1. Insert the correct ‘TransKey’. This coded electronic key sets the unique operating parameters for a given control system. These parameters include, address code, operating frequency and function key (pushbutton) configurations. Note that an OCU will not operate without a ‘TransKey’ installed.

NOTE: If your controller uses the bottom row of keypad switches for ‘ON’, ‘OFF’, and ‘STOP’ functions, proceed directly to step 5 of this procedure.

2. Set red STOP Switch to ‘RUN’. Pulling this switch upward enables power to be applied to the OCU. If the switch has been pushed down to the ‘STOP’ position, you will first have to unlatch the switch knob by rotating in a clockwise direction.

3. Set ON/OFF Switch to ‘ON’. Rotating this switch clockwise applies power to the OCU. If the multicolor STATUS LED illuminates green and two short beeps are heard, the OCU is ready for use and a power up message has been sent to the target MCU. The targeted MCU will respond by energizing the mainline contactor of your controlled machine.

<table>
<thead>
<tr>
<th>WARNING:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEFORE ATTEMPTING TO USE THE REMOTE CONTROL SYSTEM, VERIFY THE TARGET CRANE OR MACHINE YOU WISH TO OPERATE IS UNDER THE DIRECT COMMAND OF YOUR OCU. THIS IS ACCOMPLISHED BY OPERATING A NON-MOTION OCU FUNCTION SUCH AS A HORN OR LAMP AND OBSERVING THAT THE RESPECTIVE FUNCTION ON THE TARGETED CRANE OR MACHINE RESPONDS.</td>
</tr>
<tr>
<td>FAILURE TO IMPLEMENT THE ABOVE MAY RESULT IN PERSONAL INJURY OR DEATH TO PERSONNEL AND DAMAGE TO EQUIPMENT.</td>
</tr>
</tbody>
</table>

4. Press a non-motion Function Key (pushbutton) such as a horn or lamp and observe that the targeted crane or machine responds. The OCU is now fully operational and transmitting a signal as indicated by the green 'TRANSMIT' LED flashing. Operate the keypad control and auxiliary pushbuttons as required, remembering that each pushbutton must be maintained in order for the function to continue to operate. Any or all functions may be operated simultaneously if the controlled machine permits such operation.
NOTES: A system STOP may be initiated at any time during the control function by pushing the red STOP switch downwards. It should be further noted that in “pitch and catch” control operations where two OCUs are used, only the OCU that sets the ‘STOP’ condition will re-set the ‘RUN’ condition.

When all control functions have been completed, we recommend you initiate a system STOP (push red STOP switch down) before setting the ON/OFF switch to the ‘OFF’ position.

5. Alternative Power-up procedure using bottom row keypad switches:

Referring to Figure 15 overleaf:

a. Press the ‘ON’ keypad pushbutton once and observe the multicolor STATUS LED illuminates red.

b. Press the ‘STOP’ keypad pushbutton once (1st & 2nd step) and observe the multicolor STATUS LED illuminates orange.

c. Press the ‘ON’ keypad pushbutton once again and observe the multicolor STATUS LED illuminates green.

NOTE: The above Power-up sequence must be completed within 10 seconds.

WARNING:
BEFORE ATTEMPTING TO USE THE REMOTE CONTROL SYSTEM, VERIFY THE TARGET CRANE OR MACHINE YOU WISH TO OPERATE IS UNDER THE DIRECT COMMAND OF YOUR OCU. THIS IS ACCOMPLISHED BY OPERATING A NON-MOTION OCU FUNCTION SUCH AS A HORN OR LAMP AND OBSERVING THAT THE RESPECTIVE FUNCTION ON THE TARGETED CRANE OR MACHINE RESPONDS.

FAILURE TO IMPLEMENT THE ABOVE MAY RESULT IN PERSONAL INJURY OR DEATH TO PERSONNEL AND DAMAGE TO EQUIPMENT.

6. Press a non-motion Function Key (pushbutton) such as a horn or lamp and observe that the targeted crane or machine responds. The MKU controller is now fully operational and transmitting a signal as indicated by the multicolor STATUS LED flashing green. Operate the keypad control and auxiliary pushbuttons as required, remembering that each pushbutton must be maintained in order for the function to continue to operate. Any or all functions may be operated simultaneously if the controlled machine permits such operation.
Figure 15. Alternative MKU Controller - Power-up using bottom row keypad switches

MULTI-COLOR 'STATUS' LED

'ON' PUSHBUTTON

'STOP' PUSHBUTTON
6.4 CHANGING THE BATTERY PACK

Referring to Figure 16 below, remove the battery pack as follows:

a. Lay MKU controller (1) face down.

b. Release two knurled thumbscrews (2) and withdraw cover-plate (3).

c. Withdraw battery pack (4) from battery compartment (5).

Figure 16. Battery Pack, removal and replacement

Referring to Figure 16 above, replace the battery pack as follows:

a. Position battery pack (4) with the four contact strips facing down and forwards. Install battery pack (4) by pushing fully home inside the battery compartment (5).

b. Install cover-plate (3) and secure by evenly hand tightening two knurled thumbscrews (2). Do not overtighten - a snug fit is all that is necessary.
6.5 CHARGING THE BATTERY PACK

NOTES: Do not re-charge the battery pack until the OCU’s LED indicates ‘low battery’.

A CATTRON® External Battery Charging Unit (Part # 70C-0003) will be required for battery charging or conditioning.

A CATTRON® ‘Standard’ Battery Charger (Part # 70C-0001) enables a Ni-Cad battery pack to be charged within a period of 10 hours from a 110-120 VAC mains supply. Standard rate chargers include a yellow LED to indicate charge mode.

A CATTRON® ‘state of the art’ Battery Conditioner (Part # 70C-0002) is also available for use with Ni-Cad battery packs only. For details, refer to Battery Pack Conditioning, below.

CAUTIONS:

CATTRON® MKU Battery Conditioners and External Charging Units are designed for use with CATTRON® Ni-Cad Battery Packs only.

Battery Packs must be removed or disconnected from Battery Conditioners/External Charging Units within 48-hours of achieving the fully charged state.

Failure to comply with these Cautions may result in equipment and/or battery damage and will void our warranty.

Battery Pack Charging: To charge a Ni-Cad Battery Pack, refer to Figure 17 opposite and connect the CATTRON® Battery Charger to the mains power supply. Install the charging jack to the external battery charging unit socket. Simply drop the battery pack into the battery charging unit, ensuring the battery pack contacts are positioned as shown. When the Ni-Cad battery pack is properly installed, the appropriate charging indicator on the connected battery charger will illuminate.
6.6 CONDITIONING THE BATTERY PACK

A ‘state of the art’ CATTRON® Battery Conditioner (Part # 70C-0002) is available for use with Ni-Cad battery packs only.

The Battery Conditioner automatically conditions the battery pack by first discharging it at 750mA for 1.5 hours before applying a rapid charge for 1.2 hours. The conditioner incorporates end of charge detection circuitry to accurately sense when the battery pack is fully charged. When this condition has been detected, the conditioner switches to a ‘trickle’ mode that keeps the battery pack fully charged and ready to use for up to 48-hours. To prevent damage to the battery pack, it should be removed from the conditioner within 48-hours of achieving a fully charged state.

The CATTRON® Battery Conditioner incorporates an LED that indicates status as follows:

- **Amber Color** – indicates the battery pack is being discharged.
- **Red Color** - indicates the battery pack is being charged at a rapid rate.
- **Green Color** - indicates the battery pack is fully charged and that a ‘trickle’ charge is being applied to maintain the fully charged state. The battery pack is ready for use and should be removed from the conditioner within 48-hours.
CAUTIONS:
CATTRON® MKU Battery Conditioners and External Charging Units are designed for use with CATTRON® Ni-Cad Battery Packs only.

Battery Packs must be removed or disconnected from Battery Conditioners/External Charging Units within 48-hours of achieving the fully charged state.

Failure to comply with these Cautions may result in equipment and/or battery damage and will void our warranty.

The Battery Conditioner includes a Mains VAC Adaptor that enables the conditioner to operate from mains supply voltages between 100 and 240 VAC @ 50/60 kHz. Referring to Figure 18 opposite, this adaptor is connected as shown. Similarly, when connecting the Battery Conditioner to the External Battery Charging Unit, refer to Figure 18 for the appropriate connections.
1. REAR VIEW - CONNECTING THE VAC ADAPTOR

![Diagram of Rear View](image)

- Battery Conditioner (Part # 70C-0002)
- Mains Vac Adaptor
- Vac Outlet
- Output to External Charging Unit
- 18 VDC Input Socket
- Output Jack from Mains Vac Adaptor

2. FRONT VIEW - BATTERY PACK CONDITIONING/CHARGING

![Diagram of Front View](image)

- Battery Conditioner (Part # 70C-0002)
- Ni-Cad Battery Pack (Part # 60C0060N)
- Status LED
- External Battery Charging Unit (Part # 70C-0003)
- Charging Jack
6.7 ALKALINE BATTERY ADAPTER

CAUTION:
CATTRON® MKU Battery Adapters are designed for use with non re-chargeable ‘AAA’ size Alkaline Batteries only. Carbon/Zinc, Lithium, or Ni-Cad Batteries are not to be used with this adapter. Damage to batteries will occur if this adapter is used for battery charging.

Referring to Figure 19 below, a CATTRON® Battery Adapter is available which will accept two ‘AAA’ size Alkaline 1.5-volt batteries only. It should be noted that when using ‘AAA’ size Alkaline 1.5-volt batteries with this adapter, battery life will only be 40% of that provided by a CATTRON® Alkaline Battery Pack.

Figure 19. ‘AAA’ Alkaline Battery Adapter
7 MAINTENANCE INSTRUCTIONS

Unless customer technicians have received formal maintenance training from CATTRON®, our maintenance philosophy is that inoperative OCUs and MCUs be returned as complete units to our workshops for repair. This is because each system has been customized at our factory for a particular application, thus it is highly unlikely that two control systems will be the same.

NOTE: When returning an OCU for repair, the original 'TransKey' supplied with the unit should be removed and retained for use with your spare unit.

7.1 PREVENTIVE MAINTENANCE

Preventive maintenance for MKU systems is minimal because they are extremely durable and reliable units. Preventive maintenance is limited to the following:

Daily Visual Inspection:

Before use, visually inspect the OCU and MCU for cleanliness, physical damage, and security of external parts (screws, switches, rubber grips, etc.). CATTRON® emphasizes that regular visual inspections not only mean quickly locating a source of potential problems, but also may prevent serious problems from developing later.

Cleaning the Transmitter:

The OCU should be cleaned with a moist cloth (if necessary, with a little washing-up liquid), then wiped dry with a clean paper towel. DO NOT IMMERSE THE OCU IN WATER.

Functional Check:

A functional check is accomplished by operating the OCU in accordance with the Operating Procedures in Para. 6.3 on page 32 of this manual. Insure all system control functions are fully operational.

7.2 TRANSMITTER FAULT MESSAGES

The OCU has a multicolor STATUS LED indicator that displays the current system status to the operator. When an OCU fault is detected, the multicolor STATUS LED will illuminate red and signal this with a series of blinks. Refer to Table 2 overleaf for the blink sequence and the corresponding fault messages.

Note that any repairs or replacements should only be made by CATTRON® trained technicians.
Table 2. OCU Fault Messages - multicolor STATUS LED

<table>
<thead>
<tr>
<th>LED Indication</th>
<th>Fault</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-flashes</td>
<td>TransKey missing</td>
<td>Plug in the Transkey</td>
</tr>
<tr>
<td>3-flashes</td>
<td>TransKey cannot be read</td>
<td>Check the Transkey configuration*</td>
</tr>
<tr>
<td>4-flashes</td>
<td>Fault in the low-voltage test during switch-on</td>
<td>Switch the OCU off then on again. Replace/Charge Battery Pack If fault persists, investigate fault* Change Transmitter board* Return OCU for repair</td>
</tr>
<tr>
<td>5-flashes</td>
<td>Switch-on sequence not performed correctly</td>
<td>Insure the STOP pushbutton is released</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Switch the OCU OFF then ON again.</td>
</tr>
<tr>
<td>6-flashes</td>
<td>Fault during reading of command initiator</td>
<td>Investigate fault*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change Transmitter board/Keyboard*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Return OCU for repair</td>
</tr>
<tr>
<td>7-flashes</td>
<td>Incorrect RF module or RF module incorrectly configured</td>
<td>Replace the RF module or correct the configuration* Return OCU for repair</td>
</tr>
<tr>
<td>8-flashes</td>
<td>General system fault</td>
<td>Investigate fault*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change Transmitter board*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Return OCU for repair</td>
</tr>
<tr>
<td>9-flashes</td>
<td>Low Power Supply voltage</td>
<td>Replace/Charge Battery Pack</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change Transmitter board*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Return OCU for repair</td>
</tr>
<tr>
<td>10-flashes</td>
<td>Hardware Fault</td>
<td>Change Transmitter board*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Return OCU for repair</td>
</tr>
</tbody>
</table>

*CATTRON® customer trained technicians only. If necessary, contact the factory for the replacement part number applicable to your system configuration - refer to the rear cover of this manual for telephone numbers and e-mail addresses.
7.3 RECEIVER FAULT MESSAGES

The MCU has five externally visible LED indicators that display the current system status to the operator. Referring to Figure 20 below and Table 3 overleaf, these are:

Figure 20. MCU System Status LEDs
Table 3. MCU External Status LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Power On</td>
<td>Illuminates orange when the MCU receiver has voltage</td>
</tr>
<tr>
<td>2. Scan Mode</td>
<td>Flashes red/orange in Scan Mode</td>
</tr>
<tr>
<td>2. Scan Mode</td>
<td>Not used when system is configured for fixed frequency</td>
</tr>
</tbody>
</table>
| 3. RF Reception | Illuminates green when valid data from the OCU is received and both OPR relays are energized
Illuminates orange if valid data from the OCU is received and the OPR relays are de-energized
Illuminates red if data from another OCU (with invalid address) is received |
| 4. Command | Illuminates green when commands are received from the OCU (normal condition) |
| 5. Fault indication | Blinks red when the MCU detects a fault (refer to Table 4 below for the blink sequence and the corresponding fault messages). |

Referring to Figure 21 below, an additional PROCESSOR FAULT LED indicator is mounted on the MCU processor board and may be viewed by removing the MCU front cover.

Figure 21. MCU Status and Fault LEDs
The PROCESSOR FAULT LED blinks **orange** if the receiver does not detect a transmitter, and **green** when valid RF Transmissions are received. If the processor detects a fault, it will signal this by blinking in **red**. Refer to Table 4 below for the blink sequence and the corresponding fault messages.

Note that any repairs or replacements should only be made by CATTRON® trained technicians.

<table>
<thead>
<tr>
<th>LED Indication</th>
<th>Fault</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-flashes</td>
<td>TransKey missing</td>
<td>Plug in the Transkey</td>
</tr>
<tr>
<td>3-flashes</td>
<td>TransKey cannot be read</td>
<td>Check the Transkey configuration*</td>
</tr>
<tr>
<td>4-flashes</td>
<td>Fault in the low-voltage test during switch-on</td>
<td>Switch the MCU off then on again. If fault persists, investigate fault* Change Processor Board* Return MCU for repair</td>
</tr>
<tr>
<td>5-flashes</td>
<td>OPR relay fault</td>
<td>Check the OPR Relay(s)* Change the OPR Relay(s)* Return MCU for repair</td>
</tr>
<tr>
<td>6-flashes</td>
<td>Relay board fault</td>
<td>Investigate fault* Change Relay Motherboard* Return MCU for repair</td>
</tr>
<tr>
<td>7-flashes</td>
<td>Incorrect RF module or RF module incorrectly configured</td>
<td>Replace the RF module or correct the configuration* Return MCU for repair</td>
</tr>
<tr>
<td>8-flashes</td>
<td>General system fault</td>
<td>Investigate fault* Change appropriate board* Return MCU for repair</td>
</tr>
<tr>
<td>9-flashes</td>
<td>Low Power Supply voltage</td>
<td>Check power inputs and outputs* Change appropriate board* Return MCU for repair</td>
</tr>
<tr>
<td>10-flashes</td>
<td>Processor fault</td>
<td>Change Processor Board* Return MCU for repair</td>
</tr>
</tbody>
</table>

*CATTRON® customer trained technicians only. If necessary, contact the factory for the replacement part number applicable to your system configuration - refer to the rear cover of this manual for telephone numbers and e-mail addresses.
8 ACCESSORIES AND CONSUMABLE ITEMS

Contact CATTRON® sales department for availability and pricing of the following accessories and consumable items. These items are itemized in Table 5 below and illustrated on the following pages.

Table 5. Optional Accessories

<table>
<thead>
<tr>
<th>Item #</th>
<th>Part Number</th>
<th>Order Quantity</th>
<th>Item Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60C-0060A</td>
<td>1</td>
<td>Battery pack, alkaline, non-rechargeable, 3-volt, 2,500 mAH</td>
</tr>
<tr>
<td>2</td>
<td>60C-0060N</td>
<td>1</td>
<td>Battery pack, Ni-Cad, rechargeable, 2.4-volt, 1,100 mAH</td>
</tr>
<tr>
<td>3</td>
<td>42C-0066</td>
<td>1</td>
<td>Carrying Strap, Belt, loop, 2", nylon, black</td>
</tr>
<tr>
<td>4</td>
<td>70C-0001</td>
<td>1</td>
<td>Battery Charger, Ni-Cad, standard charge (10-hour), 110 VAC</td>
</tr>
<tr>
<td>5</td>
<td>70C-0002</td>
<td>1</td>
<td>Battery Conditioner, 100-240 VAC input</td>
</tr>
<tr>
<td>6</td>
<td>42C-0057</td>
<td>1</td>
<td>Carrying strap, shoulder</td>
</tr>
<tr>
<td>7</td>
<td>70C-0003</td>
<td>1</td>
<td>External Battery Charging Unit (use with items 2, 4, & 5)</td>
</tr>
<tr>
<td>8</td>
<td>60C-0062</td>
<td>1</td>
<td>Battery Adapter, 3-volt (for qty. 2 ‘AAA’ Alkaline batteries only)</td>
</tr>
<tr>
<td>9</td>
<td>54C-0088A</td>
<td>1</td>
<td>Standard Label Kit, English Text*</td>
</tr>
<tr>
<td>10</td>
<td>54C-0088SPA</td>
<td>1</td>
<td>Special Label Kit, English Text*</td>
</tr>
</tbody>
</table>

*Non-English language text labels are available. Contact CATTRON® sales department for details - refer to the rear cover of this manual for telephone numbers and e-mail addresses.
8.1 ACCESSORIES/CONSUMABLE ITEMS - ILLUSTRATIONS

White color

Item 1. Battery pack, alkaline, non-rechargeable, 3-volt, 2,500 mAH – Part # 60C-0060A

Yellow color

Item 2. Battery pack, Ni-Cad, re-chargeable, 2.4-volt, 1,100 mAH – Part # 60C-0060N
Item 3. Carrying strap, belt, loop, 2", nylon, black - Part # 42C-0066

Item 4. Battery Charger, Ni-Cad, standard charge (10-hour), 110 VAC - Part # 70C-0001
Item 5. Battery Conditioner, 100-240 VAC input, complete with multi-voltage adapter - Part # 70C-0002

Item 6. Carrying strap, shoulder - Part # 42C-0057
Item 7. External Battery Charging Unit (used with items 2, 4, & 5 above) - Part # 70C-0003

Item 8. Battery Adapter for Quantity 2 x ‘AAA’ Alkaline Batteries - Part # 60C-0062
Item 9. Standard Label Kit, English Text - Part # 54C-0088A

MATERIAL:	LAMINATE WITH CLEAR HI-LO / TOP LAYER PRINTER MATERIAL, SECOND LAYER PERMANENT ADHESIVE BACKING (ADHBP).
COLORING:	BLACK / SILVER PRINT / SILVER
LETTERING CONTENT:	SEE TEXT BELOW
LETTERING HEIGHT:	ALL LETTERING SHOULD BE AS LARGE AS PRACTICAL TO ENSURE ABSOLUTE DISTANCE FROM EDGES.
LETTERING LOCATION:	ALL LETTERING SHOULD BE CENTERED WITHIN LABEL AREA. TEXT SHOULD BE ROUNDED AS SHOWN.
LETTERING STYLE:	UPPER CASE ORGANIC OR SIMILAR STYLE
ENVIRONMENTAL:	LABEL TO REMAIN REUSEABLE AND SHOULD STICK TO MOST METAL MATERIALS. TECHEMICAL / PLASTIC / METAL SURFACES IN NORMAL DRY, HUMID / COOL INDUSTRIAL ENVIRONMENTS.
TOLERANCES:	ALL TOLERANCES 47 - 0000
CUT:	LABELS SHOULD BE KISS CUT

NOTES: DIRECTION OF LETTERING, ALL LETTERING SAME SIZE, MAKE 11 LABELS BLANK - NO TEXT

MAKE ONE LABEL FOR EACH OF THE FOLLOWING

BRG FWD	FWD	GATE UP	LATCH
BRG REV	REV	GATE DN	UNLANT
BRG N	NORTH	MAG ON	FAST
BRG S	SOUTH	MAG OFF	SLOW
BRG E	EAST	LIFT	RIGHT
BRG W	WEST	DROP	LEFT
BRG 2	UP	RAISE	START
BRG 3	DOWN	LOWER	STOP
TRG FWD	ALARM	FORWARD	START 1
TRG REV	RESEI	REVERSE	STOP 1
TRG N	ALR/RST	ADVANCE	START 2
TRG S	BELL	RETARD	STOP 2
TRG E	SIREN	ON	START 3
TRG W	OPR REL	OFF	STOP 3
TRG 2	IN	IN	START 4
TRG 3	OUT	OUT	STOP 4
MOIST	CROWD	BRAKE	
MOIST V	DUMP	BRK ON	
MOIST	SHEAR	BRK OFF	
MOIST 3	CONT	F	PUMP
AHD IN	PAUSE	LOW	
AHD UP	CW	PUMP F	
AHD	CCW	PUMP S	
AHD 3	RUN	VIBRATE	
AHD 3	WINCH		

MAKE 2 OF THIS STYLE
BLANK CLEAR TOP LAYER ONLY WITH THIN BLACK BORDER.

MAKE 8 OF THIS STYLE
SOLID BLANK COLOR BLACK

CHANGED BORDER FROM BLACK	1990	MS/TEB
ADDED 11 BLANK LABELS	1990	MS/TEB
PER PAR REV		
CHANGED BACKGROUND FROM BLACK	09/1998	ROG
TO SILVER		
CHANGED CARD FORMAT	12-25-1997	ROG
FROM PCAD TO AUTOCAD		
CHANGED TEXT ON LABELS	08-10-1999	RMP
CHANGED RADIUS ON LARGE LABEL		
INITIAL ISSUE	07-01-1999	RMP
REVISION		

CATTRON™ AE DRAWINGS

CATTTRON P/N 54C-0088A

SCALE | APPD BY | SHEET |
| | | 01 SP 01 |

Part # 68C-MKU, Edition 01/2007, Version 1.0
ITEM 10. SPECIAL LABEL KIT, ENGLISH TEXT - PART # 54C-0088SPA

MATERIAL:
LAMINATE WITH CLEAR MYLAR TOP LAYER PROVIDES NATURAL SECOND LAYER PERMANENT ADHESIVE BACKING (25BY).

COLORING:
BACKGROUND: SILVER
PRINT: BLACK

LETTERING CONTENT:
SEE TEXT BELOW

LETTERING HEIGHT:
ALL LETTERING SHOULD BE AS LARGE AS PRACTICAL YET MAINTAIN ADEQUATE DISTANCE FROM EDGES.

LETTERING LOCATION:
ALL LETTERING SHOULD BE CENTERED WITHIN LABEL AREA.
TEXT SHOULD BE ALIGNED AS SHOWN.

LETTERING STYLE:
UPPER CASE GOTHIC OR SIMILAR STYLE.

ENVIRONMENTAL:
LABEL TO REMAIN READABLE AND SHOULD STICK TO MOST METAL, PLASTIC, AND METAL SURFACES IN DRY, HOT & COLD INDUSTRIAL ENVIRONMENTS.

TOLERANCES:
ALL TOLERANCES +/- 0.005

CUT:
LABELS SHOULD BE KISS CUT

MAKE 2 OF THIS STYLE.
BLANK CLEAR TOP LAYER ONLY WITH THIN BLACK BORDER.

MAKE 8 OF THIS STYLE.
SOLID BLANK (COLOR BLACK)

NOTE: DIRECTION OF LETTERING.
ALL LETTERING SAME SIZE.
EXCEPT FOR WORDS WITH 9 CHARACTER'S.
THEY MAY BE A DIFFERENT TEXT SIZE.

MAKE ONE LABEL FOR EACH OF THE FOLLOWING:

- JUG
- HORN
- OPEN
- CLOSE
- UP
- DOWN
- NORTH
- SOUTH
- T
- START
- T
- START
- H
- START
- H
- START
- T
- START
- H
- START
- T
- START
- H
- START
- T
- START

SWING RT
BUMP UP
BUMP DN
DUST DN
DISC FWD
DISC OFF
DISC REV
ROLL FWD
ROLL REV
ROLL OFF
FLOOR FWD
FLOOR REV
FLOOR OFF
SCREW UP
SCREW DN
FEED ST
FEED SP
DUST ST
DUST SP
ASB ST
ASB SP
BUMP UP
BUMP DN

REV
DATE
ENG/DRY
 FILE NAME: LABEL/54C0088SPAEW

10166299
MAR
PART NUMBER
01/05/2007
01/05/1998
09/09/1997

SCALE
APPSD BY
SHEET
01 OF 01

CATTRON TÍME DRAWINGS
CATTRON P/N 54C-0088SPA

- MESSA
APPENDIX ‘A’ – OCU CHANNEL CHANGING OPTION

Occasionally, a change of RF channel may be necessary due to radio interference or the fact that the factory pre-programmed RF channel is already in use.

This is normally accomplished by reprogramming the TransKey (external programming). However, some OCUs are equipped with a Channel Changing Option that allows the operator to change the RF channel using the OCU keypad. If this option is available, an RF Frequency Color Code Table similar to the example shown below will be supplied with your Remote Control System.

Table A-1. Example RF Frequency Color Code Table

<table>
<thead>
<tr>
<th>Channel</th>
<th>Frequency</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>902.000</td>
<td>-</td>
<td>-</td>
<td>red</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>902.100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>red</td>
</tr>
<tr>
<td>2</td>
<td>902.200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>green</td>
</tr>
<tr>
<td>3</td>
<td>902.300</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>orange</td>
</tr>
</tbody>
</table>

NOTES: Regardless of the OCU model (6, 8, 10 or 12 buttons), in addition to the ‘ON’ and ‘STOP’ buttons, only the top two rows of buttons are used to change the RF channel.

The programming mode can be exited at any time by pressing the STOP button. In this case the previously stored RF channel will remain in effect.

A.1 ACTIVATING THE PROGRAMMING MODE.

Refer to Figure A-1, overleaf

Step 1: Switch the OCU OFF and then keep the ‘ON’ button pressed for approximately 5-seconds until the red ‘STATUS’ LED switches from permanently red to fast blinking red.

Step 2: Within 3 seconds press the ‘UP’ and ‘DOWN’ buttons (in the top row), first and second step, at the same time.

Step 3: The OCU is now in the programming mode. The ‘STATUS’ LED blinks orange and the set RF channel is indicated via a color code (see example Table A-1, above) using the 4 LEDs.
A.2 SELECTING THE RF CHANNEL

Pressing the first level of the UP and DOWN buttons selects the next higher or next lower RF channel respectively.

Alternatively, holding down the second level initiates a fast run (approx. 0.3 seconds per channel) in order to set the system to the desired RF channel (see example Table A-1, above).

When the desired RF channel has been selected, pressing the ON button stores the selected RF channel in the OCU, exits the programming mode and switches off the OCU.

When the OCU is switched on again it then transmits on the selected channel.

NOTE: After the first activation of the OCU following an RF channel change, it can take up to 1-minute before the MCU is ready for operation.
A.3 RE-ACTIVATING THE TRANSKEY RF CHANNEL

Pressing the first level of the Field Strength Channel Pushbutton and the 'ON' Pushbutton re-activates the RF channel originally configured in the TransKey (basic configuration). This action exits the programming mode and switches off the OCU.

When the OCU is switched on again, it will transmit on the RF Channel stored in the TransKey.
APPENDIX ‘B’ – INTERFACING TO SAFETY CRITICAL MAINTAINED BI-STABLE CIRCUITS

B.1 EXAMPLE CIRCUIT DIAGRAM - MAGNET

INTERFACING TO SAFETY CRITICAL, MAINTAINED (BI-STABLE) CIRCUITS.
EXAMPLE OF A TYPICAL MAGNET CIRCUIT SHOWN BELOW.

[Diagram of a circuit diagram showing various components such as relays, a magnet, and control voltage, with notes on safety and operation.]
B.2 EXAMPLE CIRCUIT DIAGRAM - GRAB

INTERFACING TO SAFETY CRITICAL, MAINTAINED (BI-STABLE) CIRCUITS.
EXAMPLE OF A TYPICAL GRAB CIRCUIT SHOWN BELOW.

CONTROL VOLTAGE

P1

P2

CLOSED

AUX FAULT

OPEN

AUX FAULT

GRAB CLOSE RELAY

GRAB OPEN RELAY

RELAY CONTACTS IN REMOTE CONTROL RECEIVER/DECODER CABINET

CUSTOMER ADDED INTERFACE CIRCUIT

CUSTOMER EXISTING MANUAL CONTROLS

CLOSE OPEN

OPEN

CLOSE

GRAB CLOSE

GRAB OPEN

CATTRON

SHARPSVILLE, PA 16057

TYP-GRAB.DWG

01
B.3 EXAMPLE CIRCUIT DIAGRAM - VACUUM

INTERFACING TO SAFETY CRITICAL, MAINTAINED (BI-STABLE) CIRCUITS. EXAMPLE OF A TYPICAL VACUUM CIRCUIT SHOWN BELOW.

CAUTION: POWER FEED P1/P2 MUST BE FED FROM CONTINUOUS HMT FEED BEFORE MAINLINE CONTACTS.

RELAY CONTACTS IN REMOTE CONTROL RECEIVER/DECORDER CABINET

CUSTOMER ADDED INTERFACE CIRCUIT

EXISTING MANUAL CONTROLS

VACUUM EN/OF

VACUUM RELEASE

M1

REL

VACUM