.2	54.0	-19.8	Horiz
	Ave		+1.2								
^	5117.810M	46.1	-29.9	+32.8	+1.9	+3.8	+0.0	55.9	54.0	+1.9	Horiz
			+1.2								
9	5141.886M	23.9	-29.9	+32.8	+1.9	+3.8	+0.0	33.7	54.0	-20.3	Horiz
	Ave		+1.2								
^	5141.886M	43.9	-29.9	+32.8	+1.9	+3.8	+0.0	53.7	54.0	-0.3	Horiz
			+1.2								

Page 68 of 94 Report No.: 105488-28

Customer: Tonal

Specification: 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Client Devices

Work Order #: 105488 Date: 12/21/2021

Test Type: Radiated Scan Time: 19:00:35

Tested By: Hoang Cao Sequence#: 149

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 3			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Radiated Emission

Frequency Range: 1 to 40GHz

Environmental Conditions: Temperature: 22.6°C Humidity: 33%

Atmospheric Pressure: 101.8kPa

Method: ANSI C63.10 2013

The unit is mounted to a floor standing rack as to simulate typical wall mounted setup. One weight line is extended to the floor.

WiFi transmitting continuously with modulation type as listed with pattern of 0s and 1s at power level 10.

MIMO not enabled, manufacturer declares chain 0 and chain 1 transmit uncorrelated data.

Chain 0

Operational mode is representative of worst case.

UNII1 - HT40

High Channel

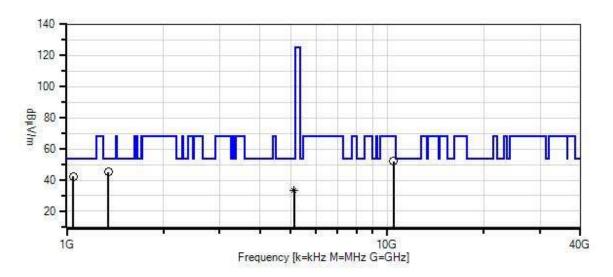
Notes:

Touch screen display: Direct bond 2312

Power Supply: Artesyn

Display is showing home screen

Modifications: #1, #2, #3 #4, #5, #6 were in place during testing.


Support laptop included in this setup to control WiFi operating mode; port is internal to the equipment for configuration only.

Unintentional emissions related to display and display controller increased due to external cable to laptop.

Page 69 of 94 Report No.: 105488-28

Tonal WO#: 105548 Sequence#: 149 Date: 12/21/2021 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Client Devices Test Distance: 3 Meters MAX

Readings

- O Peak Readings
- QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.20

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02660	Spectrum Analyzer	E4446A	12/4/2020	12/4/2022
T1	AN02812	Preamp	83017-69004	9/22/2020	9/22/2022
T2	AN02113	Horn Antenna- ANSI C63.5	3115	3/11/2021	3/11/2023
Т3	AN03302	Cable	32026-29094K- 29094K-72TC	1/9/2020	1/9/2022
T4	ANP01210	Cable	FSJ1P-50A-4A	11/2/2020	11/2/2022
T5	ANP06902	Cable	32022-29094K- 29094K-36TC	8/13/2020	8/13/2022
	AN02693	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	10/26/2021	10/26/2023
	AN02694	Horn Antenna	AMFW-5F- 18002650-20- 10P	10/26/2021	10/26/2023
	AN02695	Active Horn Antenna	AMFW-5F- 260400-33-8P	10/26/2021	10/26/2023
	ANP00928	Cable	various	1/9/2020	1/9/2022
	ANP00929	Cable	various	1/9/2020	1/9/2022
	ANP00930	Cable	various	1/9/2020	1/9/2022

Me	asu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	‡	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
				T5								
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m \\$	$dB\mu V/m \\$	dB	Ant
	1	1347.929M	48.8	-32.2	+25.2	+0.9	+1.9	+0.0	45.2	54.0	-8.8	Vert
				+0.6								
	2	1048.228M	48.1	-33.5	+24.5	+1.1	+1.7	+0.0	42.4	54.0	-11.6	Vert
				+0.5								
	3	10460.000	36.5	-31.7	+37.1	+2.8	+5.7	+0.0	52.2	68.2	-16.0	Horiz
		M		+1.8								
	4	5109.998M	23.4	-29.9	+32.8	+1.9	+3.8	+0.0	33.2	54.0	-20.8	Horiz
		Ave		+1.2								
	٨	5109.998M	48.1	-29.9	+32.8	+1.9	+3.8	+0.0	57.9	54.0	+3.9	Horiz
				+1.2								

Page 71 of 94 Report No.: 105488-28

Customer: Tonal

Specification: 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Client Devices

Work Order #: 105488 Date: 12/21/2021

Test Type: Radiated Scan Time: 19:23:09

Tested By: Hoang Cao Sequence#: 152

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Radiated Emission

Frequency Range: 1 to 40GHz

Environmental Conditions: Temperature: 22.6°C Humidity: 33%

Atmospheric Pressure: 101.8kPa

Method: ANSI C63.10 2013

The unit is mounted to a floor standing rack as to simulate typical wall mounted setup. One weight line is extended to the floor.

WiFi transmitting continuously with modulation type as listed with pattern of 0s and 1s at power level 10.

MIMO not enabled, manufacturer declares chain 0 and chain 1 transmit uncorrelated data.

Chain 0

Operational mode is representative of worst case.

UNII1 - HT80

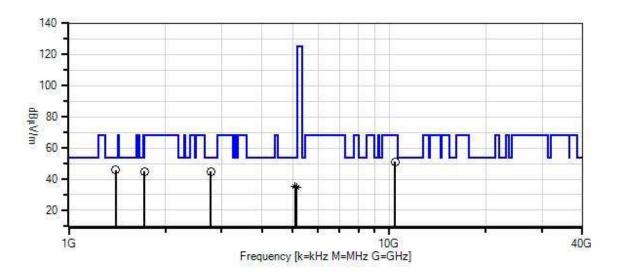
Notes:

Touch screen display: Direct bond 2312

Power Supply: Artesyn

Display is showing home screen

Modifications: #1, #2, #3 #4, #5, #6 were in place during testing.


Support laptop included in this setup to control WiFi operating mode; port is internal to the equipment for configuration only.

Unintentional emissions related to display and display controller increased due to external cable to laptop.

Page 72 of 94 Report No.: 105488-28

Tonal WO#: 105548 Sequence#: 152 Date: 12/21/2021 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Client Devices Test Distance: 3 Meters MAX

Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.20

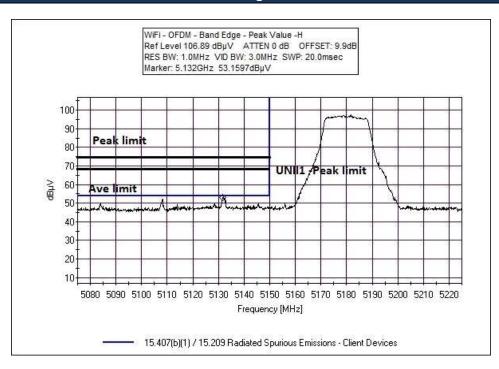
- 1 - 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Client Devices

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02660	Spectrum Analyzer	E4446A	12/4/2020	12/4/2022
T1	AN02812	Preamp	83017-69004	9/22/2020	9/22/2022
T2	AN02113	Horn Antenna- ANSI C63.5	3115	3/11/2021	3/11/2023
Т3	AN03302	Cable	32026-29094K- 29094K-72TC	1/9/2020	1/9/2022
T4	ANP01210	Cable	FSJ1P-50A-4A	11/2/2020	11/2/2022
T5	ANP06902	Cable	32022-29094K- 29094K-36TC	8/13/2020	8/13/2022
	AN02693	Active Horn Antenna	AMFW-5F- 12001800-20- 10P	10/26/2021	10/26/2023
	AN02694	Horn Antenna	AMFW-5F- 18002650-20- 10P	10/26/2021	10/26/2023
	AN02695	Active Horn Antenna	AMFW-5F- 260400-33-8P	10/26/2021	10/26/2023
	ANP00928	Cable	various	1/9/2020	1/9/2022
	ANP00929	Cable	various	1/9/2020	1/9/2022
	ANP00930	Cable	various	1/9/2020	1/9/2022

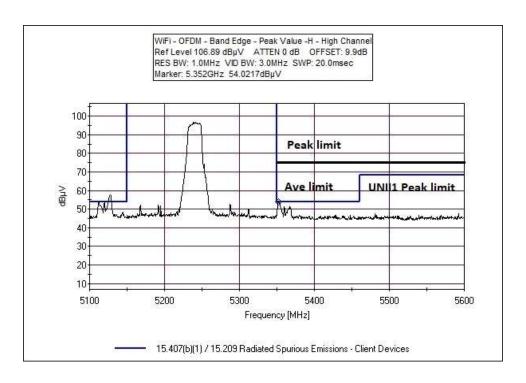
Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBµV/m	dB	Ant
1	1403.046M	49.0	-32.0	+25.3	+0.9	+1.9	+0.0	45.7	54.0	-8.3	Vert
			+0.6								
2	1721.694M	46.0	-31.4	+26.4	+1.0	+2.1	+0.0	44.8	54.0	-9.2	Horiz
			+0.7								
3	2771.652M	41.4	-30.5	+29.0	+1.3	+2.7	+0.0	44.8	54.0	-9.2	Horiz
			+0.9								
4	10420.000	35.6	-31.7	+37.1	+2.8	+5.7	+0.0	51.2	68.2	-17.0	Horiz
	M		+1.7								
5	5089.935M	25.3	-29.9	+32.8	+1.9	+3.8	+0.0	35.1	54.0	-18.9	Horiz
	Ave		+1.2								
^	5089.935M	50.5	-29.9	+32.8	+1.9	+3.8	+0.0	60.3	54.0	+6.3	Horiz
			+1.2								
7	5137.963M	24.7	-29.9	+32.8	+1.9	+3.8	+0.0	34.5	54.0	-19.5	Horiz
	Ave		+1.2								
٨	5137.963M	46.2	-29.9	+32.8	+1.9	+3.8	+0.0	56.0	54.0	+2.0	Horiz
			+1.2								

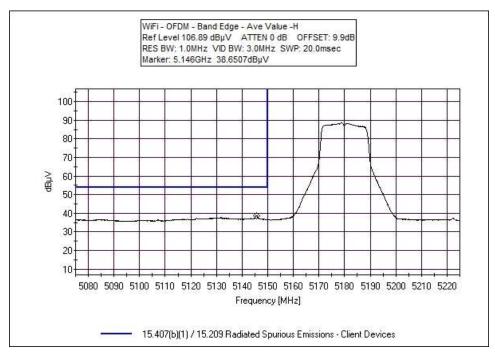
Page 74 of 94 Report No.: 105488-28

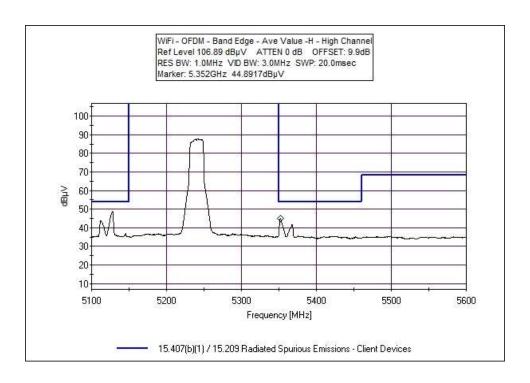


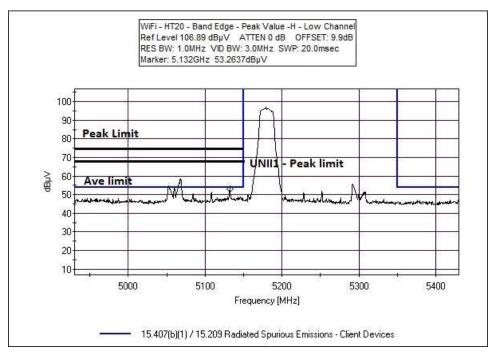
Note: Chain 0 is the worst case based on the investigation on RF output power before measuring Radiated Spurious Emissions.

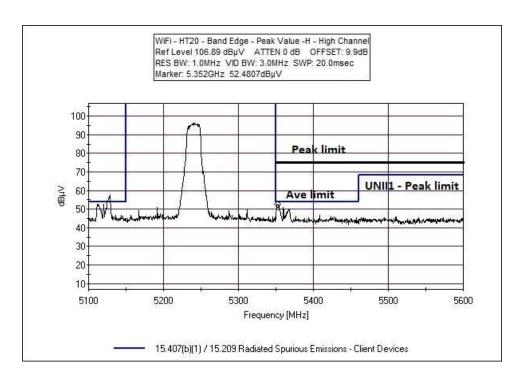
Band Edge

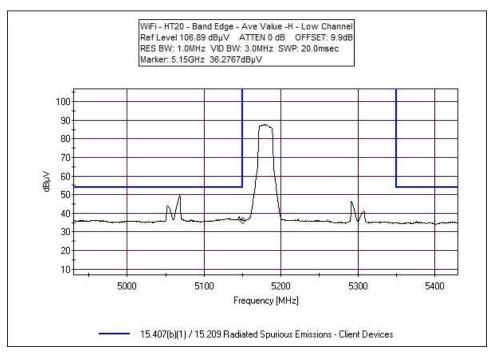

	Band Edge Summary										
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results						
5150	OFDM	External	38.6507	<54	Pass						
5250	OFDM	External	44.8917	<54	Pass						
5150	HT20	External	36.2767	<54	Pass						
5250	HT20	External	44.8627	<54	Pass						
5150	HT40	External	39.5017	<54	Pass						
5250	HT40	External	36.5687	<54	Pass						
5150	HT80	External	42.3127	<54	Pass						
5250	HT80	External	35.1567	<54	Pass						

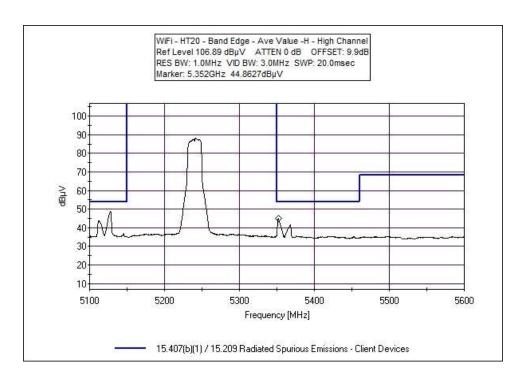

Band Edge Plots

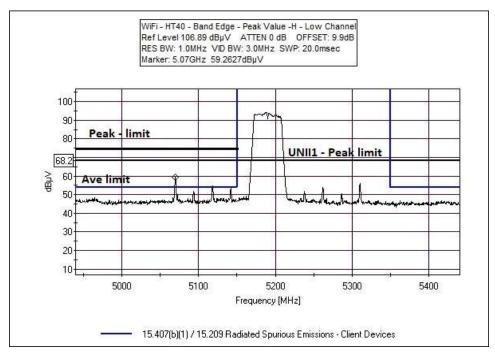

Page 75 of 94 Report No.: 105488-28

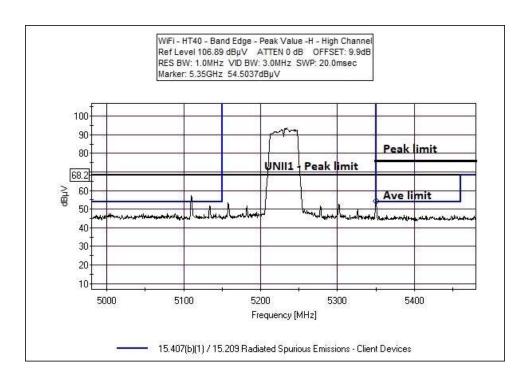


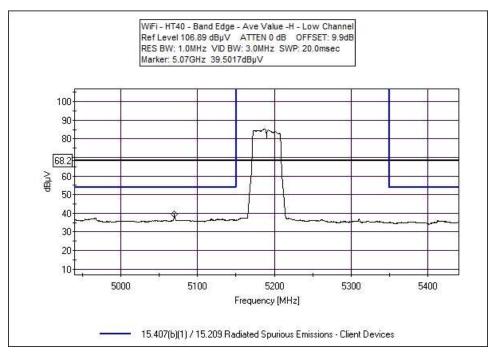


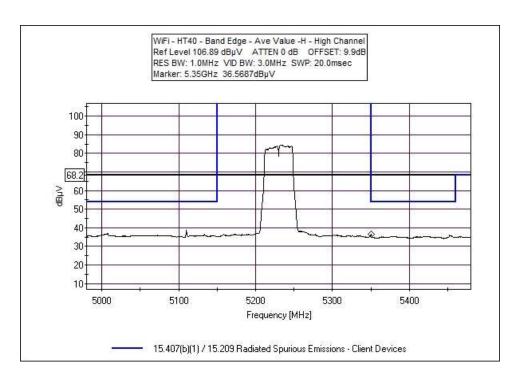


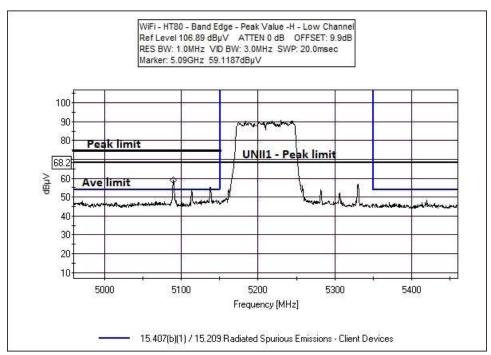


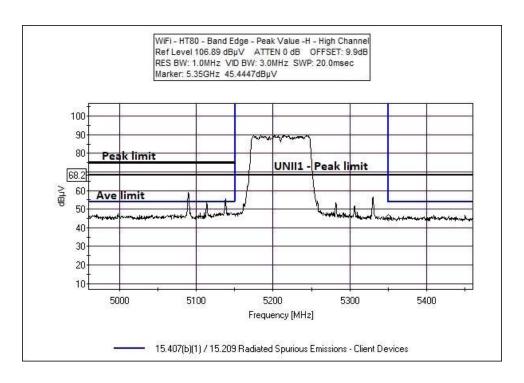


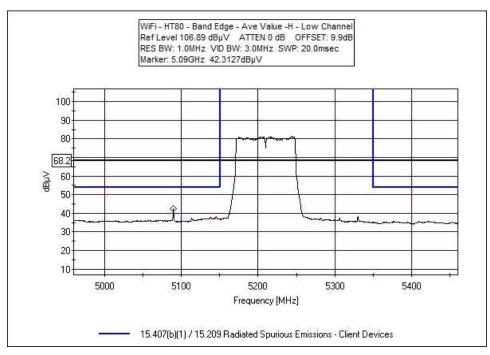


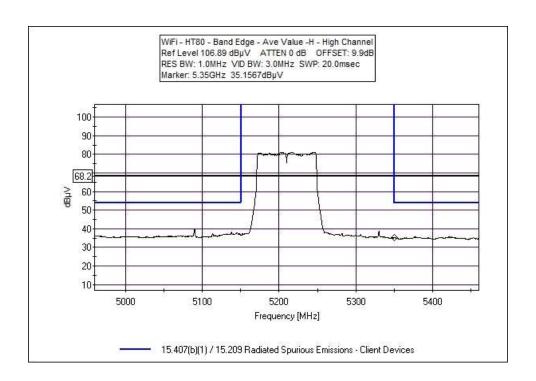












Band Edge Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Pl • Fremont CA 94539 • 510-249-1170

Customer: Tonal
Specification: Band Edge

Work Order #: 105488 Date: 12/20/2021
Test Type: Radiated Scan Time: 10:23:46
Tested By: Hoang Cao Sequence#: 79

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Band Edge

Environmental Conditions: Temperature: 22.6°C Humidity: 33%

Atmospheric Pressure: 101.8kPa Method: ANSI C63.10 2013

The unit is mounted to a floor standing rack as to simulate typical wall mounted setup. One weight line is extended to the floor.

WiFi transmitting continuously with modulation type as listed with pattern of 0s and 1s at power level 10.

MIMO not enabled, manufacturer declares chain 0 and chain 1 transmit uncorrelated data.

Chain 0

Operational mode is representative of worst case.

Notes

Air gap touchscreen display Display is showing home screen

Modifications: #1, #2, #3 #4, #5, #6 were in place during testing.

Support laptop included in this setup to control WiFi operating mode; port is internal to the equipment for configuration only.

Unintentional emissions related to display and display controller increased due to external cable to laptop.

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02660	Spectrum Analyzer	E4446A	12/4/2020	12/4/2022
T1	ANP01210	Cable	FSJ1P-50A-4A	11/2/2020	11/2/2022
T2	AN03302	Cable	32026-29094K-	1/9/2020	1/9/2022
			29094K-72TC		
T3	AN02113	Horn Antenna-	3115	3/11/2021	3/11/2023
		ANSI C63.5			
T4	AN02812	Preamp	83017-69004	9/22/2020	9/22/2022
T5	ANP06902	Cable	32022-29094K-	8/13/2020	8/13/2022
			29094K-36TC		

Page 84 of 94 Report No.: 105488-28

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Pl • Fremont CA 94539 • 510-249-1170

Customer: **Tonal**

Specification: 15.207 AC Mains - Average

Work Order #: 105488 Date: 12/17/2021
Test Type: Conducted Emissions Time: 10:10:04
Tested By: Hoang Cao Sequence#: 46

Tested By: Hoang Cao Sequence#: 46
Software: EMITest 5.03.20 Sequence#: 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Conducted Emission

Frequency Range: 150kHz to 30MHz

Environmental Conditions: Temperature: 21.8°C Humidity: 47%

Atmospheric Pressure: 101.5kPa

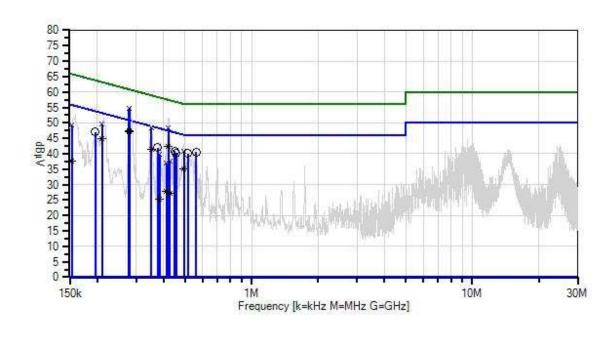
Highest Generation Frequency: 5.8GHz

Method: ANSI C63.10 2013

The unit is mounted to a floor standing rack as to simulate typical wall mounted setup. It is set in a testing mode, lifting a weight on a loop.

All WIFI and Bluetooth modules are on.

Notes:


Touch screen display: Direct bond 2312

Power Supply: Artesyn

Page 85 of 94 Report No.: 105488-28

Tonal WO#: 105548 Sequence#: 46 Date: 12/17/2021 15.207 AC Mains - Average Test Lead: 120V 60Hz Line

Sweep Data
 QP Readings
 Software Version: 5.03.20

Readings

Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

Ambient
2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP01211	Attenuator	23-10-34	2/25/2021	2/25/2023
T2	ANP06691	Cable	PE3062-180	3/25/2020	3/25/2022
T3	ANP06694	Cable	PE3062-480	3/25/2020	3/25/2022
T4	AN00494	50uH LISN-Line	3816/NM	3/11/2021	3/11/2023
		Loss (dB)			
	AN00494	50uH LISN-Return	3816/NM	3/11/2021	3/11/2023
		Loss (dB)			
	AN02660	Spectrum Analyzer	E4446A	12/4/2020	12/4/2022
T5	ANP05258	High Pass Filter	HE9615-150K-	7/6/2020	7/6/2022
			50-720B		

Page 86 of 94 Report No.: 105488-28

Measu	rement Data:	Re	ading list	ted by ma	ırgin.			Test Lead	d: Line		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	280.316k	37.3	+9.9	+0.0	+0.0	+0.1	+0.0	47.4	50.8	-3.4	Line
	Ave 270.05.61	27.1	+0.1	.0.0	. 0. 0	. 0.1	.00	47.0	50.0	2.6	т !
2	278.856k	37.1	+9.9	+0.0	+0.0	+0.1	+0.0	47.2	50.8	-3.6	Line
3	Ave 420.747k	32.4	+0.1	+0.0	+0.0	+0.0	+0.0	42.4	47.4	-5.0	Line
	420.747K Ave	32.4	+9.9	+0.0	+0.0	+0.0	+0.0	42.4	47.4	-3.0	Line
4	562.324k	30.3	+9.9	+0.0	+0.1	+0.1	+0.0	40.6	46.0	-5.4	Line
	302.32 TK	30.3	+0.2	10.0	10.1	10.1	10.0	10.0	10.0	3.1	Line
5	515.783k	29.7	+9.9	+0.0	+0.1	+0.1	+0.0	40.0	46.0	-6.0	Line
			+0.2								
6	280.316k	44.6	+9.9	+0.0	+0.0	+0.1	+0.0	54.7	60.8	-6.1	Line
	QP		+0.1								
7	448.880k	30.7	+9.9	+0.0	+0.1	+0.0	+0.0	40.8	46.9	-6.1	Line
			+0.1								
8	278.856k	44.5	+9.9	+0.0	+0.0	+0.1	+0.0	54.6	60.8	-6.2	Line
_	QP	4.5.5	+0.1	0.0	0.0	0.1	0.0	# - F	#0.0	7 0	
^	280.316k	46.6	+9.9	+0.0	+0.0	+0.1	+0.0	56.7	50.8	+5.9	Line
٨	278.856k	165	+0.1	.00	.00	· O 1	.00	5	50.0	, F O	T in a
	278.830K	46.5	+9.9 +0.1	+0.0	+0.0	+0.1	+0.0	56.6	50.8	+5.8	Line
11	375.432k	31.8	+9.9	+0.0	+0.0	+0.1	+0.0	41.9	48.4	-6.5	Line
11	373.432K	31.0	+0.1	+0.0	+0.0	+0.1	+0.0	41.7	40.4	-0.5	Line
12	454.698k	30.1	+9.9	+0.0	+0.1	+0.0	+0.0	40.2	46.8	-6.6	Line
12	15 1.07 OK	30.1	+0.1	10.0	10.1	10.0	10.0	10.2	10.0	0.0	Line
13	195.812k	36.8	+9.9	+0.0	+0.0	+0.1	+0.0	47.0	53.8	-6.8	Line
			+0.2								
14	351.428k	31.4	+9.9	+0.0	+0.0	+0.0	+0.0	41.4	48.9	-7.5	Line
	Ave		+0.1								
15	209.905k	34.9	+9.9	+0.0	+0.0	+0.1	+0.0	45.0	53.2	-8.2	Line
	Ave		+0.1								
16	420.747k	38.3	+9.9	+0.0	+0.0	+0.0	+0.0	48.3	57.4	-9.1	Line
	QP	40.0	+0.1	0.0	0.0	0.0	0.0			7 0	* .
٨	420.747k	43.2	+9.9	+0.0	+0.0	+0.0	+0.0	53.2	47.4	+5.8	Line
18	351.428k	38.5	+0.1	+0.0	+0.0	+0.0	+0.0	48.5	58.9	-10.4	Line
_	251.426K QP	36.3	+9.9	+0.0	+0.0	+0.0	+0.0	46.3	36.9	-10.4	Line
٨	_	42.2	+9.9	+0.0	+0.0	+0.0	+0.0	52.2	48.9	+3.3	Line
	551.120K	12.2	+0.1	10.0	10.0	10.0	. 0.0	52.2	10.7	13.3	21110
20	493.040k	24.9	+9.9	+0.0	+0.1	+0.1	+0.0	35.1	46.1	-11.0	Line
	Ave		+0.1								-
	209.905k	39.5	+9.9	+0.0	+0.0	+0.1	+0.0	49.6	63.2	-13.6	Line
	QP		+0.1								
^	209.905k	43.1	+9.9	+0.0	+0.0	+0.1	+0.0	53.2	53.2	+0.0	Line
			+0.1								
	493.040k	30.7	+9.9	+0.0	+0.1	+0.1	+0.0	40.9	56.1	-15.2	Line
	QP		+0.1								

^ 493.040k	35.1	+9.9	+0.0	+0.1	+0.1	+0.0	45.3	46.1	-0.8	Line
		+0.1								
25 153.270k	37.7	+9.9	+0.0	+0.0	+0.1	+0.0	49.3	65.8	-16.5	Line
QP		+1.6								
26 153.270k	25.9	+9.9	+0.0	+0.0	+0.1	+0.0	37.5	55.8	-18.3	Line
Ave		+1.6								
^ 153.270k	44.2	+9.9	+0.0	+0.0	+0.1	+0.0	55.8	55.8	+0.0	Line
		+1.6								
28 383.373k	29.6	+9.9	+0.0	+0.0	+0.1	+0.0	39.7	58.2	-18.5	Line
QP		+0.1								
29 427.092k	27.5	+9.9	+0.0	+0.0	+0.0	+0.0	37.5	57.3	-19.8	Line
QP		+0.1								
30 411.207k	17.7	+9.9	+0.0	+0.0	+0.0	+0.0	27.7	47.6	-19.9	Line
Ave		+0.1								
31 427.092k	17.3	+9.9	+0.0	+0.0	+0.0	+0.0	27.3	47.3	-20.0	Line
Ave		+0.1								
^ 427.092k	37.0	+9.9	+0.0	+0.0	+0.0	+0.0	47.0	47.3	-0.3	Line
		+0.1								
33 411.207k	26.9	+9.9	+0.0	+0.0	+0.0	+0.0	36.9	57.6	-20.7	Line
QP		+0.1								
^ 411.207k	35.2	+9.9	+0.0	+0.0	+0.0	+0.0	45.2	47.6	-2.4	Line
		+0.1								
^ 409.611k	32.4	+9.9	+0.0	+0.0	+0.0	+0.0	42.4	47.7	-5.3	Line
		+0.1								
36 383.373k	15.2	+9.9	+0.0	+0.0	+0.1	+0.0	25.3	48.2	-22.9	Line
Ave		+0.1								
^ 383.373k	35.4	+9.9	+0.0	+0.0	+0.1	+0.0	45.5	48.2	-2.7	Line
		+0.1								
^ 385.613k	32.5	+9.9	+0.0	+0.0	+0.1	+0.0	42.6	48.2	-5.6	Line
		+0.1								

Test Location: CKC Laboratories, Inc. • 1120 Fulton Pl • Fremont CA 94539 • 510-249-1170

Customer: Tonal

Specification: 15.207 AC Mains - Average

Work Order #: 105488 Date: 12/17/2021
Test Type: Conducted Emissions Time: 10:28:13
Tested By: Hoang Cao Sequence#: 47

Software: EMITest 5.03.20 120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Daviss	Manufastunan	Model #	C/NT	
Device	Manufacturer	Model #	S/IN	
Configuration 1				

Test Conditions / Notes:

Conducted Emission

Frequency Range: 150kHz to 30MHz

Environmental Conditions: Temperature: 21.8°C Humidity: 47%

Atmospheric Pressure: 101.5kPa

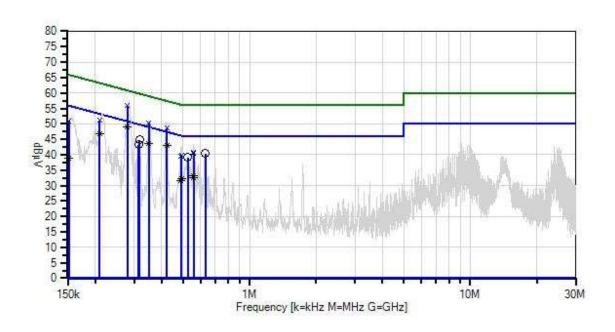
Highest Generation Frequency: 5.8GHz

Method: ANSI C63.10 2013

The unit is mounted to a floor standing rack as to simulate typical wall mounted setup. It is set in a testing mode, lifting a weight on a loop.

All WIFI and Bluetooth modules are on.

Notes:


Touch screen display: Direct bond 2312

Power Supply: Artesyn

Page 89 of 94 Report No.: 105488-28

Tonal WO#: 105548 Sequence#: 47 Date: 12/17/2021 15.207 AC Mains - Average Test Lead: 120V 60Hz Neutral

Sweep Data
 QP Readings
 Software Version: 5.03.20

Readings

Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

Ambient

2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP01211	Attenuator	23-10-34	2/25/2021	2/25/2023
T2	ANP06691	Cable	PE3062-180	3/25/2020	3/25/2022
T3	ANP06694	Cable	PE3062-480	3/25/2020	3/25/2022
	AN00494	50uH LISN-Line	3816/NM	3/11/2021	3/11/2023
		Loss (dB)			
T4	AN00494	50uH LISN-Return	3816/NM	3/11/2021	3/11/2023
		Loss (dB)			
	AN02660	Spectrum Analyzer	E4446A	12/4/2020	12/4/2022
T5	ANP05258	High Pass Filter	HE9615-150K-	7/6/2020	7/6/2022
			50-720B		

Page 90 of 94 Report No.: 105488-28

Measu	rement Data:	Re	eading list	ted by ma	argin.			Test Lead	l: Neutral		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MII-	4DV	T5	αr	JD.	JD.	Т-1-1-	4DV	JDVI	αr	A 4
1	MHz 280.264k	dBμV 38.9	dB +9.9	dB +0.0	dB +0.0	+0.0	Table +0.0	dBμV 48.9	dBμV 50.8	dB -1.9	Ant Neutr
-	200.204k Ave	36.9	+9.9	+0.0	+0.0	+0.0	+0.0	40.7	30.8	-1.7	Neuti
2	421.660k	33.0	+9.9	+0.0	+0.0	+0.0	+0.0	43.0	47.4	-4.4	Neutr
	Ave		+0.1								
3	280.264k	45.9	+9.9	+0.0	+0.0	+0.0	+0.0	55.9	60.8	-4.9	Neutr
^	QP	47.7	+0.1	.0.0	.0.0	. 0. 0	.0.0	57.7	50.0		NT /
	280.264k	47.7	+9.9 +0.1	+0.0	+0.0	+0.0	+0.0	57.7	50.8	+6.9	Neutr
5	317.256k	34.8	+9.9	+0.0	+0.0	+0.0	+0.0	44.8	49.8	-5.0	Neutr
	317.23 GR	3 1.0	+0.1	10.0	10.0	10.0	10.0	11.0	17.0	5.0	Tiouti
6	350.035k	33.5	+9.9	+0.0	+0.0	+0.0	+0.0	43.5	49.0	-5.5	Neutr
-	Ave		+0.1								
7	630.682k	30.2	+9.9	+0.0	+0.1	+0.0	+0.0	40.4	46.0	-5.6	Neutr
0	200 4121-	267	+0.2	.0.0	.0.0	.00	.00	167	52.0	(=	Manata
8	209.412k Ave	36.7	+9.9 +0.1	+0.0	+0.0	+0.0	+0.0	46.7	53.2	-6.5	Neutr
9	315.074k	33.3	+9.9	+0.0	+0.0	+0.0	+0.0	43.3	49.8	-6.5	Neutr
			+0.1								
10	525.237k	29.0	+9.9	+0.0	+0.1	+0.0	+0.0	39.2	46.0	-6.8	Neutr
			+0.2								
11	350.035k	40.4	+9.9	+0.0	+0.0	+0.0	+0.0	50.4	59.0	-8.6	Neutr
^	QP 350.035k	43.5	+0.1	+0.0	+0.0	+0.0	+0.0	53.5	49.0	+4.5	Neutr
	330.033K	43.3	+0.1	+0.0	+0.0	+0.0	+0.0	33.3	49.0	⊤4. 3	redu
13	421.660k	38.6	+9.9	+0.0	+0.0	+0.0	+0.0	48.6	57.4	-8.8	Neutr
	QP		+0.1								
^	421.660k	43.9	+9.9	+0.0	+0.0	+0.0	+0.0	53.9	47.4	+6.5	Neutr
1.5	200 4121	41.1	+0.1	0.0	0.0	0.0	0.0		62.2	10.1	37 .
15	209.412k OP	41.1	+9.9 +0.1	+0.0	+0.0	+0.0	+0.0	51.1	63.2	-12.1	Neutr
^	209.412k	44.4	+9.9	+0.0	+0.0	+0.0	+0.0	54.4	53.2	+1.2	Neutr
	20).112R		+0.1	10.0	10.0	10.0	10.0	5	33.2	11.2	ricuit
17	558.862k	23.0	+9.9	+0.0	+0.1	+0.0	+0.0	33.2	46.0	-12.8	Neutr
	Ave		+0.2								
	558.003k	22.4	+9.9	+0.0	+0.1	+0.0	+0.0	32.6	46.0	-13.4	Neutr
	Ave 492.486k	22.0	+0.2	+0.0	+0.1	+0.0	+0.0	32.1	46.1	-14.0	Neutr
	492.486K Ave	22.0	+9.9 +0.1	+0.0	+0.1	+0.0	+0.0	32.1	40.1	-14.0	ineuir
	488.923k	21.6	+9.9	+0.0	+0.1	+0.0	+0.0	31.7	46.2	-14.5	Neutr
	Ave		+0.1								
	152.236k	38.8	+9.9	+0.0	+0.0	+0.1	+0.0	50.9	65.9	-15.0	Neutr
	QP	·	+2.1					16	.		
	558.862k	30.4	+9.9	+0.0	+0.1	+0.0	+0.0	40.6	56.0	-15.4	Neutr
	QP 558.003k	30.3	+0.2	+0.0	+0.1	⊥ ∩ ∩	+0.0	40.5	56.0	-15.5	Neutr
	338.003K QP	30.3	+9.9	+0.0	+0.1	+0.0	+0.0	40.3	50.0	-13.3	incuti
L	ζ-										

558.003k	33.6	+9.9	+0.0	+0.1	+0.0	+0.0	43.8	46.0	-2.2	Neutr
		+0.2								
558.862k	33.4	+9.9	+0.0	+0.1	+0.0	+0.0	43.6	46.0	-2.4	Neutr
		+0.2								
492.486k	29.9	+9.9	+0.0	+0.1	+0.0	+0.0	40.0	56.1	-16.1	Neutr
QP		+0.1								
488.923k	29.5	+9.9	+0.0	+0.1	+0.0	+0.0	39.6	56.2	-16.6	Neutr
QP		+0.1								
488.923k	33.9	+9.9	+0.0	+0.1	+0.0	+0.0	44.0	46.2	-2.2	Neutr
		+0.1								
492.486k	33.6	+9.9	+0.0	+0.1	+0.0	+0.0	43.7	46.1	-2.4	Neutr
		+0.1								
485.968k	30.0	+9.9	+0.0	+0.1	+0.0	+0.0	40.1	46.2	-6.1	Neutr
		+0.1								
152.236k	26.9	+9.9	+0.0	+0.0	+0.1	+0.0	39.0	55.9	-16.9	Neutr
Ave		+2.1								
152.236k	44.8	+9.9	+0.0	+0.0	+0.1	+0.0	56.9	55.9	+1.0	Neutr
		+2.1								
	558.862k 492.486k QP 488.923k QP 488.923k 492.486k 485.968k 152.236k Ave	558.862k 33.4 492.486k 29.9 QP 488.923k 29.5 QP 488.923k 33.9 492.486k 33.6 485.968k 30.0 152.236k 26.9 Ave	+0.2 558.862k 33.4 +9.9 +0.2 492.486k 29.9 +9.9 QP +0.1 488.923k 29.5 +9.9 QP +0.1 488.923k 33.9 +9.9 +0.1 492.486k 33.6 +9.9 +0.1 485.968k 30.0 +9.9 +0.1 152.236k 26.9 +9.9 Ave +2.1 152.236k 44.8 +9.9	+0.2 558.862k 33.4 +9.9 +0.0 492.486k 29.9 +9.9 +0.1 488.923k 29.5 +9.9 +0.1 488.923k 33.9 +9.9 +0.0 +0.1 492.486k 33.6 +9.9 +0.1 485.968k 30.0 +9.9 +0.0 +0.1 152.236k 26.9 +9.9 +0.0 Ave +2.1 152.236k 44.8 +9.9 +0.0	+0.2 558.862k 33.4 +9.9 +0.0 +0.1 492.486k 29.9 +0.1 488.923k 29.5 +9.9 +0.1 488.923k 33.9 +9.9 +0.0 +0.1 492.486k 33.6 +9.9 +0.1 485.968k 30.0 +9.9 +0.0 +0.1 152.236k 26.9 49.9 +0.0 +0.0 +0.0 +0.1 +0.1 152.236k 44.8 +9.9 +0.0 +0.0 +0.0	+0.2 558.862k 33.4 +9.9 +0.0 +0.1 +0.0 492.486k 29.9 +9.9 +0.0 +0.1 +0.0 QP +0.1 488.923k 29.5 +9.9 +0.0 +0.1 +0.0 QP +0.1 488.923k 33.9 +9.9 +0.0 +0.1 +0.0 +0.1 492.486k 33.6 +9.9 +0.0 +0.1 +0.0 +0.1 485.968k 30.0 +9.9 +0.0 +0.1 +0.0 152.236k 26.9 +9.9 +0.0 +0.0 +0.1 Ave +2.1 152.236k 44.8 +9.9 +0.0 +0.0 +0.1	+0.2 558.862k 33.4 +9.9 +0.0 +0.1 +0.0 +0.0 492.486k 29.9 +9.9 +0.1 488.923k 29.5 +9.9 +0.1 488.923k 33.9 +9.9 +0.0 +0.1 +0.0 +0.0 +0.1 492.486k 33.6 +9.9 +0.0 +0.1 485.968k 30.0 +9.9 +0.0 +0.1 +0.0 +0.1 +0.0 +0.1 +0.0 +0.1 152.236k 26.9 +9.9 +0.0 +0.0 +0.1 +0.0 +0.1 +0.0 +0.1 +0.0 +0.0 +0.1 152.236k 44.8 +9.9 +0.0 +0.0 +0.1 +0.0 +0.0 +0.1 +0.0 +0.0 +0.1 +0.0 +0.0 +0.0 +0.0 +0.1 +0.0	+0.2 558.862k 33.4 +9.9 +0.0 +0.1 +0.0 +0.0 43.6 +0.2 492.486k 29.9 +9.9 +0.1 488.923k 29.5 +9.9 +0.1 488.923k 33.9 +9.9 +0.0 +0.1 +0.0 +0.0 +0.0 44.0 +0.1 492.486k 33.6 +9.9 +0.0 +0.1 +0.0 +0.0 +0.0 43.6 40.0	+0.2 558.862k 33.4 +9.9 +0.0 +0.1 +0.0 +0.0 43.6 46.0 492.486k 29.9 +9.9 +0.0 +0.1 +0.0 +0.0 40.0 56.1 QP +0.1 488.923k 29.5 +9.9 +0.0 +0.1 +0.0 +0.0 39.6 56.2 QP +0.1 488.923k 33.9 +9.9 +0.0 +0.1 +0.0 +0.0 44.0 46.2 +0.1 492.486k 33.6 +9.9 +0.0 +0.1 +0.0 +0.0 43.7 46.1 +0.1 485.968k 30.0 +9.9 +0.0 +0.1 +0.0 +0.0 40.1 46.2 +0.1 152.236k 26.9 +9.9 +0.0 +0.1 +0.0 +0.0 39.0 55.9 Ave +2.1 152.236k 44.8 +9.9 +0.0 +0.0 +0.1 +0.0 56.9 55.9	+0.2 558.862k 33.4 +9.9 +0.0 +0.1 +0.0 +0.0 43.6 46.0 -2.4 +0.2 492.486k 29.9 +9.9 +0.0 +0.1 +0.0 +0.0 39.6 56.1 -16.1 QP +0.1 488.923k 29.5 +9.9 +0.0 +0.1 +0.0 +0.0 39.6 56.2 -16.6 QP +0.1 488.923k 33.9 +9.9 +0.0 +0.1 +0.0 +0.0 44.0 46.2 -2.2 +0.1 492.486k 33.6 +9.9 +0.0 +0.1 +0.0 +0.0 43.7 46.1 -2.4 +0.1 485.968k 30.0 +9.9 +0.0 +0.1 +0.0 +0.0 40.1 46.2 -6.1 +0.1 152.236k 26.9 +9.9 +0.0 +0.1 +0.0 +0.0 39.0 55.9 -16.9 Ave +2.1 152.236k 44.8 +9.9 +0.0 +0.0 +0.1 +0.0 56.9 55.9 +1.0

Page 92 of 94 Report No.: 105488-28

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter		
4.73 dB	Radiated Emissions		
3.34 dB	Mains Conducted Emissions		
3.30 dB	Disturbance Power		

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS						
	Meter reading (dBμV)					
+	Antenna Factor	(dB/m)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	(dBμV/m)				

Page 93 of 94 Report No.: 105488-28

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

Page 94 of 94 Report No.: 105488-28