

Elliott Laboratories Inc. www.elliottlabs.com

684 West Maude Avenue Sunnyvale, CA 94085-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C on the LXE Inc Transmitter Model: 48.31

- UPN: 1995B-4831 FCC ID: KDZLXE4831P
- GRANTEE: LXE Inc 125 Technology Parkway Norcross, GA 30092
- TEST SITE: Elliott Laboratories, Inc. 684 W. Maude Ave Sunnyvale, CA 94086
- **REPORT DATE:** April 24, 2008

FINAL TEST DATE:

November 19, Novembeer 27, December 14 andDecember 19, 2007 and Janaury 14, January 15, January 25 and January 28, and March 4, 2008

AUTHORIZED SIGNATORY:

Mark E. Hill Staff Engineer

Testing Cert #2016-01

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

File: R71333 Rev 1 Page 1 of 23

REVISION HISTORY

Rev #	Date	Comments	Modified By
1		Initial Release	DG

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	6
STATEMENT OF COMPLIANCE	6
TEST RESULTS SUMMARY	7
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz) DIGITAL TRANSMISSION SYSTEMS (5725 –5850 MHz) GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	7 8
MEASUREMENT UNCERTAINTIES	8
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL ANTENNA SYSTEM ENCLOSURE MODIFICATIONS SUPPORT EQUIPMENT. EUT INTERFACE PORTS EUT OPERATION.	9 9 9 .10 .10
TEST SITE	.11
GENERAL INFORMATION CONDUCTED EMISSIONS CONSIDERATIONS RADIATED EMISSIONS CONSIDERATIONS	.11
MEASUREMENT INSTRUMENTATION	.12
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS. ANTENNA MAST AND EQUIPMENT TURNTABLE. INSTRUMENT CALIBRATION	.12 .12 .13 .13 .13

TABLE OF CONTENTS (Continued)

TEST PROCEDURES	14
EUT AND CABLE PLACEMENT	14
CONDUCTED EMISSIONS	14
RADIATED EMISSIONS	14
RADIATED EMISSIONS	15
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	19
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	20
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	23
EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Measurement Data	
EXHIBIT 3: Photographs of Test Configurations	3
EXHIBIT 4: Proposed FCC ID Label & Label Location	4
EXHIBIT 5: Detailed Photographs	5
EXHIBIT 6: Operator's Manual	
EXHIBIT 7: Block Diagram	
EXHIBIT 8: Schematic Diagrams	
EXHIBIT 9: Theory of Operation	
EXHIBIT 10: RF Exposure Information	10

SCOPE

An electromagnetic emissions test has been performed on the LXE, Inc. model 4831 pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the LXE, Inc. model 4831 and therefore apply only to the tested sample. The sample was selected and prepared by Ron Seide of Summit Data Communications.

Testing was originally performed on the Summit Data Communications model SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors. The LXE Inc model 4831 is an OEMd version of the Summit Data device.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Summit Data Communications model SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	-	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	16.5 MHz - 802.11g 9.1 MHz - 802.11b	>500kHz	Complies
	RSP100	99% Bandwidth	17.2 MHz – 802.11g 12.8 MHz – 802.11b	Information only	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	24.1 dBm (0.258 Watts) EIRP = $0.619 \text{ W}^{\text{Note}}$	1 Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	7.5 dBm / MHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	All emissions < -20dBc	< -20dBc	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	53.8dBµV/m (489.8µV/m) @ 4924.0MHz	15.207 in restricted bands, all others < -20dBc	Complies (-0.2dB)

DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)

Note 1: EIRP calculated using antenna gain of 3.8 dBi for the highest EIRP multi-point system.

DIGITAL TRANSMISSION SYSTEMS (5725 –5850 MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	16.4 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	17.5 MHz	Information only	Complies
15.247 (b) (3) 15.247		Output Power (multipoint systems)	15.6 dBm (0.036 Watts) EIRP = 0.115 W ^{Note}	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	-8.3 dBm / MHz	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions – 30MHz – 40 GHz	All spurious emissions < -20dBc	< -20dBc	Complies
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz	52.1dBµV/m (402.7µV/m) @ 11489.9MHz	15.207 in restricted bands, all others < -20dBc	Complies (-1.9 dB)

Note 1: EIRP calculated using antenna gain of 5 dBi for the highest EIRP multi-point system.

FCC Rule	RSS	Description	Measured Value /	Limit /	Result
Part	Rule part	Description	Comments	Requirement	(margin)
15.203	-	RF Connector	The radio module uses a unique connector type		Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	41.4dBμV/m (117.5μV/m) @ 2187.3MHz		Complies (- 12.6 dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	55.6dBµV @ 0.167MHz	Refer to standard	Complies (-9.5dB)
15.247 (b) (5)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding non- interference	
	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding detachable antenna	

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions Radiated Emissions	0.15 to 30 0.015 to 30 30 to 1000	$\pm 2.4 \\ \pm 3.0 \\ \pm 3.6$
Radiated Emissions	1000 to 40000	± 6.0

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Summit Data Communication model SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors is an 802.11a/g compliant wireless LAN radio module which is designed to provide wireless local area networking connectivity. Normally, the EUT would be embedded in various types of mobile and stationary computing devices such as handheld and vehicle mounted data terminals during operation. The EUT was, therefore, placed on a tabletop during emissions testing to simulate the end user environment. The electrical rating of the EUT is 3.3 VDC +/- 5% With typical power consumption of 400 mA (1320mW) while in transmit mode, 180 mA (594mW) while in receive mode and 10 mA (33 mW) while in standby mode.

The sample was received on November 19, 2007 and tested on November 19, Novembeer 27, December 14 andDecember 19, 2007 and Janaury 14, January 15, January 25, January 28, February 28, and March 4, 2008. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Summit Data	SDC-CF10AG	Compact Flash	-	TWG-
Communications		Module		SDCCF10AG

Note: The EUT was tested using an extender card that allowed for the card to be outside of the host system.

ANTENNA SYSTEM

There were three antennas included in the testing:

Laird Centurion, m/n NanoBlade, pcb antenna, 3.8dBi @ 2.45GHz, 5.1dBi @ 5.25GHz, 4.5dBi @ 5.8GHz Volex, p/n VLX-51004-A, Omni, 2.3dBi @ 2.4GHz, 1.9dBi @ 5GHz

Larson, p/n R380.500.314, Omni, 1.6dBi @ 2.4GHz, 5dBi @ 5GHz

Note: The Volex Omni was used in the 2.4GHz band and the Larson Omni was used in the 5GHz bands. The Laird pcb antenna was also tested for both 2.4GHz and 5GHz.

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host system.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Man	ufacturer	Model	Description	Serial Number	FCC ID
Hewle	ett Packard	iPAQ	Handheld Computer	-	-

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Dort	Connected To	Cable(s)		
Port	Connected 10	Description	Shielded or Unshielded	Length(m)
iPAQ Power	AC Mains	2wire	Unshielded	1.5
Flash Module	iPAQ Module Port	-	-	-

EUT OPERATION

During emissions testing the EUT was configured to transmit at the Low, Middle, and High Channel. Note, the radio was unable to transmit continuously due to limitations of the host device.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on November 19, Novembeer 27, December 14 and December 19, 2007 and Janaury 14, January 15, January 25 and January 28, 2008 at the Elliott Laboratories Open Area Test Site OATS located at 684 West Maude Avenue, Sunnyvale, California. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

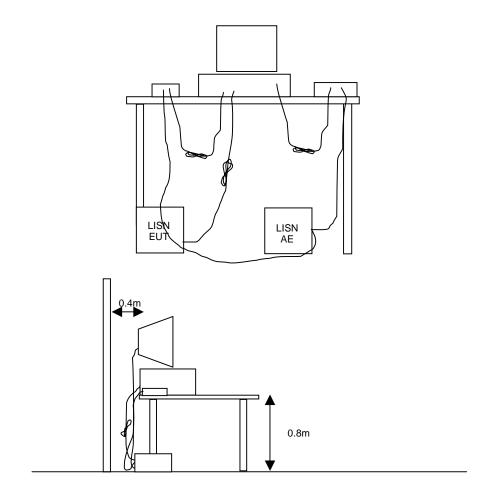
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

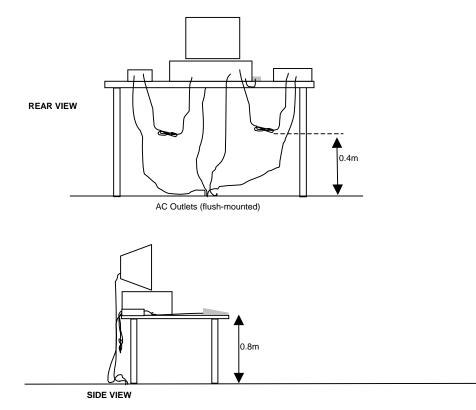

TEST PROCEDURES

EUT AND CABLE PLACEMENT

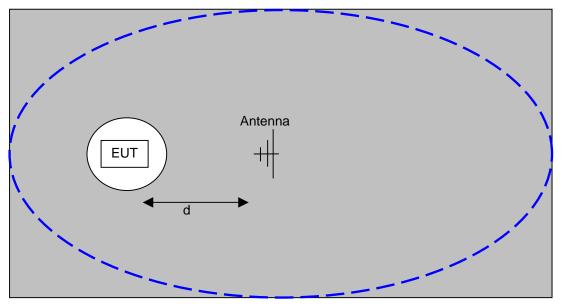
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

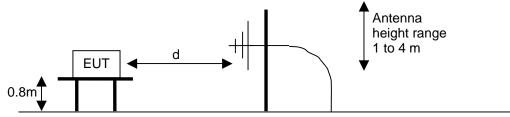
Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

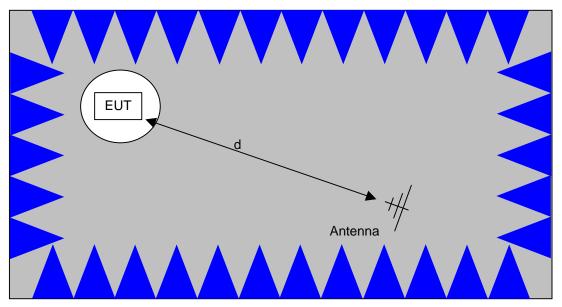

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

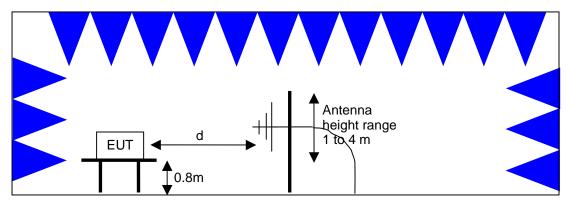

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.


When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.


Typical Test Configuration for Radiated Field Strength Measurements

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.



<u>Test Configuration for Radiated Field Strength Measurements</u> <u>OATS- Plan and Side Views</u>

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 $\begin{array}{lll} F_d &=& \text{Distance Factor in } dB \\ D_m &=& \text{Measurement Distance in meters} \\ D_s &=& \text{Specification Distance in meters} \end{array}$

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

 $R_c = R_r + F_d$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_s = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{3}$ microvolts per meter 3 where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data

3 Pages

Radiated Emissions, 30 - 26,	500 MHz, 11-Oct-07			
Engineer: Mehran Birgani Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	15-Nov-07
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	07-Jun-08
Hewlett Packard	High Pass filter, 3.5 GHz (Blu System)	P/N 84300-80038 (84125C)	1391	29-May-08
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue	8564E (84125C)	1393	17-Jan-08
Radiated Emissions, 30 - 26,	500 MHz 12-Oct-07			
Engineer: jcaizzi				
Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	15-Nov-07
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	07-Jun-08
Hewlett Packard	High Pass filter, 3.5 GHz (Blu System)	P/N 84300-80038 (84125C)	1391	29-May-08
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue	8564E (84125C)	1393	17-Jan-08
Radiated Emissions, 30 - 18,0 Engineer: Rafael Varelas	000 MHz, 31-Oct-07			
Manufacturer	Description	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487	24-May-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	15-Nov-07
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz - 22 GHz	8593EM	1319	18-May-08
Hewlett Packard	High Pass filter, 3.5 GHz (Blu System)	P/N 84300-80038 (84125C)	1391	29-May-08
Radiated Emissions, 30 - 12,0	000 MHz, 19-Nov-07			
Engineer: Joseph Cadigal				
<u>Manufacturer</u>	Description	<u>Model #</u>	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487	24-May-08
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue	8564E (84125C)	1393	17-Jan-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	06-Nov-08
	nd Spurious Emissions), 26-Nov-07			
Engineer: skhushzad				
	Description	Madal #	Accet #	Cal Due
Manufacturer Howlett Deckard	Description	Model #	<u>Asset #</u>	Cal Due
<u>Manufacturer</u> Hewlett Packard	<u>Description</u> SpecAn 30 Hz -40 GHz, SV (SA40) Red	<u>Model #</u> 8564E (84125C)	<u>Asset #</u> 1148	<u>Cal Due</u> 24-Aug-08
Hewlett Packard Radio Spurious Emissions, 2	SpecAn 30 Hz -40 GHz, SV (SA40) Red			
Hewlett Packard Radio Spurious Emissions, 3 Engineer: Suhaila Khushzad	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07	8564E (84125C)	1148	24-Aug-08
Hewlett Packard Radio Spurious Emissions, 2	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 Description	8564E (84125C) Model #	1148 Asset #	24-Aug-08
Hewlett Packard Radio Spurious Emissions, Engineer: Suhaila Khushzad <u>Manufacturer</u>	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 <u>Description</u> Antenna, Horn, 1-18 GHz	8564E (84125C)	1148	24-Aug-08
Hewlett Packard Radio Spurious Emissions, Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 Description	8564E (84125C) <u>Model #</u> 3115	1148 <u>Asset #</u> 487	24-Aug-08 <u>Cal Due</u> 24-May-08
Hewlett Packard Radio Spurious Emissions, 2 Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz	8564E (84125C) <u>Model #</u> 3115 8449B	1148 <u>Asset #</u> 487 870	24-Aug-08 <u>Cal Due</u> 24-May-08 08-Nov-08
Hewlett Packard Radio Spurious Emissions, j Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C) <u>Model #</u> 3115 8449B 8564E (84125C)	1148 Asset # 487 870 1148	24-Aug-08 <u>Cal Due</u> 24-May-08 08-Nov-08 24-Aug-08
Hewlett Packard Radio Spurious Emissions, ; Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard Rohde & Schwarz	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red Test Receiver, 0.009-2750 MHz	8564E (84125C) <u>Model #</u> 3115 8449B 8564E (84125C) ESN	Asset # 487 870 1148 1332	24-Aug-08 <u>Cal Due</u> 24-May-08 08-Nov-08 24-Aug-08 21-Dec-07
Hewlett Packard Radio Spurious Emissions, ; Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard Rohde & Schwarz EMCO EMCO EMCO Radio Spurious Emissions, 1	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red Test Receiver, 0.009-2750 MHz Log Periodic Antenna, 0.2-2 GHz Biconical Antenna, 30-300 MHz	Model # 3115 8449B 8564E (84125C) ESN 3148	1148 <u>Asset #</u> 487 870 1148 1332 1404	24-Aug-08 24-May-08 08-Nov-08 24-Aug-08 21-Dec-07 30-Mar-08
Hewlett Packard Radio Spurious Emissions, ; Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard Rohde & Schwarz EMCO EMCO Radio Spurious Emissions, 1 Engineer: Suhaila Khushzad	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red Test Receiver, 0.009-2750 MHz Log Periodic Antenna, 0.2-2 GHz Biconical Antenna, 30-300 MHz	Model # 3115 8449B 8564E (84125C) ESN 3148 3110B	Asset # 487 870 1148 1332 1404 1497	24-Aug-08 24-May-08 08-Nov-08 24-Aug-08 21-Dec-07 30-Mar-08 03-Jul-08
Hewlett Packard Radio Spurious Emissions, ; Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard Rohde & Schwarz EMCO EMCO Radio Spurious Emissions, 1 Engineer: Suhaila Khushzad <u>Manufacturer</u>	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red Test Receiver, 0.009-2750 MHz Log Periodic Antenna, 0.2-2 GHz Biconical Antenna, 30-300 MHz 1-Dec-07 Description	B564E (84125C) Model # 3115 8449B 8564E (84125C) ESN 3148 3110B	1148 Asset # 487 870 1148 1332 1404 1497	24-Aug-08 24-May-08 08-Nov-08 24-Aug-08 21-Dec-07 30-Mar-08 03-Jul-08
Hewlett Packard Radio Spurious Emissions, ; Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard Rohde & Schwarz EMCO EMCO Radio Spurious Emissions, 1 Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red Test Receiver, 0.009-2750 MHz Log Periodic Antenna, 0.2-2 GHz Biconical Antenna, 30-300 MHz 1-Dec-07 Description Antenna, Horn, 1-18 GHz (SA40-Red)	Model # 3115 8449B 8564E (84125C) ESN 3148 3110B	1148 Asset # 487 870 1148 1332 1404 1497 Asset # 1142	24-Aug-08 24-May-08 08-Nov-08 24-Aug-08 21-Dec-07 30-Mar-08 03-Jul-08 Cal Due 07-Jun-08
Hewlett Packard Radio Spurious Emissions, ; Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard Rohde & Schwarz EMCO EMCO Radio Spurious Emissions, 1 Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red Test Receiver, 0.009-2750 MHz Log Periodic Antenna, 0.2-2 GHz Biconical Antenna, 30-300 MHz 1-Dec-07 Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue	Model # 3115 8449B 8564E (84125C) ESN 3148 3110B	Asset # 487 870 1148 1332 1404 1497 Asset # 1142 1393	24-Aug-08 24-May-08 08-Nov-08 24-Aug-08 21-Dec-07 30-Mar-08 03-Jul-08 03-Jul-08 07-Jun-08 17-Jan-08
Hewlett Packard Radio Spurious Emissions, ; Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard Rohde & Schwarz EMCO EMCO Radio Spurious Emissions, 1 Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red Test Receiver, 0.009-2750 MHz Log Periodic Antenna, 0.2-2 GHz Biconical Antenna, 30-300 MHz 1-Dec-07 Description Antenna, Horn, 1-18 GHz (SA40-Red)	Model # 3115 8449B 8564E (84125C) ESN 3148 3110B	1148 Asset # 487 870 1148 1332 1404 1497 Asset # 1142	24-Aug-08 24-May-08 08-Nov-08 24-Aug-08 21-Dec-07 30-Mar-08 03-Jul-08 Cal Due 07-Jun-08
Hewlett Packard Radio Spurious Emissions, ; Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard Rohde & Schwarz EMCO EMCO Radio Spurious Emissions, 1 Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red Test Receiver, 0.009-2750 MHz Log Periodic Antenna, 0.2-2 GHz Biconical Antenna, 30-300 MHz 1-Dec-07 Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue Microwave Preamplifier, 1-26.5GHz	Model # 3115 8449B 8564E (84125C) ESN 3148 3110B	Asset # 487 870 1148 1332 1404 1497 Asset # 1142 1393	24-Aug-08 24-May-08 08-Nov-08 24-Aug-08 21-Dec-07 30-Mar-08 03-Jul-08 03-Jul-08 07-Jun-08 17-Jan-08
Hewlett Packard Radio Spurious Emissions, ; Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard Rohde & Schwarz EMCO EMCO Radio Spurious Emissions, 1 Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red Test Receiver, 0.009-2750 MHz Log Periodic Antenna, 0.2-2 GHz Biconical Antenna, 30-300 MHz 1-Dec-07 Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue Microwave Preamplifier, 1-26.5GHz 000 MHz, 12-Dec-07	Model # 3115 8449B 8564E (84125C) ESN 3148 3110B	1148 Asset # 487 870 1148 1332 1404 1497 Asset # 1142 1393 1780	24-Aug-08 24-May-08 08-Nov-08 24-Aug-08 21-Dec-07 30-Mar-08 03-Jul-08 03-Jul-08 07-Jun-08 17-Jan-08 06-Nov-08
Hewlett Packard Radio Spurious Emissions, ; Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard Rohde & Schwarz EMCO EMCO Radio Spurious Emissions, 1 Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard Hewlett Packard Radiated Emissions, 30 - 40,0 Engineer: Mehran Birgani <u>Manufacturer</u>	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red Test Receiver, 0.009-2750 MHz Log Periodic Antenna, 0.2-2 GHz Biconical Antenna, 30-300 MHz 1-Dec-07 Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue Microwave Preamplifier, 1-26.5GHz 000 MHz, 12-Dec-07 Description	Model # 3115 8449B 8564E (84125C) ESN 3148 3110B Model # 3115 8564E (84125C) ESN 3148 3110B Model # 3115 8564E (84125C) 8449B	1148 Asset # 487 870 1148 1332 1404 1497 Asset # 1142 1393 1780 Asset #	24-Aug-08 24-Aug-08 24-May-08 08-Nov-08 24-Aug-08 21-Dec-07 30-Mar-08 03-Jul-08 03-Jul-08 07-Jun-08 17-Jan-08 06-Nov-08 Cal Due
Hewlett Packard Radio Spurious Emissions, ; Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard Rohde & Schwarz EMCO EMCO Radio Spurious Emissions, 1 Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Radiated Emissions, 30 - 40,0 Engineer: Mehran Birgani <u>Manufacturer</u> EMCO	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red Test Receiver, 0.009-2750 MHz Log Periodic Antenna, 0.2-2 GHz Biconical Antenna, 30-300 MHz 1-Dec-07 Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue Microwave Preamplifier, 1-26.5GHz 000 MHz, 12-Dec-07 Description Antenna, Horn, 1-18 GHz	Model # 3115 8449B 8564E (84125C) ESN 3148 3110B Model # 3115 8564E (84125C) ESN 3148 3110B Model # 3115 8564E (84125C) 8449B	1148 Asset # 487 870 1148 1332 1404 1497 Asset # 1142 1393 1780 Asset # 487	24-Aug-08 <u>Cal Due</u> 24-May-08 08-Nov-08 24-Aug-08 21-Dec-07 30-Mar-08 03-Jul-08 <u>Cal Due</u> 07-Jun-08 17-Jan-08 06-Nov-08 <u>Cal Due</u> 24-May-08
Hewlett Packard Radio Spurious Emissions, ; Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard Rohde & Schwarz EMCO EMCO Radio Spurious Emissions, 1 Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard Hewlett Packard Radiated Emissions, 30 - 40,0 Engineer: Mehran Birgani <u>Manufacturer</u> EMCO Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red Test Receiver, 0.009-2750 MHz Log Periodic Antenna, 0.2-2 GHz Biconical Antenna, 30-300 MHz 1-Dec-07 Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue Microwave Preamplifier, 1-26.5GHz 000 MHz, 12-Dec-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz	Model # 3115 8449B 8564E (84125C) ESN 3148 3110B Model # 3115 8564E (84125C) ESN 3148 3110B Model # 3115 8564E (84125C) 8449B	1148 Asset # 487 870 1148 1332 1404 1497 Asset # 1142 1393 1780 Asset # 487 870	24-Aug-08 <u>Cal Due</u> 24-May-08 08-Nov-08 24-Aug-08 21-Dec-07 30-Mar-08 03-Jul-08 <u>Cal Due</u> 07-Jun-08 17-Jan-08 06-Nov-08 <u>Cal Due</u> 24-May-08 08-Nov-08
Hewlett Packard Radio Spurious Emissions, ; Engineer: Suhaila Khushzad Manufacturer EMCO Hewlett Packard Hewlett Packard Rohde & Schwarz EMCO EMCO Radio Spurious Emissions, 1 Engineer: Suhaila Khushzad Manufacturer EMCO Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red Test Receiver, 0.009-2750 MHz Log Periodic Antenna, 0.2-2 GHz Biconical Antenna, 30-300 MHz 1-Dec-07 Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue Microwave Preamplifier, 1-26.5GHz D00 MHz, 12-Dec-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red	Model # 3115 8449B 8564E (84125C) ESN 3148 3110B Model # 3115 8564E (84125C) ESN 3148 3110B Model # 3115 8564E (84125C) 8449B Model # 3115 8449B 8564E (84125C)	1148 Asset # 487 870 1148 1332 1404 1497 Asset # 1142 1393 1780 Asset # 487 870 1148	24-Aug-08 <u>Cal Due</u> 24-May-08 08-Nov-08 24-Aug-08 21-Dec-07 30-Mar-08 03-Jul-08 <u>Cal Due</u> 07-Jun-08 17-Jan-08 06-Nov-08 <u>Cal Due</u> 24-May-08 08-Nov-08 24-Aug-08
Hewlett Packard Radio Spurious Emissions, 3 Engineer: Suhaila Khushzad Manufacturer EMCO Hewlett Packard Hewlett Packard Rohde & Schwarz EMCO EMCO Radio Spurious Emissions, 1 Engineer: Suhaila Khushzad Manufacturer EMCO Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red Test Receiver, 0.009-2750 MHz Log Periodic Antenna, 0.2-2 GHz Biconical Antenna, 30-300 MHz 1-Dec-07 Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue Microwave Preamplifier, 1-26.5GHz D00 MHz, 12-Dec-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red Antenna, Horn, 18-26.5 GHz (SA40-Red)	Model # 3115 8449B 8564E (84125C) ESN 3148 3110B Model # 3115 8564E (84125C) ESN 3148 3110B Model # 3115 8564E (84125C) 8449B Model # 3115 8449B 8564E (84125C) 3160-09 (84125C)	1148 Asset # 487 870 1148 1332 1404 1497 Asset # 1142 1393 1780 Asset # 487 870 1148 150	24-Aug-08 <u>Cal Due</u> 24-May-08 08-Nov-08 24-Aug-08 21-Dec-07 30-Mar-08 03-Jul-08 <u>Cal Due</u> 07-Jun-08 17-Jan-08 06-Nov-08 <u>Cal Due</u> 24-May-08 08-Nov-08 24-Aug-08 05-Nov-08
Hewlett Packard Radio Spurious Emissions, ; Engineer: Suhaila Khushzad Manufacturer EMCO Hewlett Packard Hewlett Packard Rohde & Schwarz EMCO EMCO Radio Spurious Emissions, 1 Engineer: Suhaila Khushzad Manufacturer EMCO Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red 27-Nov-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red Test Receiver, 0.009-2750 MHz Log Periodic Antenna, 0.2-2 GHz Biconical Antenna, 30-300 MHz 1-Dec-07 Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue Microwave Preamplifier, 1-26.5GHz D00 MHz, 12-Dec-07 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red	Model # 3115 8449B 8564E (84125C) ESN 3148 3110B Model # 3115 8564E (84125C) ESN 3148 3110B Model # 3115 8564E (84125C) 8449B Model # 3115 8449B 8564E (84125C)	1148 Asset # 487 870 1148 1332 1404 1497 Asset # 1142 1393 1780 Asset # 487 870 1148	24-Aug-08 <u>Cal Due</u> 24-May-08 08-Nov-08 24-Aug-08 21-Dec-07 30-Mar-08 03-Jul-08 <u>Cal Due</u> 07-Jun-08 17-Jan-08 06-Nov-08 <u>Cal Due</u> 24-May-08 08-Nov-08 24-Aug-08

Radio Spurious Emissions, 1			
Engineer: Suhaila Khushzad			
<u>Manufacturer</u>	Description	<u>Model #</u>	<u>Asset # Cal Due</u>
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142 07-Jun-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780 06-Nov-08
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue	8564E (84125C)	1393 17-Jan-08
Radio Spurious Emissions, 1			
Engineer: Suhaila Khushzad			
<u>Manufacturer</u>	Description	<u>Model #</u>	Asset # Cal Due
EMCO	Antenna, Horn, 1-18GHz	3115	868 26-Apr-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870 08-Nov-08
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Aug-08
Radiated Emissions, 30 - 16,	000 MHz, 20-Dec-07		
Engineer: Mehran Birgani			
Manufacturer	Description	Model #	Asset # Cal Due
EMCO	Antenna, Horn, 1-18GHz	3115	868 26-Apr-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870 08-Nov-08
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Aug-08
Conducted Emissions - AC F	Power Ports, 21-Dec-07		
Engineer: Rafael Varelas			
Manufacturer	Description	<u>Model #</u>	Asset # Cal Due
Elliott Laboratories	LISN, FCC / CISPR	LISN-4, OATS	362 18-Jul-08
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	812 05-Feb-08
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Aug-08
Rohde & Schwarz	Test Receiver, 9 kHz-2750 MHz	ESCS 30	1337 21-Sep-08
Radio Antenna Port (Power a	and Spurious Emissions), 07-Jan-08		
Engineer: Suhaila Khushzad			
Manufacturer	Description	<u>Model #</u>	Asset # Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487 24-May-08
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Aug-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780 06-Nov-08
Radio Spurious Emissions,			
Engineer: Suhaila Khushzad			
<u>Manufacturer</u>	Description	<u>Model #</u>	Asset # Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487 24-May-08
Hewlett Packard	EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	8595EM	780 09-Oct-08
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Aug-08
•	and Spurious Emissions), 14-Jan-08		
Engineer: jcaizzi			
<u>Manufacturer</u>	Description	<u>Model #</u>	Asset # Cal Due
Hewlett Packard	EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	8595EM	787 21-Feb-08
Radiated Emissions, 30 - 26,	500 MHz, 18-Jan-08		
Engineer: jcaizzi	-		
Manufacturer	Description	Model #	Asset # Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487 24-May-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870 08-Nov-08
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Aug-08
Hewlett Packard	High Pass filter, 8.2 GHz	P/N 84300-80039	1156 29-May-08
•	and Spurious Emissions), 24-Jan-08		
Engineer: Mehran Birgani			
<u>Manufacturer</u>	Description	Model #	Asset # Cal Due
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630 25-Jan-08

Conducted Emissions - A	C Power Ports, 28-Jan-08			
Engineer: Peter Sales				
<u>Manufacturer</u>	Description	Model #	Asset # C	Cal Due
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	215 29	9-Mar-08
Elliott Laboratories	LISN, FCC / CISPR	LISN-3, OATS	304 18	8-Jul-08
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz-26.5 GHz	8593EM	1141 29	9-Nov-08
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	1398 05	5-Feb-08
Radiated Emissions, 1000	9 - 40000 MHz, 04-Mar-08			
Engineer: Pete Sales				
Manufacturer	Description	<u>Model #</u>		Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115		4-May-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870 08	3-Nov-08
Hewlett Packard	Head (Inc W1-W4, 1143, 1144) Red	84125C	1145 16	6-Nov-08
Hewlett Packard	Spectrum Analyzer 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24	4-Aug-08
EMCO	Antenna, Horn, 18-26.5 GHz (SA40-Red)	3160-09 (84125C)	1150 05	5-Nov-08
EMCO	Antenna, Horn, 26.5-40 GHz (SA40-Red)	3160-10 (84125C)	1151 05	5-Nov-08

EXHIBIT 2: Test Measurement Data

79 Pages

EMC Test Data

Client:	Summit Data Communications	Job Number:	J68959
Model:	SDC-CF10AG 802.11a/g Compact Flash Module with	T-Log Number:	T69413
	Antenna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Emissions Standard(s):	15.247 / 15.E / RSS-210	Class:	-
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Summit Data Communications

Model

SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors

Date of Last Test: 4/25/2008

EMC Test Data

Client:	Summit Data Communications	Job Number:	J68959
Model:	SDC-CF10AG 802.11a/g Compact Flash Module with	T-Log Number:	T69413
	Antenna Connectors	Account Manger:	Dean Eriksen
Contact:	Ron Seide		
Emissions Standard(s):	15.247 / 15.E / RSS-210	Class:	-
Immunity Standard(s):	-	Environment:	-

EUT INFORMATION

The following information was collected during the test session(s).

General Description

The EUT is an 802.11a/g compliant wireless LAN radio module which is designed to provide wireless local area networking connectivity. Normally, the EUT would be embedded in various types of mobile and stationary computing devices such as handheld and vehicle mounted data terminals during operation. The EUT was, therefore, placed on a tabletop during emissions testing to simulate the end user environment. The electrical rating of the EUT is 3.3 VDC +/- 5% With typical power consumption of 400 mA (1320mW) while in transmit mode, 180 mA (594mW) while in receive mode and 10 mA (33 mW) while in standby mode.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Summit Data	SDC-CF10AG 802.11a/g	Compact Flash Module	TBP	TWG-SDCCF10AG
Communications	Compact Flash Module			
	with Antenna Connectors			

EUT Antenna (Intentional Radiators Only)

There were three antennas included in the testing: Laird Centurion, m/n NanoBlade, pcb antenna, 3.8dBi @ 2.45GHz, 5.1dBi @ 5.25GHz, 4.5dBi @ 5.8GHz Volex, p/n VLX-51004-A, Omni, 2.3dBi @ 2.4GHz, 1.9dBi @ 5GHz Larson, p/n R380.500.314, Omni, 1.6dBi @ 2.4GHz, 5dBi @ 5GHz

Note: The Volex Omni was used in the 2.4GHz band and the Larson Omni was used in the 5GHz bands. The Laird pcb antenna was also tested for both 2.4GHz and 5GHz.

The antenna connects to the EUT via a non-standard antenna connector, thereby meeting the requirements of FCC 15.203.

EUT Enclosure

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

EMC Test Data

Client	: Summit Data Communicati	ons	Job Number:	J68959
Model	: SDC-CF10AG 802.11a/g C	Compact Flash Module with	T-Log Number:	T69413
	Antenna Connectors		Account Manger:	Dean Eriksen
Contact	: Ron Seide		*	
Emissions Standard(s)	: 15.247 / 15.E / RSS-210		Class:	
Immunity Standard(s)	: -		Environment:	-
		st Configuration		
	L	ocal Support Equipme	nt	
Manufacturer	Model	Description	Serial Number	FCC ID
Inaliaracianci	INIUUEI	DESCHPTION		
Manufacturer	-	emote Support Equipme	-	- FCC ID
-	- Re	emote Support Equipme Description Handheld Computer	- ent	- FCC ID -
- Manufacturer Hewlett Packard	- Re Model iPAQ	emote Support Equipme	- ent Serial Number -	- FCC ID -
- Manufacturer	- Re Model	emote Support Equipmo Description Handheld Computer Cabling and Ports	- ent Serial Number - Cable(s)	-
- Manufacturer Hewlett Packard	- Re Model iPAQ	emote Support Equipme Description Handheld Computer	- ent Serial Number -	-

Elliott EMC Test Data Job Number: J68959 Client: Summit Data Communications T-Log Number: T69413 Model: SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors Account Manager: Dean Eriksen Contact: Ron Seide Standard: 15.247 / 15.E / RSS-210 Class: N/A **RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions** Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 3/5/2008 Config. Used: 1 Config Change: None Test Engineer: Peter Sales Test Location: SVOATS #1 EUT Voltage: 120V/60Hz General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 7°C Rel. Humidity: 78 % Summary of Results TX Mode Power Setting Run #1 Channel Pass/Fail Margin 51.1dBµV/m (358.9µV/m) @ Full а 149 Pass 1a 11491.5MHz (-2.9dB) 48.8dBµV/m (275.4µV/m) @ Full 1b а 157 Pass 11569.7MHz (-5.2dB) 48.4dBµV/m (263.0µV/m) @ 1c а 161 Full Pass 17415.3MHz (-5.6dB) Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. All tests will be performed in data rate of 54Mbps. Average band edge plots are for reference only, final measurements Note: made with VB=1khz to avoid desensitization at 10Hz which reduced signal level by 6.6dB.

EMC Test Data

Client:	Summit Data Communications	Job Number:	J68959
Model	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
MOUEI.	SDC-CFTUAG 602. Tra/g Compact Flash would with Antenna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run #1: Tx Radiated Spurious Emissions, 30 - 40000 MHz. 5725-5850 MHz Band

Run #1a: Tx Radiated Spurious Emissions, Low Channel @ 5745 MHz, Full Power settting,Laird PCB Antenna with 5.1dBi, Rate = 54Mbps

Other Spurious Radiated Emissions:

Level	Pol	15.209	9/15E	Detector	Azimuth	Height	Comments
dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
51.1	V	54.0	-2.9	AVG	88	1.5	
49.5	Н	54.0	-4.5	AVG	105	1.5	
48.9	V	54.0	-5.1	AVG	164	1.8	
58.6	V	74.0	-15.4	PK	88	1.5	
56.4	Н	74.0	-17.6	PK	105	1.5	
54.3	V	74.0	-19.7	PK	164	1.8	
	dBμV/m 51.1 49.5 48.9 58.6 56.4	dBμV/m V/H 51.1 V 49.5 H 48.9 V 58.6 V 56.4 H	dBµV/m V/H Limit 51.1 V 54.0 49.5 H 54.0 48.9 V 54.0 58.6 V 74.0 56.4 H 74.0	dBμV/m V/H Limit Margin 51.1 V 54.0 -2.9 49.5 H 54.0 -4.5 48.9 V 54.0 -5.1 58.6 V 74.0 -15.4 56.4 H 74.0 -17.6	dBμV/m V/H Limit Margin Pk/QP/Avg 51.1 V 54.0 -2.9 AVG 49.5 H 54.0 -4.5 AVG 48.9 V 54.0 -5.1 AVG 58.6 V 74.0 -15.4 PK 56.4 H 74.0 -17.6 PK	dBμV/m V/H Limit Margin Pk/QP/Avg degrees 51.1 V 54.0 -2.9 AVG 88 49.5 H 54.0 -4.5 AVG 105 48.9 V 54.0 -5.1 AVG 164 58.6 V 74.0 -15.4 PK 88 56.4 H 74.0 -17.6 PK 105	dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 51.1 V 54.0 -2.9 AVG 88 1.5 49.5 H 54.0 -4.5 AVG 105 1.5 48.9 V 54.0 -5.1 AVG 164 1.8 58.6 V 74.0 -15.4 PK 88 1.5 56.4 H 74.0 -17.6 PK 105 1.5

Run #1b: Tx Radiated Spurious Emissions, Middle Channel @ 5785 MHz, Full Power settting,Laird PCB Antenna with 5.1dBi, Rate = 54Mbps

Other Spurious Radiated Emissions:

other opund		Enlissions						
Frequency	Level	Pol	15.209	9/15E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
11569.670	48.8	V	54.0	-5.2	AVG	66	1.0	
17354.140	48.2	V	54.0	-5.8	AVG	149	1.0	
11569.640	46.8	Н	54.0	-7.2	AVG	110	1.6	
11569.670	55.8	V	74.0	-18.2	PK	66	1.0	
17354.140	54.6	V	74.0	-19.4	PK	149	1.0	
11569.640	53.8	Н	74.0	-20.2	PK	110	1.6	

Run #1c: Tx Radiated Spurious Emissions, High Channel @ 5805 MHz, Full Power settting,Laird PCB Antenna with 5.1dBi, Rate = 54Mbps

Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9/15E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
17415.310	48.4	Н	54.0	-5.6	AVG	25	1.0	
11609.510	44.6	Н	54.0	-9.4	AVG	67	1.0	
11608.750	44.5	V	54.0	-9.5	AVG	49	1.0	
17415.310	53.4	Н	74.0	-20.6	PK	25	1.0	
11608.750	49.4	V	74.0	-24.6	PK	49	1.0	
11609.510	49.1	Н	74.0	-24.9	PK	67	1.0	

Elliott EMC Test Data Job Number: J68959 Client: Summit Data Communications T-Log Number: T69413 Model: SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors Account Manager: Dean Eriksen Contact: Ron Seide Standard: 15.247 / 15.E / RSS-210 Class: N/A RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Config. Used: 1 Date of Test: 3/5/2008 Config Change: None Test Engineer: Peter Sales Test Location: SVOATS #1 EUT Voltage: 120V/60Hz General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 7 °C Rel. Humidity: 78 % Summary of Results Run #1 TX Mode Channel Power Setting Pass/Fail Margin 52.1dBµV/m (402.7µV/m) @ 149 Full Pass 1a а 11489.9MHz (-1.9dB) 48.7dBµV/m (272.3µV/m) @ Full 1b а 157 Pass 11569.8MHz (-5.3dB) 48.3dBµV/m (260.0µV/m) @ а 161 Full Pass 1c 17415.0MHz (-5.7dB) Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. All tests will be performed in data rate of 54Mbps. Average band edge plots are for reference only, final measurements Note: made with VB=1khz to avoid desensitization at 10Hz which reduced signal level by 6.6dB

EMC Test Data

Client:	Summit Data Communications	Job Number:	J68959
Model	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
MOUEI.	SDC-CFTUAG 602. Tra/g Compact Flash would with Antenna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run #1: Tx Radiated Spurious Emissions, 30 - 40000 MHz. 5725-5850 MHz Band

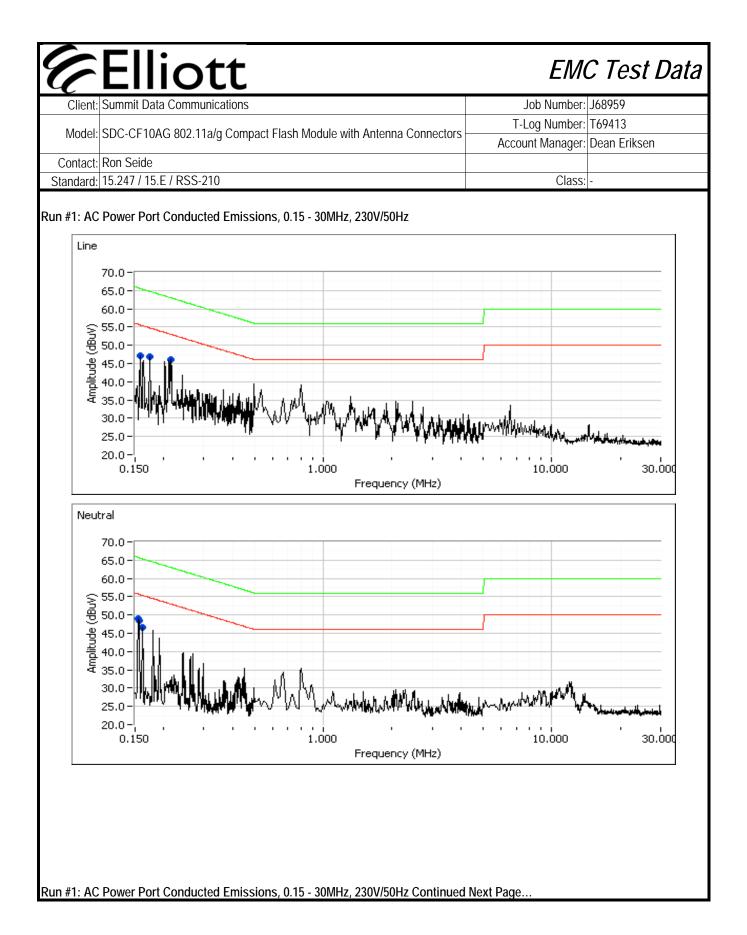
Run #1a: Tx Radiated Spurious Emissions, Low Channel @ 5745 MHz, Full Power settting, Flat Omni Antenna with 5.0dBi, Rate = 54Mbps

Other Spurious Radiated Emissions:

		Enneelenet						
Frequency	Level	Pol	15.209	9/15E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
11489.890	52.1	V	54.0	-1.9	AVG	97	1.6	
17234.660	48.9	V	54.0	-5.1	AVG	165	1.0	
11489.500	45.7	Н	54.0	-8.3	AVG	112	1.0	
11489.890	59.7	V	74.0	-14.3	PK	97	1.6	
17234.660	55.2	V	74.0	-18.8	PK	165	1.0	
11489.500	52.2	Н	74.0	-21.8	PK	112	1.0	

Run #1b: Tx Radiated Spurious Emissions, Middle Channel @ 5785 MHz, Full Power settting, Flat Omni Antenna with 5.0dBi, Rate = 54Mbps

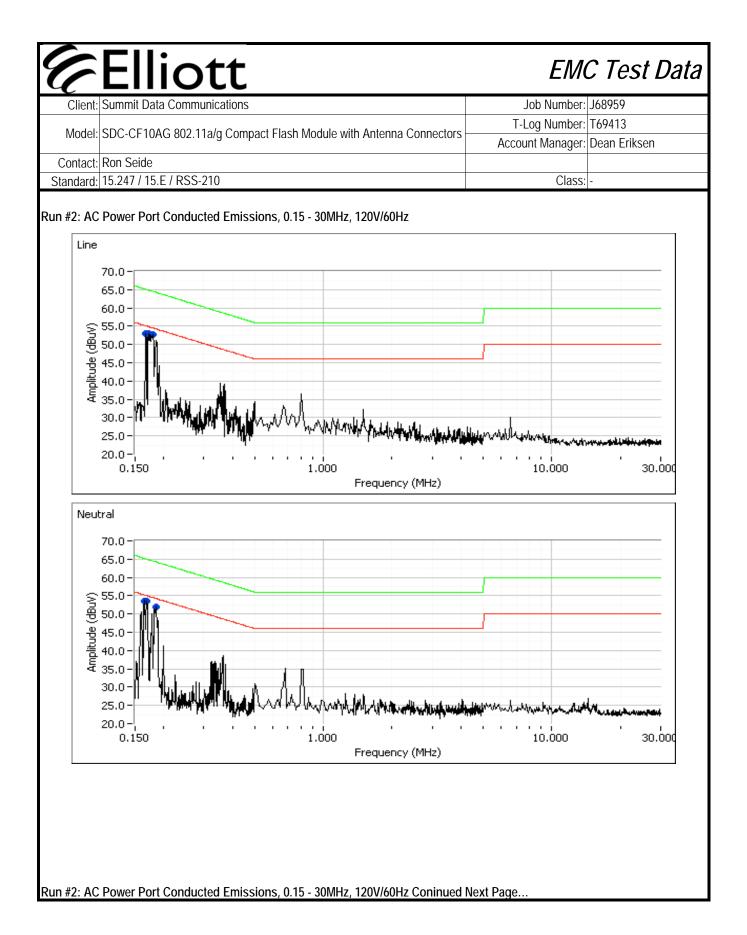
Other Spurious Radiated Emissions:


other opund		Enlissions						
Frequency	Level	Pol	15.209	9/15E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
11569.750	48.7	V	54.0	-5.3	AVG	59	1.1	
17354.460	48.1	V	54.0	-5.9	AVG	17	1.0	
11568.780	44.6	Н	54.0	-9.4	AVG	100	1.0	
11569.750	55.3	V	74.0	-18.7	PK	59	1.1	
17354.460	53.6	V	74.0	-20.4	PK	17	1.0	
11568.780	50.4	Н	74.0	-23.6	PK	100	1.0	

Run #1c: Tx Radiated Spurious Emissions, High Channel @ 5805 MHz, Full Power settting, Flat Omni Antenna with 5.0dBi, Rate = 54Mbps

Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.20	9/15E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
17414.950	48.3	Н	54.0	-5.7	AVG	155	1.0	
11609.670	44.6	Н	54.0	-9.4	AVG	281	1.0	
11611.230	44.5	V	54.0	-9.5	AVG	255	1.0	
17414.950	53.9	Н	74.0	-20.1	PK	155	1.0	
11611.230	50.0	V	74.0	-24.0	PK	255	1.0	
11609.670	48.9	Н	74.0	-25.1	PK	281	1.0	


Model: SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors T-Log Number: T69413 Contact: Ron Seide account Manager: Dean E Standard: 15.247 / 15.E / RSS-210 Class: - Contact: Ron Seide Standard: 15.247 / 15.E / RSS-210 Conducted Emissions - Power Ports Conducted Emissions - Power Ports Standard: 15.247 / 15.E / RSS-210 Conducted Emissions - Power Ports Conducted Emissions - Power Ports Standard: 12.247 / 15.E / RSS-210 Class: - Conducted Emissions - Power Ports Conducted Emissions - Power Ports Dispective: The objective of this test session is to perform final qualification testing of the EUT with respect to specification listed above. Date of Test: 1/28/2008 22:01 Config. Used: 1 Test Engineer: Peter Sales Config Change: None Test Location: SVOATS #2 EUT Voltage: 120V/60Hz, 230V/50Hz General Test Configuration Temperature: 4 °C Rel. Humidity: 76 %	Client: Summit Data Communications				Job Numbor	160050		
Model: SDC-CF 10AG 802.11a/g Compact Flash Module with Antenna Connectors Account Manager: Dean E Contact: Ron Seide Image: Contact: Account Manager: Dean E Standard: 15.247 / 15.E / RSS-210 Class: - Image: Class: - Contact: Ron Seide Conducted Emissions - Power Ports Class: - Conducted Emissions - Power Ports Discretion Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to specification listed above. Date of Test: 1/28/2008 22:01 Config. Used: 1 Test Engineer: Peter Sales Config Change: None Test Location: SVOATS #2 EUT Voltage: 120V/60Hz, 230V/50Hz General Test Configuration The EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. Ambient Conditions: Temperature: 4 °C Rel. Humidity: 76 %				Т				
Standard: 15.247 / 15.E / RSS-210 Class: - Conducted Emissions - Power Ports Conducted Emissions - Power Ports Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect t specification listed above. Date of Test: 1/28/2008 22:01 Config. Used: 1 Test Engineer: Peter Sales Config Change: None Test Location: SVOATS #2 EUT Voltage: 120V/60Hz, 230V/50Hz General Test Configuration The EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. Ambient Conditions: Temperature: 4 °C Rel. Humidity: 76 %	vlodel: SDC-CF10AG 802.11a/g Compa	ict Flash Module with	h Antenna Connectors		•			
Conducted Emissions - Power Ports Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to specification listed above. Date of Test: 1/28/2008 22:01 Config. Used: 1 Test Engineer: Peter Sales Config Change: None Test Location: SVOATS #2 EUT Voltage: 120V/60Hz, 230V/50Hz General Test Configuration The EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. Ambient Conditions: Temperature: 4 °C Rel. Humidity: 76 %								
Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to specification listed above. Date of Test: 1/28/2008 22:01 Config. Used: 1 Test Engineer: Peter Sales Config Change: None Test Location: SVOATS #2 EUT Voltage: 120V/60Hz, 230V/50Hz Seneral Test Configuration he EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. Ambient Conditions: Temperature: 4 °C Rel. Humidity: 76 %	ndard: 15.247 / 15.E / RSS-210				Class:	-		
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to specification listed above. Date of Test: 1/28/2008 22:01 Config. Used: 1 Test Engineer: Peter Sales Config Change: None Test Location: SVOATS #2 EUT Voltage: 120V/60Hz, 230V/50Hz General Test Configuration The EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. Ambient Conditions: Temperature: 4 °C Rel. Humidity: 76 %	Cond	lucted Emis	ssions - Pow	er Por	ts			
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to specification listed above. Date of Test: 1/28/2008 22:01 Config. Used: 1 Test Engineer: Peter Sales Config Change: None Test Location: SVOATS #2 EUT Voltage: 120V/60Hz, 230V/50Hz General Test Configuration The EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. Ambient Conditions: Temperature: 4 °C Rel. Humidity: 76 %	Specific Details							
Test Engineer: Peter Sales Config Change: None Test Location: SVOATS #2 EUT Voltage: 120V/60Hz, 230V/50Hz General Test Configuration Image: Peter Sales The EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. Image: Peter Sales Ambient Conditions: Temperature: 4 °C Rel. Humidity: 76 %	Objective: The objective of this		erform final qualification	testing of t	he EUT with re	espect to the		
Test Location: SVOATS #2 EUT Voltage: 120V/60Hz, 230V/50Hz General Test Configuration The EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. Ambient Conditions: Temperature: 4 °C Rel. Humidity: 76 %								
General Test Configuration The EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. Ambient Conditions: Temperature: 4 °C Rel. Humidity: 76 %								
		LUT Voltage.	Je. 1209/00H2, 2309/30H2					
Rel. Humidity: 76 %	UT was located on a wooden table, 40			I from the L	ISN.			
	ient Conditions:	•						
Summary of Results		Rel. Humidity:	76 %					
	mary of Results							
Run # Test Performed Limit Result Margin								
1 CE, AC Power, 230V/50Hz EN 55022 B Pass 43.1dBµV @ 0.215 (-19.9dB)	1 CE, AC Power,	, 230V/50Hz	EN 55022 B	Pass				
2 CE, AC Power, 120V/60Hz EN 55022 B Pass 55.6dBµV @ 0.167 (-9.5dB)		,120V/60Hz	EN 55022 B	Pass				

EMC Test Data

C	Elliott	EMC Test Data
Client:	Summit Data Communications	Job Number: J68959
Madal	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number: T69413
would.	SDC-CFT0AG 602. TTa/y Compact Flash Module with Antenna Connectors	Account Manager: Dean Eriksen
Contact:	Ron Seide	
Standard:	15.247 / 15.E / RSS-210	Class: -
Froquopey	Loval AC ENISSO22 P Detector Commonts	

Frequency	Level	AC	EN55	022 B	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
0.215	43.1	Line 1	63.0	-19.9	QP	
0.153	44.9	Neutral	65.8	-20.9	QP	
0.157	44.5	Neutral	65.6	-21.1	QP	
0.162	43.9	Neutral	65.4	-21.5	QP	
0.159	44.0	Line 1	65.5	-21.5	QP	
0.173	42.5	Line 1	64.8	-22.3	QP	
0.215	21.0	Line 1	53.0	-32.0	AVG	
0.157	17.6	Neutral	55.6	-38.0	AVG	
0.153	17.7	Neutral	55.8	-38.1	AVG	
0.159	17.2	Line 1	55.5	-38.3	AVG	
0.162	17.0	Neutral	55.4	-38.4	AVG	
0.173	16.2	Line 1	54.8	-38.6	AVG	

EMC Test Data

Ċ	Elliott	EM	C Test Data
Client:	Summit Data Communications	Job Number:	J68959
Madal	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
wouer.	SDC-CFTUAG 602. Tra/g Compact Flash would with Antenna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	-

Frequency	Level	AC	EN55	022 B	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
0.167	55.6	Line 1	65.1	-9.5	QP	
0.165	55.7	Neutral	65.2	-9.5	QP	
0.169	54.1	Neutral	65.0	-10.9	QP	
0.180	53.4	Line 1	64.5	-11.1	QP	
0.184	52.6	Neutral	64.3	-11.7	QP	
0.172	53.1	Line 1	64.9	-11.8	QP	
0.169	28.7	Neutral	55.0	-26.3	AVG	
0.165	28.7	Neutral	55.2	-26.5	AVG	
0.167	28.1	Line 1	55.1	-27.0	AVG	
0.184	27.1	Neutral	54.3	-27.2	AVG	
0.172	27.6	Line 1	54.9	-27.3	AVG	
0.180	27.0	Line 1	54.5	-27.5	AVG	

Client:Summit Data CommunicationsJob Number:J68959Model:SDC-CF10AG 802.11a/g Compact Flash Module with Antenna
ConnectorsT-Log Number:T69413Account Manager:Dean EriksenContact:Ron SeideCliass:N/A

RSS 210 and FCC 15.247 Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 12/14/2007 Test Engineer: Suhaila Khushzad Test Location: SVOATS # 2 Config. Used: 1 Config Change: None EUT Voltage: Powered from Host System

General Test Configuration

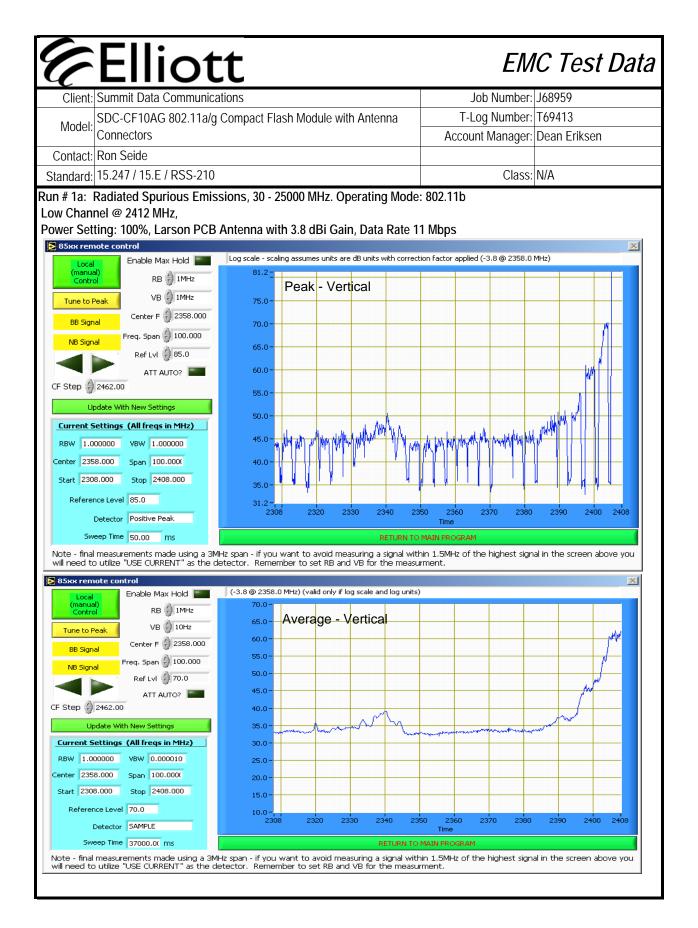
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or rou

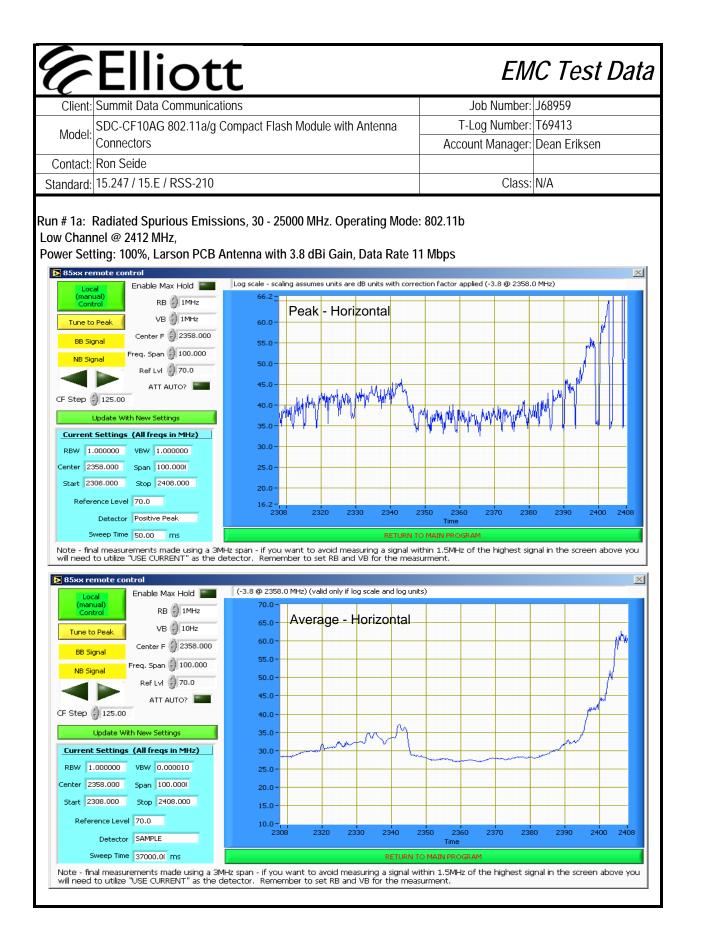
For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	11.7 °C
	Rel. Humidity:	56 %

Summary of Results

Sammary					
Run #1	TX Mode	Channel	Power Setting	Pass/Fail	Margin
10	h	1	Full	Daga	52.9dBµV/m (441.6µV/m) @
1a	b	I	Full	Pass	4824.3MHz (-1.1dB)
16	h	,	Full	Daga	52.4dBµV/m (416.9µV/m) @
1b	b	6	Full	Pass	4874.0MHz (-1.6dB)
1.	h	11	Full	Daga	53.2dBµV/m (457.1µV/m) @
1c	b	11	Full	Pass	7385.3MHz (-0.8dB)
9.0	a	1	Full	Daga	52.4dBµV/m (416.9µV/m) @
2a	g	I	Full	Pass	2390.0MHz (-1.6dB)
Эh	a	,	E.JI	Daga	44.6dBµV/m (169.8µV/m) @
2b	g	6	Full	Pass	12172.7MHz (-9.4dB)
90	a	11	Full	Dece	51.2dBµV/m (363.1µV/m) @
2c	g		FUII	Pass	2483.6MHz (-2.8dB)


Modifications Made During Testing


No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

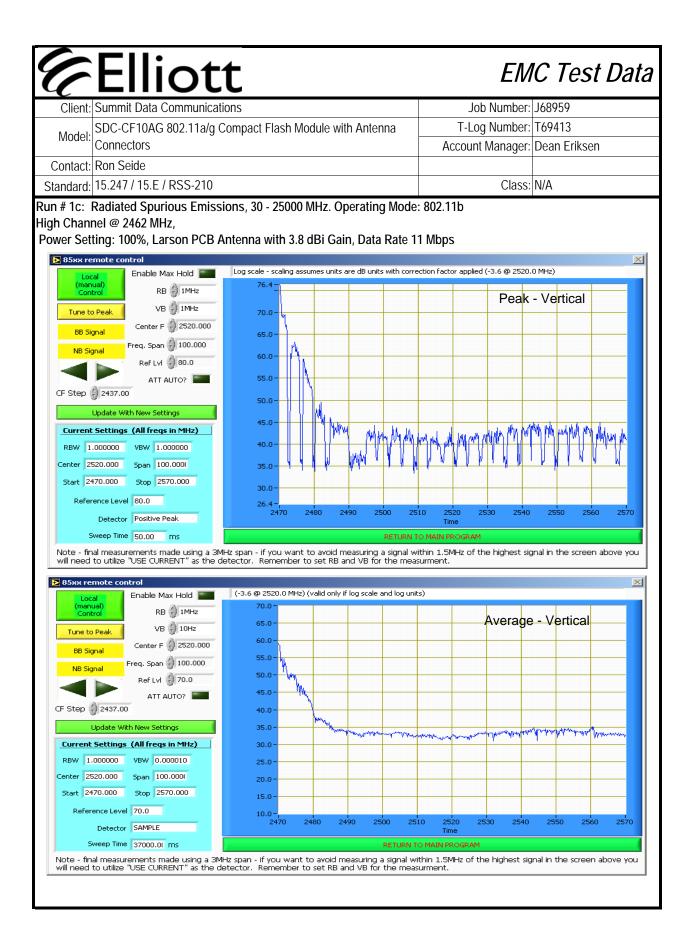
Data										
All tests will be performed in data rate of 11Mbps. Average band edge plots are for reference only, final measurements made with VB=1khz to avoid desensitization at 10Hz which reduced signal level by 5.6dB.										
Horizontal measurements were not taken due to previous test that showed vertical measurements were higher.										
Limit is -20dBc (Peak power measurement)										
ient)										
-										

Contact: Ron Seide Standard: 15.247 / 15 un # 1a: Radiated S ow Channel @ 2412 Power Setting: 100%	s 5.E / RSS 5purious 2 MHz,	5-210 Emissions		Module with <i>i</i>			og Number: nt Manager: Class:	Dean Eriksen
Standard: 15.247 / 15 2un # 1a: Radiated S Low Channel @ 2412 Power Setting: 100%	5.E / RSS Spurious 2 MHz,	Emission	5, 30 - 2500	0 MHz. Ope				
Standard: 15.247 / 15 Run # 1a: Radiated S Low Channel @ 2412 Power Setting: 100% Other Spurious Emise	5.E / RSS Spurious 2 MHz,	Emission	s, 30 - 2500	0 MHz. Opei			Class.	
Run # 1a: Radiated S Low Channel @ 2412 Power Setting: 100%	purious 2 MHz,	Emission	s, 30 - 2500	0 MHz. Oper			01035.	N/A
ow Channel @ 2412 ower Setting: 100%	2 MHz,				rating Mode	: 802.11b		
· ·	, Larson	PCB Ante			0			
other Spurious Emiss			nna with 3	.8 dBi Gain,	Data Rate 1	1 Mbps		
uller spullous Ellins:	cione							
requency Level	Pol	15,209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	oonintento	
824.250 52.9	V	54.0	-1.1	AVG	21	1.0	1	
234.420 49.5	Н	54.0	-4.5	AVG	252	1.5		
/233.920 47.6	V	54.0	-6.4	AVG	255	1.9		
4823.830 45.2	Н	54.0	-8.8	AVG	207	1.0		
9648.170 43.1	V	54.0	-10.9	AVG	235	1.0		
9634.750 39.8	H	54.0	-14.2	AVG	315	1.6		
824.250 59.2	V	74.0	-14.8	PK	21	1.0		
7234.420 54.3 7233.920 52.4	H V	74.0 74.0	-19.7 -21.6	PK PK	252 255	1.5 1.9		
4823.830 52.1	H	74.0	-21.0	PK	207	1.9		
9648.170 46.8	V	74.0	-27.2	PK	235	1.0		
9634.750 45.6	H	74.0	-28.4	PK	315	1.6		
				t of 15.209 w d in 100kHz.	as used. Fo	r all other e	missions, the	e limit was set 20dB be

Model: SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors T-Log Number: T69413 Account Manager: Dean Eriksen Image: Dean Eriksen Contact: Ron Seide Image: Class: N/A Standard: 15.247 / 15.E / RSS-210 Class: N/A Run # 1b: Ratiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b Image: Standard: Charter Channel @ 2437 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Image:	Model: SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors T-Log Number: T69413 Account Manager: Dean Eriksen Dean Eriksen Contact: Ron Seide Class: N/A Standard: 15.247 / 15.E / RSS-210 Class: N/A Run # 1b: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b S02.11b Center Channel @ 2437 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps S02.11b Fundamental Signal Field Strength: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin PK/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20 dBc (Peak power measurement) Other Spurious Emissions 15.209 / 15.247	Model: SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors T-Log Number: T69413 Account Manager: Dean Eriksen Account Manager: Dean Eriksen Contact: Ron Seide Class: N/A Standard: 15.247 / 15.E / RSS-210 Class: N/A Run # 1b: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b Class: N/A Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Forments Mitz Gomments Mitz Fundamental Signal Field Strength: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m VH Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measurem Dther Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth									ob Number:	168959	
Model: Connectors Account Manager: Dean Eriksen Contact: Ron Seide Image: Dean Eriksen Standard: 15.247 / 15.E / RSS-210 Class: N/A tun # 1b: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b tenter Channel @ 2437 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps ower Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Image: 243.330 undamental Signal Field Strength: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measurer Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m Limit </td <td>Model: Connectors Account Manager: Dean Eriksen Contact: Ron Seide </td> <td>Model: Connectors Account Manager: Dean Eriksen Contact: Ron Seide Class: N/A Standard: 15.247 / 15.E / RSS-210 Class: N/A tun # 1b: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b tener Channel @ 2437 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps undamental Signal Field Strength: </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Modulo with</td> <td>Antonno</td> <td></td> <td></td>	Model: Connectors Account Manager: Dean Eriksen Contact: Ron Seide	Model: Connectors Account Manager: Dean Eriksen Contact: Ron Seide Class: N/A Standard: 15.247 / 15.E / RSS-210 Class: N/A tun # 1b: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b tener Channel @ 2437 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps undamental Signal Field Strength:						Modulo with	Antonno				
Contact: Ron Seide Class: N/A Standard: 15.247 / 15.E / RSS-210 Class: N/A Run # 1b: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b Class: N/A Standard: 15.247 / 15.E / RSS-210 Class: N/A N/A Power # Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Standard:	Contact: Ron Seide Class: N/A Standard: 15.247 / 15.E / RSS-210 Class: N/A Run # 1b: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b Senter Channel @ 2437 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps undamental Signal Field Strength: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measurement) Dther Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees	Contact: Ron Seide Standard: 15.247 / 15.E / RSS-210 Class: N/A Run # 1b: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps undamental Signal Field Strength: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measurem- MHz dBµV/m Limit Margin Pk/QP/Avg degrees meters 713L:920 50.3 H 54.0 -1.6 AVG 165 1.0 7312:920 57.3 H 54.0 -3.7 AVG 245 <td>Model:</td> <td></td> <td></td> <td></td> <td>paul Fiasii</td> <td></td> <td>Antenna</td> <td colspan="3">5</td>	Model:				paul Fiasii		Antenna	5			
Standard: 15.247 / 15.E / RSS-210 Class: N/A Run # 1b: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b center Channel @ 2437 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps tundamental Signal Field Strength: Trequency Level Pol 15.207 / 15.247 Detector Azimuth Height Comments MHz dBuV/m V// Comments MHZ dBuV/m V// MHZ dBuV/m V// MHZ dBuV/m V// V// Comments Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit to 200 / 15.247 Detector Azimuth Height Comments	Standard: 15.247 / 15.E / RSS-210 Class: N/A Standard: 15.247 / 15.E / RSS-210 Class: N/A Standard: Standard: <td>Standard: 15.247 / 15.E / RSS-210 Class: N/A Run # 1b: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b Cease: N/A Class: N/A Material Emissions Class: N/A M/A Class: N/A Colspan="2">Colspan="2">Class: N/A Class: <th colspan:="" m<="" material="" predimaterial="" td=""><td>Contact</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Accou</td><td>ni manayer.</td><td>Dean Enksen</td></th></td>	Standard: 15.247 / 15.E / RSS-210 Class: N/A Run # 1b: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b Cease: N/A Class: N/A Material Emissions Class: N/A M/A Class: N/A Colspan="2">Colspan="2">Class: N/A Class: <th colspan:="" m<="" material="" predimaterial="" td=""><td>Contact</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Accou</td><td>ni manayer.</td><td>Dean Enksen</td></th>	<td>Contact</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Accou</td> <td>ni manayer.</td> <td>Dean Enksen</td>	Contact							Accou	ni manayer.	Dean Enksen
Run # 1b: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b Content Channel @ 2437 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Fundamental Signal Field Strength: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V// Comments MHz dBµV/m Limit Margin PK/QP/Avg degrees meters 2439.330 97.0 V - AVG 89 1.0 Z439.330 97.0 V - AVG 100 Frequency Level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emission soutside of restricted bands: 77 dBµV/m MHz dBµV/m <td colspa<="" td=""><td>Run # 1b: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b Conter Channel @ 2437 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Signal Field Strength: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measurement) Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 A</td><td>Run # 1b: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b Context Channel @ 2437 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Sundamental Signal Field Strength: Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measurem) Other Spurious Emissions Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 71312.920 50.3 H 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -8.3</td><td></td><td></td><td></td><td>C 210</td><td></td><td></td><td></td><td></td><td>Class</td><td>NI/A</td></td>	<td>Run # 1b: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b Conter Channel @ 2437 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Signal Field Strength: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measurement) Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 A</td> <td>Run # 1b: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b Context Channel @ 2437 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Sundamental Signal Field Strength: Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measurem) Other Spurious Emissions Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 71312.920 50.3 H 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -8.3</td> <td></td> <td></td> <td></td> <td>C 210</td> <td></td> <td></td> <td></td> <td></td> <td>Class</td> <td>NI/A</td>	Run # 1b: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b Conter Channel @ 2437 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Signal Field Strength: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measurement) Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 A	Run # 1b: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b Context Channel @ 2437 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Sundamental Signal Field Strength: Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measurem) Other Spurious Emissions Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 71312.920 50.3 H 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -8.3				C 210					Class	NI/A
Senter Channel @ 2437 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps undamental Signal Field Strength: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measuren Other Spurious Emissions Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m VH Limit Margin Pk/QP/Avg degrees meters 7requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m VH Limit Margin Pk/QP/Avg degrees	Center Channel @ 2437 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps undamental Signal Field Strength: Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters	Senter Channel @ 2437 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps undamental Signal Field Strength: Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measurem Mtz dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measurem MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 7802.0 1.6. AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7312.920 50.3 H 54.0 -6.5									Class:	N/A	
Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Fequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measuren Other Spurious Emissions Erequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 7312.920 50.3 H 54.0 -1.6	Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps undamental Signal Field Strength: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m timit is -20dBc (Peak power measurement) Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 244 2.1 9747.920 <td< td=""><td>Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps undamental Signal Field Strength: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measurem Viter Spurious Emissions Td BµV/m Limit is -20dBc (Peak power measurem Viter Spurious Emissions Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 712.920 50.3 H 54.0 -3.7 AVG 245 1.6 7312.920 50.3 H 54.0 -6.5 AVG 204 2.1</td></td<> <td></td> <td></td> <td></td> <td></td> <td>s, 30 - 2500</td> <td>0 MHz. Ope</td> <td>rating Mode</td> <td>e: 802.11b</td> <td></td> <td></td>	Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps undamental Signal Field Strength: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measurem Viter Spurious Emissions Td BµV/m Limit is -20dBc (Peak power measurem Viter Spurious Emissions Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 712.920 50.3 H 54.0 -3.7 AVG 245 1.6 7312.920 50.3 H 54.0 -6.5 AVG 204 2.1					s, 30 - 2500	0 MHz. Ope	rating Mode	e: 802.11b			
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measuren Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 164 7312.920 50.3 H 54.0 -3.7 AVG 237 1.0 164 <t< td=""><td>Findamental Signal Field Strength: Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measurement) Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters Crequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin P</td><td>Undamental Signal Field Strength: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measurem Wher Spurious Emissions Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 204 2.1 712.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG</td><td></td><td></td><td></td><td>-</td><td>nna with 3</td><td>8 dRi Cain</td><td>Nata Pato 1</td><td>1 Mhns</td><td></td><td></td></t<>	Findamental Signal Field Strength: Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measurement) Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters Crequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin P	Undamental Signal Field Strength: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measurem Wher Spurious Emissions Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 204 2.1 712.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG				-	nna with 3	8 dRi Cain	Nata Pato 1	1 Mhns			
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 20 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measuren time to remissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measuren time to remissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measuren time to remissions Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters MHz dBµV/m V/H Limit Margin <td< td=""><td>Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters </td><td>Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measurem) Dther Spurious Emissions Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 712.920 50.3 H 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -6.5 AVG 237 1.0 9747.920 47.5 V 54.0 -6.5 AVG 282 1.6 4</td><td>- UWEI SEL</td><td>ung. 100 /</td><td>o, Lai 30</td><td></td><td></td><td>.o uDi Galili,</td><td></td><td></td><td></td><td></td></td<>	Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters	Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measurem) Dther Spurious Emissions Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 712.920 50.3 H 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -6.5 AVG 237 1.0 9747.920 47.5 V 54.0 -6.5 AVG 282 1.6 4	- UWEI SEL	ung. 100 /	o, Lai 30			.o uDi Galili,					
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 20 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measuren Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments ther Spurious Emissions Emissions Fk/QP/Avg degrees meters Meters MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters MHz dBµV/m	Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measurement) Fundamental emissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measurement) Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6	Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit is -20dBc (Peak power measurem Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 204 2.1 <td>undament</td> <td>tal Signal</td> <td>Field St</td> <td>rength:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	undament	tal Signal	Field St	rength:							
2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measuren Other Spurious Emissions Emissions Errequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7308.830 49.4 V 54.0 -4.6 AVG 237 1.0 9747.920 47.5 V 54.0 -6.5 AVG 282 1.6 4873.750 45.0 H 54.0 -8.3 AVG 282 1.6 4874.000 58.8 V 74.0 <t< td=""><td>2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measurement) Other Spurious Emissions Emissions Emissions Emissions Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 7312.920 55.1 H 74.0 -15.2 PK 165 1.0 1.0</td><td>2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measuremental emissions) Other Spurious Emissions Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 2445 1.6 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 7312.920 55.1 H</td><td></td><td></td><td></td><td></td><td>/ 15.247</td><td>Detector</td><td>Azimuth</td><td>Height</td><td>Comments</td><td></td></t<>	2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measurement) Other Spurious Emissions Emissions Emissions Emissions Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 7312.920 55.1 H 74.0 -15.2 PK 165 1.0 1.0	2439.330 97.0 V - - AVG 89 1.0 2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measuremental emissions) Other Spurious Emissions Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 2445 1.6 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 7312.920 55.1 H					/ 15.247	Detector	Azimuth	Height	Comments		
2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measuren Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4874.000 58.8 V 74.0 -9.0 AVG 197 2.0 AVG 245 1.6 <td>2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measurement) Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -6.5 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000</td> <td>2440.250 96.4 H - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measurem Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 9747.920 47.5 V 54.0 -6.5 AVG 204 2.1 9747.920 47.5 V 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2<!--</td--><td>. ×</td><td>dBµV/m</td><td>V/H</td><td>Limit</td><td>Margin</td><td>Pk/QP/Avg</td><td>degrees</td><td>× ×</td><td></td><td></td></td>	2440.250 96.4 H - - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measurement) Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -6.5 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000	2440.250 96.4 H - AVG 177 2.0 Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measurem Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 9747.920 47.5 V 54.0 -6.5 AVG 204 2.1 9747.920 47.5 V 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 </td <td>. ×</td> <td>dBµV/m</td> <td>V/H</td> <td>Limit</td> <td>Margin</td> <td>Pk/QP/Avg</td> <td>degrees</td> <td>× ×</td> <td></td> <td></td>	. ×	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	× ×			
Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit is -20dBc (Peak power measuren Other Spurious Emissions Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 50.3 H 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -9.0 AVG 197 2.0 4873.750 45.0 H 54.0 -9.0 AVG <td< td=""><td>Fundamental emission level @ 3m in 100kHz RBW: 97 dBμV/m Limit for emissions outside of restricted bands: 77 dBμV/m Limit for emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4874.000 58.8 V 74.0 -9.0 AVG 197 2.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 7312.920 55.1 H 74.0 -15.2 PK 165 1.0</td><td>Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit for emissions 15.209 / 15.247 Detector Azimuth Height Comments Other Spurious Emissions 6 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 1.6 7312.920<!--</td--><td>2439.330</td><td>97.0</td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td></td></td<>	Fundamental emission level @ 3m in 100kHz RBW: 97 dBμV/m Limit for emissions outside of restricted bands: 77 dBμV/m Limit for emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4874.000 58.8 V 74.0 -9.0 AVG 197 2.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 7312.920 55.1 H 74.0 -15.2 PK 165 1.0	Fundamental emission level @ 3m in 100kHz RBW: 97 dBµV/m Limit for emissions outside of restricted bands: 77 dBµV/m Limit for emissions 15.209 / 15.247 Detector Azimuth Height Comments Other Spurious Emissions 6 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 1.6 7312.920 </td <td>2439.330</td> <td>97.0</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	2439.330	97.0		-	-						
Limit for emissions outside of restricted bands: $77 \text{ dB}_{\mu}\text{V/m}$ Limit is -20dBc (Peak power measurenOther Spurious EmissionsFrequencyLevelPol15.209 / 15.247DetectorAzimuthHeightCommentsMHzdB μ V/mV/HLimitMarginPk/QP/Avgdegreesmeters4874.00052.4V54.0-1.6AVG1651.07312.92050.3H54.0-3.7AVG2451.67308.83049.4V54.0-4.6AVG2042.19747.92047.5V54.0-6.5AVG2371.09748.25045.7H54.0-8.3AVG2821.64873.75045.0H54.0-9.0AVG1972.04874.00058.8V74.0-15.2PK1651.07312.92055.1H74.0-18.9PK2451.6	Limit for emissions outside of restricted bands:77 dBµV/mLimit is -20dBc (Peak power measurement)Diter Spurious EmissionsFrequencyLevelPol15.209 / 15.247DetectorAzimuthHeightCommentsMHzdBµV/mV/HLimitMarginPk/QP/Avgdegreesmeters4874.00052.4V54.0-1.6AVG1651.07312.92050.3H54.0-3.7AVG2451.67308.83049.4V54.0-4.6AVG2042.19747.92047.5V54.0-6.5AVG2371.09748.25045.7H54.0-8.3AVG2821.64874.00058.8V74.0-15.2PK1651.07312.92055.1H74.0-15.2PK1651.07312.92055.1H74.0-19.7PK2042.14873.75051.6H74.0-22.4PK1972.09747.92049.5V74.0-24.5PK2371.0	Limit for emissions outside of restricted bands: 77 dB μ V/m Limit is -20dBc (Peak power measurem Other Spurious Emissions Errequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dB μ V/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 54.3 V 74.0 -19.7 PK 204 2.1 4873.750	2440.250	96.4	Η	-	-	AVG	177	2.0			
Limit for emissions outside of restricted bands: $77 dB_{\mu}V/m$ Limit is -20dBc (Peak power measurenOther Spurious EmissionsFrequencyLevelPol15.209 / 15.247DetectorAzimuthHeightCommentsMHzdB μ V/mV/HLimitMarginPk/QP/Avgdegreesmeters4874.00052.4V54.0-1.6AVG1651.07312.92050.3H54.0-3.7AVG2451.67308.83049.4V54.0-4.6AVG2042.19747.92047.5V54.0-6.5AVG2371.09748.25045.7H54.0-8.3AVG2821.64873.75045.0H54.0-9.0AVG1972.04874.00058.8V74.0-15.2PK1651.07312.92055.1H74.0-18.9PK2451.6	Limit for emissions outside of restricted bands:77 dBµV/mLimit is -20dBc (Peak power measurement)Diter Spurious EmissionsFrequencyLevelPol15.209 / 15.247DetectorAzimuthHeightCommentsMHzdBµV/mV/HLimitMarginPk/QP/Avgdegreesmeters4874.00052.4V54.0-1.6AVG1651.07312.92050.3H54.0-3.7AVG2451.67308.83049.4V54.0-4.6AVG2042.19747.92047.5V54.0-6.5AVG2371.09748.25045.7H54.0-8.3AVG2821.64874.00058.8V74.0-15.2PK1651.07312.92055.1H74.0-15.2PK1651.07312.92055.1H74.0-19.7PK2451.67308.83054.3V74.0-19.7PK2042.14873.75051.6H74.0-22.4PK1972.09747.92049.5V74.0-24.5PK2371.0	Limit for emissions outside of restricted bands:77 dB μ V/mLimit is -20dBc (Peak power measuremOther Spurious EmissionsFrequencyLevelPol15.209 / 15.247DetectorAzimuthHeightCommentsMHzdB μ V/mV/HLimitMarginPk/QP/Avgdegreesmeters4874.00052.4V54.0-1.6AVG1651.07312.92050.3H54.0-3.7AVG2451.69747.92047.5V54.0-4.6AVG2042.19748.25045.7H54.0-8.3AVG2821.64874.00058.8V74.0-15.2PK1651.09748.25045.1H74.0-18.9PK2451.67308.83054.3V74.0-19.7PK2042.14873.75051.6H74.0-22.4PK1972.09748.25049.2H74.0-24.5PK2371.09748.25049.2H74.0-24.5PK2371.09748.25049.2H74.0-24.8PK2821.6For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20	<u> </u>			<u> </u>				1			
Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 <td>Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 <tr< td=""><td>Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 282 1.6 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></td></tr<></td>	Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 <tr< td=""><td>Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 282 1.6 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></td></tr<>	Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 282 1.6 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6	FrequencyLevelPol15.209 / 15.247DetectorAzimuthHeightCommentsMHzdBµV/mV/HLimitMarginPk/QP/Avgdegreesmeters4874.00052.4V54.0-1.6AVG1651.07312.92050.3H54.0-3.7AVG2451.67308.83049.4V54.0-4.6AVG2042.19747.92047.5V54.0-6.5AVG2371.09748.25045.7H54.0-8.3AVG2821.64873.75045.0H54.0-9.0AVG1972.04874.00058.8V74.0-15.2PK1651.07308.83054.3V74.0-19.7PK2042.14873.75051.6H74.0-22.4PK1972.09747.92049.5V74.0-22.4PK2371.0	Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 54.3 <td< td=""><td>Limit</td><td>ior emissi</td><td>ons outs</td><td>side of restric</td><td>cied bands:</td><td> 1</td><td>dBµV/m</td><td>Limit is -20</td><td>авс (Peak p</td><td>oower measurement)</td></td<>	Limit	ior emissi	ons outs	side of restric	cied bands:	1	dBµV/m	Limit is -20	авс (Peak p	oower measurement)	
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 282 1.6 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6	FrequencyLevelPol15.209 / 15.247DetectorAzimuthHeightCommentsMHzdBµV/mV/HLimitMarginPk/QP/Avgdegreesmeters4874.00052.4V54.0-1.6AVG1651.07312.92050.3H54.0-3.7AVG2451.67308.83049.4V54.0-4.6AVG2042.19747.92047.5V54.0-6.5AVG2371.09748.25045.7H54.0-8.3AVG2821.64873.75045.0H54.0-9.0AVG1972.04874.00058.8V74.0-15.2PK1651.07312.92055.1H74.0-18.9PK2451.67308.83054.3V74.0-19.7PK2042.14873.75051.6H74.0-22.4PK1972.09747.92049.5V74.0-22.4PK1972.0	Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -8.3 AVG 282 1.6 1.6 10 11 12.0 12.0 12.0 12.0 12.0 12.0 12.0 1.6 1.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 1)ther Snur	ious Emis	sions								
MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -8.3 AVG 282 1.6 4874.000 58.8 V 74.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6	MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 282 1.6 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 54.3 V 74.0 -19.7 PK 204 2.1 4873.750 51.6 H 74.0	MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 54.3 V 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0				15 209	/ 15 247	Detector	Azimuth	Height	Comments		
4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6	4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 54.3 V 74.0 -19.7 PK 204 2.1 4873.750 51.6 H 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0 <td>4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 54.3 V 74.0 -19.7 PK 204 2.1 4873.750 51.6 H 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td>Comments</td><td></td></td>	4874.000 52.4 V 54.0 -1.6 AVG 165 1.0 7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 54.3 V 74.0 -19.7 PK 204 2.1 4873.750 51.6 H 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>Comments</td> <td></td>								<u> </u>	Comments		
7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6	7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 54.3 V 74.0 -19.7 PK 204 2.1 4873.750 51.6 H 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0 -24.5 PK 237 1.0	7312.920 50.3 H 54.0 -3.7 AVG 245 1.6 7308.830 49.4 V 54.0 -4.6 AVG 204 2.1 9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7308.830 54.3 V 74.0 -18.9 PK 245 1.6 7308.830 54.3 V 74.0 -19.7 PK 204 2.1 4873.750 51.6 H 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0 -24.5 PK 197 2.0 9747.920 49.5 V 74.0 -24.5 PK 237 1.0 9748.250 49.2 H 74.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td>						0					
9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6	9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 54.3 V 74.0 -19.7 PK 204 2.1 4873.750 51.6 H 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0 -22.4 PK 197 2.0	9747.920 47.5 V 54.0 -6.5 AVG 237 1.0 9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 54.3 V 74.0 -19.7 PK 204 2.1 4873.750 51.6 H 74.0 -22.4 PK 197 2.0 7308.830 54.3 V 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0 -24.5 PK 237 1.0 9748.250 49.2 H 74.0 -24.8 PK 282 1.6 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20			Н					1.6			
9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6	9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 54.3 V 74.0 -19.7 PK 204 2.1 4873.750 51.6 H 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0 -24.5 PK 237 1.0	9748.250 45.7 H 54.0 -8.3 AVG 282 1.6 4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 54.3 V 74.0 -19.7 PK 204 2.1 4873.750 51.6 H 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0 -24.5 PK 237 1.0 9748.250 49.2 H 74.0 -24.8 PK 282 1.6	7308.830	49.4	V	54.0	-4.6	AVG	204	2.1			
4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6	4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 54.3 V 74.0 -19.7 PK 204 2.1 4873.750 51.6 H 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0 -24.5 PK 237 1.0	4873.750 45.0 H 54.0 -9.0 AVG 197 2.0 4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 54.3 V 74.0 -19.7 PK 204 2.1 4873.750 51.6 H 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0 -24.5 PK 237 1.0 9748.250 49.2 H 74.0 -24.8 PK 282 1.6				54.0				1.0			
4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6	4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 54.3 V 74.0 -19.7 PK 204 2.1 4873.750 51.6 H 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0 -24.5 PK 237 1.0	4874.000 58.8 V 74.0 -15.2 PK 165 1.0 7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 54.3 V 74.0 -19.7 PK 204 2.1 4873.750 51.6 H 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0 -24.5 PK 237 1.0 9748.250 49.2 H 74.0 -24.8 PK 282 1.6											
7312.920 55.1 H 74.0 -18.9 PK 245 1.6	7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 54.3 V 74.0 -19.7 PK 204 2.1 4873.750 51.6 H 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0 -24.5 PK 237 1.0	7312.920 55.1 H 74.0 -18.9 PK 245 1.6 7308.830 54.3 V 74.0 -19.7 PK 204 2.1 4873.750 51.6 H 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0 -24.5 PK 237 1.0 9748.250 49.2 H 74.0 -24.8 PK 282 1.6											
	7308.830 54.3 V 74.0 -19.7 PK 204 2.1 4873.750 51.6 H 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0 -24.5 PK 237 1.0	7308.830 54.3 V 74.0 -19.7 PK 204 2.1 4873.750 51.6 H 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0 -24.5 PK 237 1.0 9748.250 49.2 H 74.0 -24.8 PK 282 1.6											
	4873.750 51.6 H 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0 -24.5 PK 237 1.0	4873.750 51.6 H 74.0 -22.4 PK 197 2.0 9747.920 49.5 V 74.0 -24.5 PK 237 1.0 9748.250 49.2 H 74.0 -24.8 PK 282 1.6 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20											
	9747.920 49.5 V 74.0 -24.5 PK 237 1.0	9747.920 49.5 V 74.0 -24.5 PK 237 1.0 9748.250 49.2 H 74.0 -24.8 PK 282 1.6 Intended For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20											
		9748.250 49.2 H 74.0 -24.8 PK 282 1.6 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20											
		For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20											
				the level c	of the fun	damental ar	nd measure	d in 100kHz.					
Noto 1	the level of the fundamental and measured in 100kHz.												
	the level of the fundamental and measured in 100kHz.												
	the level of the fundamental and measured in 100kHz.												
	the level of the fundamental and measured in 100kHz.												
	the level of the fundamental and measured in 100kHz.												
	the level of the fundamental and measured in 100kHz.												
	the level of the fundamental and measured in 100kHz.												
Noto 1:	the level of the fundamental and measured in 100kHz.												
	the level of the fundamental and measured in 100kHz.												
	the level of the fundamental and measured in 100kHz.												

Client: Summit Data Communications Job Number: J68959 Model: SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors T-Log Number: T69413 Contact: Ron Seide Account Manager: Dean Eriksen Standard: 15.247 / 15.E / RSS-210 Class: N/A Run # 1c: Rur # 1c: Rur # 2462 MHz, Standard; Standard;

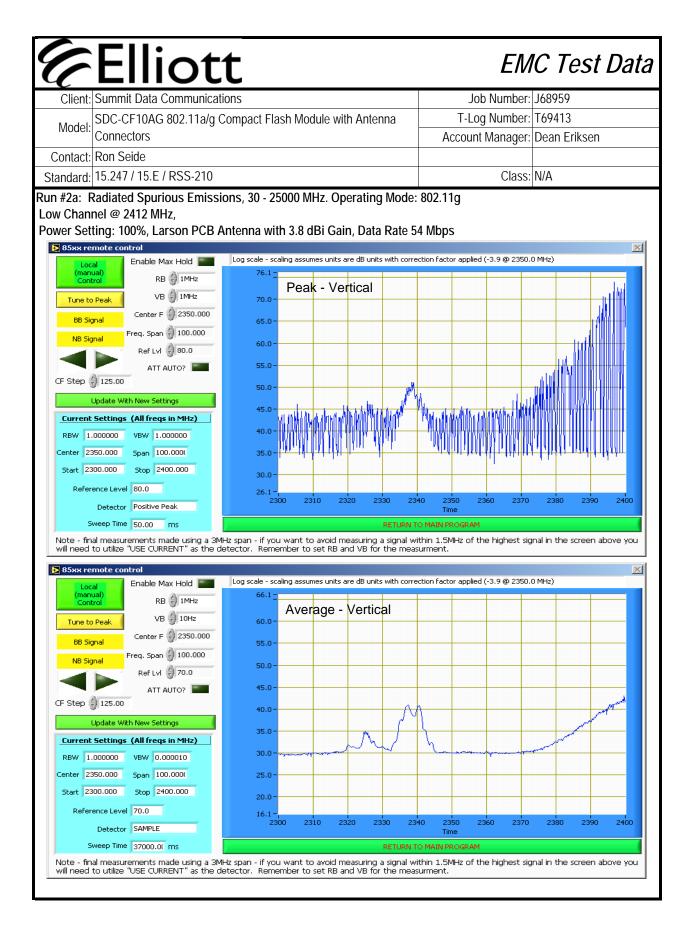
Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps

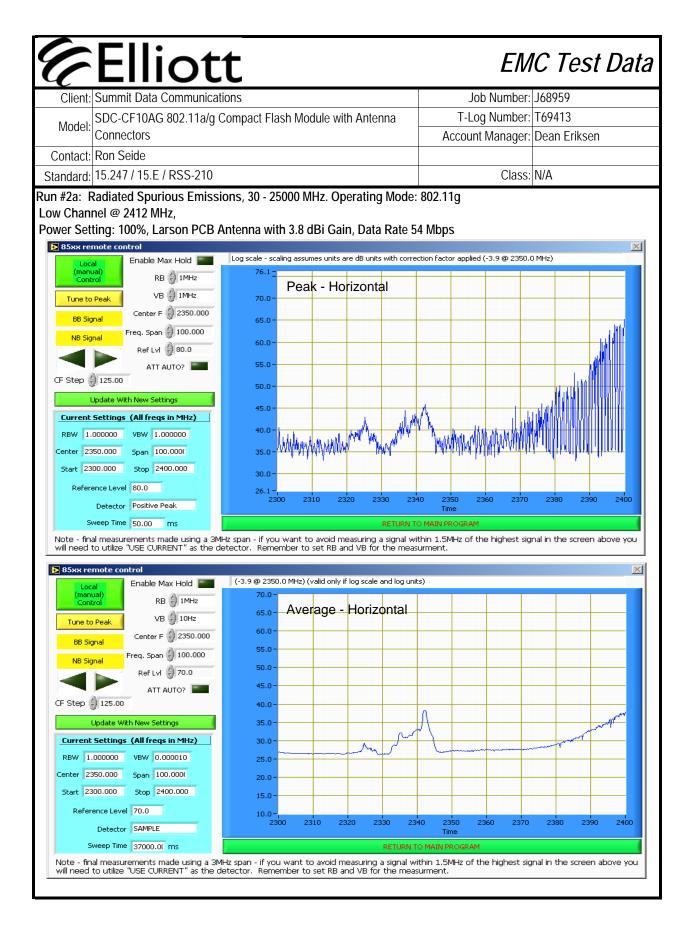

Fundamental Signal Field Strength:


ien engliten		J					
Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
97.9	V	-	-	AVG	90	1.0	
94.8	Н	-	-	AVG	203	1.0	
	dBµV/m 97.9	dBμV/m V/H 97.9 V	dBμV/m V/H Limit 97.9 V -	dBμV/m V/H Limit Margin 97.9 V - -	dBμV/m V/H Limit Margin Pk/QP/Avg 97.9 V AVG	dBμV/mV/HLimitMarginPk/QP/Avgdegrees97.9VAVG90	dBμV/mV/HLimitMarginPk/QP/Avgdegreesmeters97.9VAVG901.0

Fundamental emission level @ 3m in 100kHz RBW:	97.9 dBµV/m]
Limit for emissions outside of restricted bands:	77.9 dBµV/m	Limit is -20dBc (Peak power measurement)

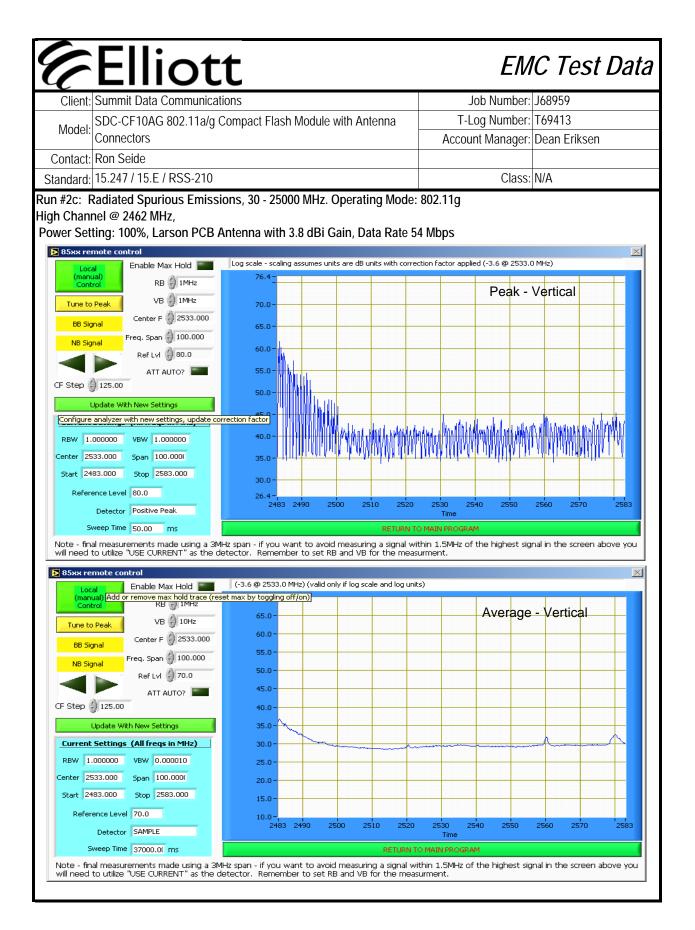
Band Edge Signal Field Strength

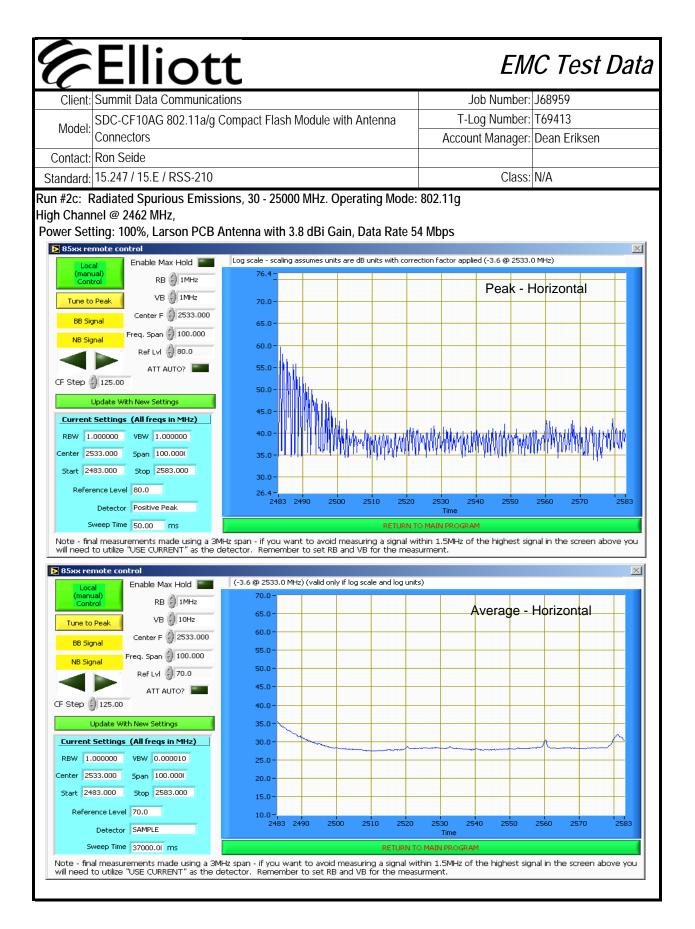

Fr	requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
	MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2	484.780	42.8	V	54.0	-11.2	AVG	90	1.0	
2	484.760	37.9	Н	54.0	-16.1	AVG	203	1.0	
2	484.780	52.6	V	74.0	-21.4	PK	90	1.0	
2	484.760	44.2	Н	74.0	-29.8	PK	203	1.0	



Model: Connectors Account M Contact: Ron Seide Account M Standard: 15.247 / 15.E / RSS-210 Account M Run # 1c: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b High Channel @ 2462 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Marce 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Co MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 7385.250 53.2 V 54.0 -0.8 AVG 278 1.0 4924.080 51.4 V 54.0 -2.6 AVG 254 1.0 1.8 9848.080 50.4 V 54.0 -3.1 AVG 261 1.8 1.3 1.4 9848.00 48.2 H 54.0 -5.8 AVG 70 1.6 1.4 1.4 1.4 1.4 1.6 1.3	Number: T69413 Aanager: Dean Eriksen Class: N/A omments
Contact: Ron Seide Standard: 15.247 / 15.E / RSS-210 Run # 1c: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b High Channel @ 2462 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Other Spurious Emissions Standard: National Mathematical Stress of Standard: Channel @ 2462 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Other Spurious Emissions Standard: Margin Pk/QP/Avg degrees meters 7385.250 53.2 V 54.0 -0.8 AVG 278 1.0 4924.080 51.4 V 54.0 -2.6 AVG 254 1.0 1.8 9848.080 50.4 V 54.0 -3.1 AVG 261 1.8 2.9 9848.080 50.4 V 54.0 -5.8 AVG 70 1.6 4924.080 48.2 H 54.0 -11.6 AVG 208 0.0 7385.250 58.7 V 74.0	Class: N/A
Standard: 15.247 / 15.E / RSS-210 Run # 1c: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b High Channel @ 2462 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Other Spurious Emissions Other Spurious Emissions Tequency Level Pol 15.209 / 15.247 Detector Azimuth Height Co MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 7385.250 53.2 V 54.0 -0.8 AVG 278 1.0 4924.080 51.4 V 54.0 -2.6 AVG 254 1.0 7385.250 50.9 H 54.0 -3.1 AVG 261 1.8 9848.080 50.4 V 54.0 -5.8 AVG 70 1.6 4924.080 48.2 H 54.0 -11.6 AVG 208 0.0 7385.250 58.7 V 74.0 -15.3 PK 278 1.0 4924.080 58.1<	
Run # 1c: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b High Channel @ 2462 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Other Spurious Emissions Poil 15.209 / 15.247 Detector Azimuth Height Co MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 7385.250 53.2 V 54.0 -0.8 AVG 278 1.0 4924.080 51.4 V 54.0 -2.6 AVG 254 1.0 7385.250 50.9 H 54.0 -3.1 AVG 261 1.8 9848.080 50.4 V 54.0 -3.6 AVG 65 1.3 9848.500 48.2 H 54.0 -5.8 AVG 70 1.6 4924.080 58.1 V 74.0 -15.3 PK 278 1.0 7385.250 58.7 V 74.0 -15.9 PK 254 1.0 <td></td>	
High Channel @ 2462 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Co MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 7385.250 53.2 V 54.0 -0.8 AVG 278 1.0 4924.080 51.4 V 54.0 -2.6 AVG 254 1.0 7388.670 50.9 H 54.0 -3.1 AVG 261 1.8 9848.080 50.4 V 54.0 -3.6 AVG 65 1.3 9848.500 48.2 H 54.0 -5.8 AVG 70 1.6 4924.080 42.4 H 54.0 -11.6 AVG 208 0.0 7385.250 58.7 V 74.0 -15.3 PK 278 1.0 4924.080 58.1 V 74.0 -15.9 PK 254 1.0 <	omments
Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Co MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 7385.250 53.2 V 54.0 -0.8 AVG 278 1.0 4924.080 51.4 V 54.0 -2.6 AVG 254 1.0 7385.250 53.2 V 54.0 -3.1 AVG 261 1.8 94924.080 50.4 V 54.0 -3.6 AVG 65 1.3 9848.080 50.4 V 54.0 -3.6 AVG 65 1.3 9848.500 48.2 H 54.0 -5.8 AVG 70 1.6 4924.080 42.4 H 54.0 -11.6 AVG 208 0.0 7385.250 58.7 V 74.0 -15.9 PK 278 1.0 7388.670 <td>omments</td>	omments
Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Co MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 7385.250 53.2 V 54.0 -0.8 AVG 278 1.0 4924.080 51.4 V 54.0 -2.6 AVG 254 1.0 7388.670 50.9 H 54.0 -3.1 AVG 261 1.8 9848.080 50.4 V 54.0 -3.6 AVG 65 1.3 9848.500 48.2 H 54.0 -5.8 AVG 70 1.6 4924.080 42.4 H 54.0 -11.6 AVG 208 0.0 7385.250 58.7 V 74.0 -15.3 PK 278 1.0 7388.670 55.9 H 74.0 -18.1 PK 261 1.8	omments
requencyLevelPol15.209 / 15.247DetectorAzimuthHeightCoMHzdBµV/mV/HLimitMarginPk/QP/Avgdegreesmeters7385.2507385.25053.2V54.0-0.8AVG2781.04924.08051.4V54.0-2.6AVG2541.07388.67050.9H54.0-3.1AVG2611.89848.08050.4V54.0-3.6AVG651.39848.50048.2H54.0-5.8AVG701.64924.08042.4H54.0-11.6AVG2080.07385.25058.7V74.0-15.3PK2781.07388.67055.9H74.0-15.9PK2541.07388.67055.9H74.0-21.6PK651.39848.50051.4H74.0-22.6PK701.64924.08049.2H74.0-21.6PK2541.07388.67055.9H74.0-21.6PK651.39848.50051.4H74.0-22.6PK701.64924.08049.2H74.0-24.8PK2080.0	omments
MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 7385.250 53.2 V 54.0 -0.8 AVG 278 1.0 4924.080 51.4 V 54.0 -2.6 AVG 254 1.0 7385.250 50.9 H 54.0 -2.6 AVG 254 1.0 7388.670 50.9 H 54.0 -3.1 AVG 261 1.8 9848.080 50.4 V 54.0 -3.6 AVG 65 1.3 9848.500 48.2 H 54.0 -5.8 AVG 70 1.6 4924.080 42.4 H 54.0 -11.6 AVG 208 0.0 7385.250 58.7 V 74.0 -15.3 PK 278 1.0 4924.080 58.1 V 74.0 -15.9 PK 254 1.0 7388.670 55.9 H 74.0	omments
7385.250 53.2 V 54.0 -0.8 AVG 278 1.0 4924.080 51.4 V 54.0 -2.6 AVG 254 1.0 7388.670 50.9 H 54.0 -3.1 AVG 261 1.8 7388.670 50.9 H 54.0 -3.1 AVG 261 1.8 7388.670 50.4 V 54.0 -3.6 AVG 65 1.3 7848.500 48.2 H 54.0 -5.8 AVG 70 1.6 7385.250 58.7 V 74.0 -15.3 PK 278 1.0 7385.250 58.1 V 74.0 -15.9 PK 254 1.0 7388.670 55.9 H 74.0 -18.1 PK 261 1.8 7848.080 52.4 V 74.0 -21.6 PK 65 1.3 7848.500 51.4 H 74.0 -22.6 PK 70 1.6 7924.080 49.2 H 74.0	
4924.080 51.4 V 54.0 -2.6 AVG 254 1.0 7388.670 50.9 H 54.0 -3.1 AVG 261 1.8 9848.080 50.4 V 54.0 -3.6 AVG 65 1.3 9848.080 50.4 V 54.0 -3.6 AVG 65 1.3 9848.500 48.2 H 54.0 -5.8 AVG 70 1.6 4924.080 42.4 H 54.0 -11.6 AVG 208 0.0 7385.250 58.7 V 74.0 -15.3 PK 278 1.0 4924.080 58.1 V 74.0 -15.9 PK 254 1.0 7385.250 58.7 V 74.0 -18.1 PK 261 1.8 4924.080 58.1 V 74.0 -21.6 PK 65 1.3 7388.670 55.9 H 74.0 -21.6 PK 65 1.3 9848.080 52.4 V 74.0	
7388.670 50.9 H 54.0 -3.1 AVG 261 1.8 0848.080 50.4 V 54.0 -3.6 AVG 65 1.3 0848.080 50.4 V 54.0 -3.6 AVG 65 1.3 0848.500 48.2 H 54.0 -5.8 AVG 70 1.6 0924.080 42.4 H 54.0 -11.6 AVG 208 0.0 7385.250 58.7 V 74.0 -15.3 PK 278 1.0 1924.080 58.1 V 74.0 -15.9 PK 254 1.0 1924.080 58.1 V 74.0 -18.1 PK 261 1.8 1924.080 52.4 V 74.0 -21.6 PK 65 1.3 0848.080 52.4 V 74.0 -22.6 PK 70 1.6 1924.080 49.2 H 74.0 -24.8 PK 208 0.0	
8848.080 50.4 V 54.0 -3.6 AVG 65 1.3 8848.080 48.2 H 54.0 -5.8 AVG 70 1.6 9924.080 42.4 H 54.0 -11.6 AVG 208 0.0 7385.250 58.7 V 74.0 -15.3 PK 278 1.0 924.080 58.1 V 74.0 -15.9 PK 254 1.0 924.080 58.1 V 74.0 -15.9 PK 254 1.0 924.080 58.1 V 74.0 -15.9 PK 254 1.0 924.080 52.4 V 74.0 -21.6 PK 65 1.3 9848.080 52.4 V 74.0 -21.6 PK 70 1.6 9924.080 49.2 H 74.0 -22.6 PK 70 1.6	
8848.500 48.2 H 54.0 -5.8 AVG 70 1.6 4924.080 42.4 H 54.0 -11.6 AVG 208 0.0 7385.250 58.7 V 74.0 -15.3 PK 278 1.0 4924.080 58.1 V 74.0 -15.9 PK 254 1.0 4924.080 58.1 V 74.0 -15.9 PK 254 1.0 7388.670 55.9 H 74.0 -18.1 PK 261 1.8 9848.080 52.4 V 74.0 -21.6 PK 65 1.3 9848.500 51.4 H 74.0 -22.6 PK 70 1.6 4924.080 49.2 H 74.0 -24.8 PK 208 0.0	
H924.080 42.4 H 54.0 -11.6 AVG 208 0.0 V385.250 58.7 V 74.0 -15.3 PK 278 1.0 H924.080 58.1 V 74.0 -15.9 PK 254 1.0 H924.080 58.1 V 74.0 -15.9 PK 254 1.0 H924.080 55.9 H 74.0 -18.1 PK 261 1.8 V848.080 52.4 V 74.0 -21.6 PK 65 1.3 V848.500 51.4 H 74.0 -22.6 PK 70 1.6 H924.080 49.2 H 74.0 -24.8 PK 208 0.0	
7385.250 58.7 V 74.0 -15.3 PK 278 1.0 1924.080 58.1 V 74.0 -15.9 PK 254 1.0 7388.670 55.9 H 74.0 -18.1 PK 261 1.8 9848.080 52.4 V 74.0 -21.6 PK 65 1.3 9848.500 51.4 H 74.0 -22.6 PK 70 1.6 1924.080 49.2 H 74.0 -24.8 PK 208 0.0	
9924.080 58.1 V 74.0 -15.9 PK 254 1.0 388.670 55.9 H 74.0 -18.1 PK 261 1.8 9848.080 52.4 V 74.0 -21.6 PK 65 1.3 9848.500 51.4 H 74.0 -22.6 PK 70 1.6 9924.080 49.2 H 74.0 -24.8 PK 208 0.0	
388.670 55.9 H 74.0 -18.1 PK 261 1.8 848.080 52.4 V 74.0 -21.6 PK 65 1.3 848.500 51.4 H 74.0 -22.6 PK 70 1.6 924.080 49.2 H 74.0 -24.8 PK 208 0.0	
848.080 52.4 V 74.0 -21.6 PK 65 1.3 848.500 51.4 H 74.0 -22.6 PK 70 1.6 924.080 49.2 H 74.0 -24.8 PK 208 0.0	
924.080 49.2 H 74.0 -24.8 PK 208 0.0	
ote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions	sions, the limit was set 20dB belo
the level of the fundamental and measured in 100kHz.	

Client: Model: Contact: Standard: Run #2a: F	Summit D SDC-CF1								
Contact: Standard:		ala Com	munications					Job Number:	J68959
Contact: Standard:		0AG 802	.11a/g Com	pact Flash I	Module with	Antenna	T-L	og Number:	T69413
Standard:	Connector		<u> </u>					0	Dean Eriksen
Standard:	Ron Seide	2						<u> </u>	
			S-210					Class:	N/Δ
KULL#Za. M				20 2500	MUz Oper	ating Made	002 11a	01033.	
Low Chani	nel @ 2412 ting: 100%	2 MHz, 5, Larson	n PCB Ante T∈		. 8 dBi Gain , 11.7	Data Rate 5 °C	Ū		
Note:	measurem	nents ma	de with VB=	=1khz to avo	oid desensitiz	zation at 10H	z which red	uced signal	ice only, final level by 6.6dB. ements were higher.
Fundament	tal Signal	Field Str	ength:						
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
2415.000	93.2	V	-	-	PK	95	1.9		
	89.4					,0	117		
2410.770		Η	-	-	РК	188	2.2		
2410.770 Fundamer Limit	ntal emissi t for emissi	on level ons outs	ide of restrie	- OkHz RBW: cted bands:	РК 93.2		2.2)dBc (Peak p	ower measurement)
2410.770 Fundamer Limit Band Edge	ntal emissi t for emissi	on level ons outs	ide of restrie		РК 93.2	188 dBµV/m	2.2)dBc (Peak p Comments	ower measurement)
2410.770 Fundamer Limit Band Edge	ntal emissi t for emissi Signal Fig	on level ons outs e ld Stre r	ide of restrie	cted bands:	РК 93.2 73.2	188 dBμV/m dBμV/m	2.2 Limit is -20		oower measurement)
2410.770 Fundamer Limit Band Edge Frequency	ntal emissi t for emissi Signal Fi Level	on level ons outs e ld Strer Pol	ide of restrie	cted bands: / 15.247	PK 93.2 73.2 Detector	188 dBμV/m dBμV/m Azimuth	2.2 Limit is -20 Height		oower measurement)
2410.770 Fundamer Limit Band Edge Frequency MHz	ntal emissi t for emissi Signal Fie Level dBμV/m	on level ons outs eld Strer Pol v/h	ide of restric ngth 15.209 Limit	cted bands: / 15.247 Margin	PK 93.2 73.2 Detector Pk/QP/Avg	188 dBμV/m dBμV/m Azimuth degrees	2.2 Limit is -20 Height meters		ower measurement)
2410.770 Fundamer Limit Band Edge Frequency MHz 2389.980 2337.920 2389.980	ntal emissi t for emissi Signal Fie Level dBµV/m 52.4	on level ons outs e ld Strer Pol v/h V	ide of restric ngth 15.209 Limit 54.0	/ 15.247 Margin -1.6	PK 93.2 73.2 Detector Pk/QP/Avg AVG	188 dBμV/m dBμV/m Azimuth degrees 18	2.2 Limit is -20 Height meters 1.1		oower measurement)
2410.770 Fundamer Limit Band Edge Frequency MHz 2389.980 2337.920 2389.980 2389.950	ntal emissi t for emissi Level dBμV/m 52.4 50.0 65.5 45.2	on level ons outs eld Strer Pol v/h V V V V H	ide of restrict ngth 15.209 Limit 54.0 54.0 74.0 54.0	/ 15.247 Margin -1.6 -4.0 -8.5 -8.8	PK 93.2 73.2 Detector Pk/QP/Avg AVG AVG PK AVG	188 dBµV/m dBµV/m Azimuth degrees 18 18 18 18 300	2.2 Limit is -20 Height meters 1.1 1.1 1.1 1.1		oower measurement)
2410.770 Fundamer Limit Band Edge Frequency MHz 2389.980 2337.920 2389.980 2389.950 2342.020	ntal emissi t for emissi Level dBµV/m 52.4 50.0 65.5 45.2 44.2	on level ons outs eld Strer Pol v/h V V V V V V H H	ide of restrie	/ 15.247 Margin -1.6 -4.0 -8.5 -8.8 -9.8	PK 93.2 73.2 Detector Pk/QP/Avg AVG AVG AVG AVG AVG	188 dBμV/m dBμV/m Azimuth degrees 18 18 18 300 300	2.2 Limit is -20 Height meters 1.1 1.1 1.1 1.1 1.1		ower measurement)
2410.770 Fundamer Limit Band Edge Frequency MHz 2389.980 2337.920 2389.980 2389.950 2342.020 2389.950	ntal emissi i for emissi Signal Fie Level dBµV/m 52.4 50.0 65.5 45.2 44.2 57.3	on level ons outs Pol V/h V V V V H H H	ngth 15.209 Limit 54.0 54.0 74.0 54.0 54.0 74.0 74.0 74.0	/ 15.247 Margin -1.6 -4.0 -8.5 -8.8 -9.8 -16.7	PK 93.2 73.2 Detector Pk/QP/Avg AVG AVG AVG AVG AVG PK	188 dBμV/m dBμV/m Azimuth degrees 18 18 18 300 300 300	2.2 Limit is -20 Height meters 1.1 1.1 1.1 1.1 1.1 1.1 1.1		ower measurement)
2410.770 Fundamer Limit Band Edge Frequency MHz 2389.980 2337.920 2389.980 2389.950 2389.950 2342.020	ntal emissi t for emissi Level dBµV/m 52.4 50.0 65.5 45.2 44.2	on level ons outs eld Strer Pol v/h V V V V V V H H	ide of restrie	/ 15.247 Margin -1.6 -4.0 -8.5 -8.8 -9.8	PK 93.2 73.2 Detector Pk/QP/Avg AVG AVG AVG AVG AVG	188 dBμV/m dBμV/m Azimuth degrees 18 18 18 300 300	2.2 Limit is -20 Height meters 1.1 1.1 1.1 1.1 1.1		ower measurement)


			DTT				~	Job Number:	J68959
	SDC-CF10)AG 802	.11a/g Com	pact Flash	Module with /	Antenna	T-l	og Number:	T69413
Model:	Connector		J. J. J.					-	Dean Eriksen
Contact [.]	Ron Seide								
	15.247 / 1		S-210					Class:	NI/Δ
				20 2500	0 MHz. Opera	ating Mada	000 11a	01033.	1.077
Low Chan			EIIIISSIOIIS	, 30 - 2300	u MHZ. Oper	ating wode:	802.11g		
			n PCR Δnto	nna with 3	.8 dBi Gain,	Nata Rate 5	4 Mhns		
i uwei Sei	ung. 10070	, Lai 301			.0 abi Gain,				
Other Spur	ious Emis	sions							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7235.17	50.2	V	54.0	-3.8	AVG	29	2.1		
4826.67	49.3	V	54.0	-4.7	AVG	354	2.0		
12043.33	45.8	Н	54.0	-8.2	AVG	132	1.0		
7238.58	45.7	Н	54.0	-8.3	AVG	55	2.1		
12053.75	45.7	V	54.0	-8.3	AVG	165	1.0		
9665.08	41.3	Н	54.0	-12.7	AVG	172	1.0		
9632.00	41.2	V	54.0	-12.8	AVG	195	2.1		
4825.08	39.1	H	54.0	-14.9	AVG	195	1.0		
7235.17	58.8	V V	74.0 74.0	-15.2	PK PK	29	2.1 2.0		
4826.67 7238.58	57.1 52.8	H	74.0	-16.9 -21.2	PK PK	354 55	2.0		
12053.75	51.7	V	74.0	-21.2	PK	165	1.0		
12033.73	51.7	H	74.0	-22.9	PK	132	1.0		
9665.08	46.2	H	74.0	-27.8	PK	172	1.0		
9632.00	45.5	V	74.0	-28.5	PK	195	2.1		
4825.08	45.1	Н	74.0	-28.9	PK	195	1.0		
								•	
lata 1.	For emissi	ons in re	estricted bar	nds, the limi	t of 15.209 w	as used. Fo	r all other e	missions, the	e limit was set 20dB belo
Note 1:	the level o	f the fun	damental ar	nd measure	d in 100kHz.				


			Dtt				J	ob Number: J68959
Model:			.11a/g Com	pact Flash	Module with	Antenna	T-L	og Number: T69413
MOUCI	Connector	rs					Accou	nt Manager: Dean Eriksen
Contact:	Ron Seide	è						
Standard:	15.247 / 1	5.E / RS	S-210					Class: N/A
Run #2b:	Radiated S	purious	Emission	s, 30 - 2500	0 MHz. Oper	rating Mode:	: 802.11g	
	annel @ 2		•					
Power Set	ting: 100%	6, Larsor	n PCB Ante	enna with 3	.8 dBi Gain,	Data Rate 5	4 Mbps	
undomon	tal Cianal	Livid Ctr	on ath					
Frequency	tal Signal Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments
2432.330	88.8	Н	-	- -	PK	16	2.3	
2435.740	91.0	V	-	-	PK	94	1.9	
			@ 3m in 10		-	dBµV/m	1	
Limi	t for emissi	ons outs	ide of restri	cted bands:	71	dBµV/m	Limit is -20	dBc (Peak power measurement)
)ther Cru	ious Emis	alana						
Frequency	rious Emis Level	Pol	15 200	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments
12172.67	44.6	V	54.0	-9.4	AVG	0	1.0	
12188.75	44.6	H	54.0	-9.4	AVG	0	1.0	
4874.33	41.9	V	54.0	-12.1	AVG	0	1.0	
	41.4	V	54.0	-12.6	AVG	111	0.0	
7336.00		Н	54.0	-12.6	AVG	191	2.1	
7332.50	41.4		F40	-13.2	AVG	86	1.0	
7332.50 9752.67	40.8	V	54.0					
7332.50 9752.67 4875.00	40.8 38.8	Н	54.0	-15.2	AVG	201	1.4	
7332.50 9752.67 4875.00 9751.17	40.8 38.8 40.7	H H	54.0 54.0	-15.2 -19.9	AVG	0	1.0	
7332.50 9752.67 4875.00 9751.17 12188.75	40.8 38.8 40.7 49.8	H H H	54.0 54.0 74.0	-15.2 -19.9 -24.2	AVG PK	0 0	1.0 1.0	
7332.50 9752.67 4875.00 9751.17 12188.75 12172.67	40.8 38.8 40.7 49.8 49.3	H H H V	54.0 54.0 74.0 74.0	-15.2 -19.9 -24.2 -24.7	AVG PK PK	0 0 0	1.0 1.0 1.0	
7332.50 9752.67 4875.00 9751.17 12188.75 12172.67 4874.33	40.8 38.8 40.7 49.8 49.3 48.8	H H H V V	54.0 54.0 74.0 74.0 74.0	-15.2 -19.9 -24.2 -24.7 -25.2	AVG PK PK PK	0 0 0 0	1.0 1.0 1.0 1.0	
7332.50 9752.67 4875.00 9751.17 12188.75 12172.67 4874.33 7332.50	40.8 38.8 40.7 49.8 49.3 48.8 46.0	H H V V H	54.0 54.0 74.0 74.0 74.0 74.0 74.0	-15.2 -19.9 -24.2 -24.7 -25.2 -28.0	AVG PK PK PK PK	0 0 0 0 191	1.0 1.0 1.0 1.0 2.1	
7332.50 9752.67 4875.00 9751.17 12188.75 12172.67 4874.33	40.8 38.8 40.7 49.8 49.3 48.8	H H H V V	54.0 54.0 74.0 74.0 74.0	-15.2 -19.9 -24.2 -24.7 -25.2	AVG PK PK PK	0 0 0 191 111	1.0 1.0 1.0 1.0	
7332.50 9752.67 4875.00 9751.17 12188.75 12172.67 4874.33 7332.50 7336.00	40.8 38.8 40.7 49.8 49.3 48.8 46.0 45.8	H H V V H V	54.0 54.0 74.0 74.0 74.0 74.0 74.0 74.0	-15.2 -19.9 -24.2 -24.7 -25.2 -28.0 -28.2	AVG PK PK PK PK PK	0 0 0 0 191	1.0 1.0 1.0 2.1 0.0	
7332.50 9752.67 4875.00 9751.17 12188.75 12172.67 4874.33 7332.50 7336.00 9752.67	40.8 38.8 40.7 49.8 49.3 48.8 46.0 45.8 45.8	H H V V H V V	54.0 54.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0	-15.2 -19.9 -24.2 -24.7 -25.2 -28.0 -28.2 -28.2	AVG PK PK PK PK PK PK	0 0 0 191 111 86	1.0 1.0 1.0 2.1 0.0 1.0	
7332.50 9752.67 4875.00 9751.17 12188.75 12172.67 4874.33 7332.50 7336.00 9752.67 9751.17	40.8 38.8 40.7 49.8 49.3 48.8 46.0 45.8 45.8 45.3 44.2	H H V V H V H H H	54.0 54.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 7	-15.2 -19.9 -24.2 -24.7 -25.2 -28.0 -28.2 -28.2 -28.7 -28.7 -29.8	AVG PK PK PK PK PK PK PK	0 0 0 191 111 86 0 201	1.0 1.0 1.0 2.1 0.0 1.0 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10	
7332.50 9752.67 4875.00 9751.17 12188.75 12172.67 4874.33 7332.50 7336.00 9752.67 9751.17	40.8 38.8 40.7 49.8 49.3 48.8 46.0 45.8 45.8 45.3 44.2 For emiss	H H V V H H H H	54.0 54.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 7	-15.2 -19.9 -24.2 -24.7 -25.2 -28.0 -28.2 -28.2 -28.2 -28.7 -29.8 mds, the limi	AVG PK PK PK PK PK PK PK	0 0 0 191 111 86 0 201 /as used. Fo	1.0 1.0 1.0 2.1 0.0 1.0 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10	missions, the limit was set 20dB be

Elliott EMC Test Data Job Number: J68959 Client: Summit Data Communications T-Log Number: T69413 SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Model: Connectors Account Manager: Dean Eriksen Contact: Ron Seide Standard: 15.247 / 15.E / RSS-210 Class: N/A Run #2c: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11g High Channel @ 2462 MHz, Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 54 Mbps Fundamental Signal Field Strength: 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments dBµV/m V/H Pk/QP/Avg MHz Limit Margin degrees meters 2460.770 89.4 V ΡK 92 1.8 -2460.760 90.2 Η ΡK 17 1.0 -_ Fundamental emission level @ 3m in 100kHz RBW: 90.2 dBµV/m Limit for emissions outside of restricted bands: 70.2 dBµV/m Limit is -20dBc (Peak power measurement)

Band Edge Signal Field Strength

Dania Eago	ergnann		·gai					
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2483.570	51.2	V	54.0	-2.8	AVG	103	1.0	
2483.500	49.5	Н	54.0	-4.5	AVG	9	1.0	
2483.570	64.5	V	74.0	-9.5	PK	103	1.0	
2483.500	62.1	Н	74.0	-11.9	PK	9	1.0	

Client.	Summit D	ata Com	Dtt					lob Number:	168959
onent.					Module with A	Antonna		.og Number:	
Model:	Connector		. Ha/y Com	pactriasii		Апстиа		0	Dean Eriksen
Contact.	Ron Seide						710000	in manager.	
	15.247 / 1		S-210					Class:	N/A
				20 2500	0 MHz. Opera	ating Mode	002 11a	01033.	
High Chan	nel @ 2462 ting: 100%	2 MHz, 6, Larsor			3.8 dBi Gain, I	0	Ū		
Frequency		Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	Commonto	
4922.75	47.5	V	54.0	-6.5	AVG	255	2.0		
7382.75	46.9	V	54.0	-7.1	AVG	272	1.0		
7384.67	46.3	Н	54.0	-7.7	AVG	264	1.6		
12279.67	43.5	V	54.0	-10.5	AVG	0	1.0		
9839.08	41.7	V	54.0	-12.3	AVG	307	1.0		
9830.92	41.6	Н	54.0	-12.4	AVG	139	1.0		
4924.08	40.3	Н	54.0	-13.7	AVG	205	2.0		
4922.75	54.9	V	74.0	-19.1	PK	255	2.0		
7382.75	53.7	V	74.0	-20.3	PK	272	1.0		
7384.67	52.6	H	74.0	-21.4	PK	264	1.6		
12279.67	48.3	V	74.0	-25.7	PK	0	1.0		
4924.08 9830.92	46.6 46.4	H H	74.0 74.0	-27.4 -27.6	PK PK	205 139	2.0 1.0		
9839.08	40.4	V	74.0	-27.0	PK	307	1.0		
7037.00	40.1	v	74.0	-21.7	ΤK	307	1.0		
Note 1:					it of 15.209 wa ed in 100kHz.	as used. Fo	r all other e	missions, the	e limit was set 20dB below

Client:Summit Data CommunicationsJob Number:J68959Model:SDC-CF10AG 802.11a/g Compact Flash Module with Antenna
ConnectorsT-Log Number:T69413Account Manager:Dean EriksenContact:Ron SeideClass:N/A

RSS 210 and FCC 15.247 Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 11/19/2007 Test Engineer: Joseph Cadigal/Rafael Varelas Test Location: SVOATS #1 Config. Used: 1 Config Change: None EUT Voltage: Powered from Host System

General Test Configuration

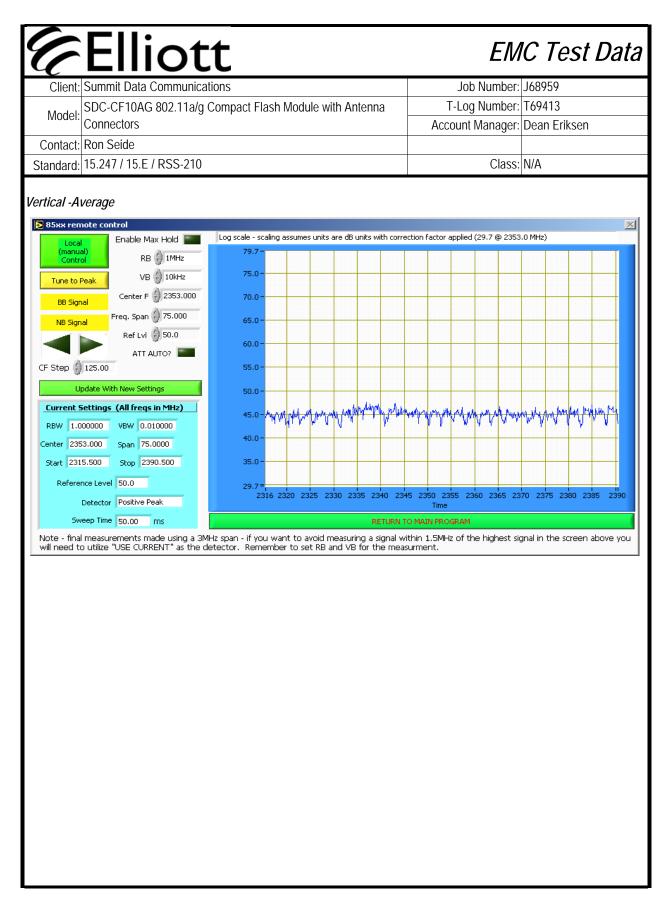
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	17.2 °C
	Rel. Humidity:	70 %

Summary of Results

Run #1	TX Mode	Channel	Power Setting	Pass/Fail	Margin
1a	b	1	Full	Pass	52.2dBµV/m (407.4µV/m) @
Id	U	I	T UII	F 055	2387.5MHz (-1.8dB)
1b	b	6	Full	Pass	52.3dBµV/m (412.1µV/m) @
U.	b	0	r uii	F 033	4874.0MHz (-1.7dB)
1c	b	11	Full	Pass	53.8dBµV/m (489.8µV/m) @
IC.	b	11	r uii	F 033	4924.0MHz (-0.2dB)
2a	a	1	Full	Pass	51.9dBµV/m (393.6µV/m) @
Zd	g	I	i uii	F 833	2389.4MHz (-2.1dB)
2b	a	6	Full	Pass	44.0dBµV/m (158.5µV/m) @
20	g	0	r uii	газэ	7310.7MHz (-10.0dB)
2c	a	11	Full	Pass	52.0dBµV/m (398.1µV/m) @
ZU	g		i uli	г d55	2483.5MHz (-2.0dB)

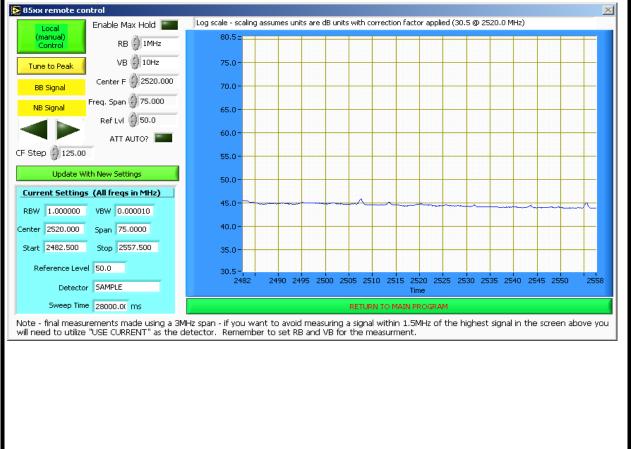

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

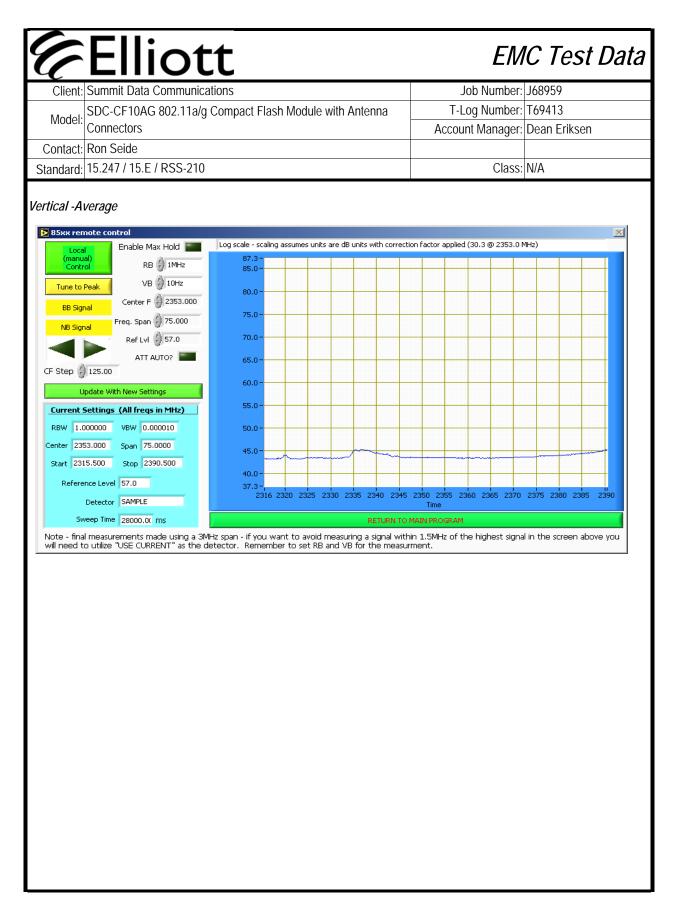
No deviations were made from the requirements of the standard.

C	EI	lic	ott	l 				EM	IC Test Data
Client:	Summit Da	ata Comi	munications				J	ob Number:	J68959
					Module with	Antenna	T-L	og Number:	T69413
Model:	Connector	ſS				/ Intornita		0	Dean Eriksen
	Ron Seide								
Standard:	15.247 / 1	5.E / RS	S-210					Class:	N/A
Run #1: Ra Ambient			Те	emperature:	17		302.11b		
l			Ke	l. Humidity:	50	%			
Note:		-			-	-			nce only, final level by 5.6dB.
Note:	Horizontal	measure	ements were	e not taken	due to previ	ous test that s	showed vert	tical measure	ements were higher.
Power Sett Fundament Frequency MHz	tal Signal I Level dBµV/m	Field Str Pol V/H	re ngth: 15.209 / Limit	/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
2410.300	110.0	V	-	-	AVG	5	1.3	11Mbs	
2410.300	112.4	V	-	-	PK	5	1.3	11Mbs	
Fundamo	ntal omissi	on loval (@ 3m in 10(112.2	4D\//m	1		
			ide of restric			dBµV/m dBµV/m	l imit is _20	dRr (Doak r	oower measurement)
LIIIII				Jieu Dalius.	93.3	υσμν/Π		άδι (Γεάκ μ	ower measurement)



Client:			munications					Job Number:			
Model:	SDC-CF1 Connecto		.11a/g Com	pact Flash	Module with	Antenna		Log Number:			
Combook							ACCO	unt Manager:	Dean Eriksen		
	Ron Seid		0.010					01			
Standard:	15.2477	15.E / RS	5-210					Class:	N/A		
/ertical - P	Peak										
🔁 85хх гета		ile Max Hold	Log:	scale - scaling as	ssumes units are d	B units with corre	ection factor app	lied (29.7 @ 2353.	0 MHz)	2	
Local (manual)		RB 🖉 1MF		79.7-						Т	
Control				75.0-						4	
Tune to Pe											
BB Signa	1	er F 🕣 2353		70.0-						T	
NB Signa	· · · · ·	5pan 🕣 75.0		65.0-						+	
		° L∨I 🚽 50.0		60.0-						+	
CF Step 🎒	-	ATT AUTO?		55.0							
				W/M	HAMMAN /	MWWWWWW	MMMM	WANNAM LANG MAN	MANNAM MANY MANY		
	date With New	-		50.0-			i i i i i i i i i i i i i i i i i i i			+	
	ettings (All f			45.0-						+	
RBW 1.00		1.000000		40.0-						4	
Center 2353		75.0000	-								
Start 2315	.500 Stop	2390.500		35.0-						Ť	
Referenc	te Level 50.0			29.7=	20 2325 2330	2335 2340 22	45 2350 2355	2360 2365 227	70 2375 2380 2385 2	2390	
D	etector Posit	ive Peak		2010-202	2020 2000	2000 2010 20	43 2330 2333 Time	2000 2000 201	2010 2000 2000 2		
	ep Time 50.0						FO MAIN PROGR				
					t to avoid measu to set RB and \			f the highest sig	nal in the screen above	you	
Band Edge	· · ·			/ 15.247	Detector	۸ – insuith	Lloight	Commonto			
Frequency MHz		Pol v/h	Limit		Detector Pk/QP/Avg	Azimuth	Height meters	Comments			
2387.500	dBμV/m 52.2	VII	54.0	Margin -1.8	AVG	degrees 116	1.3				
2387.500	58.7	V	74.0	-15.3	PK	116	1.3	1			
	00.7	L V	,	10.0			1.0				
Other Spur	ious Emis	ssions									
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
4823.950	50.3	V	54.0	-3.7	AVG	19	1.2				
7234.690	48.5	V	54.0	-5.5	AVG	12	1.3				
4823.950	57.5	V V	74.0	-16.5	PK DK	19	1.2				
7234.690	53.3	V	74.0	-20.7	PK	12	1.3				

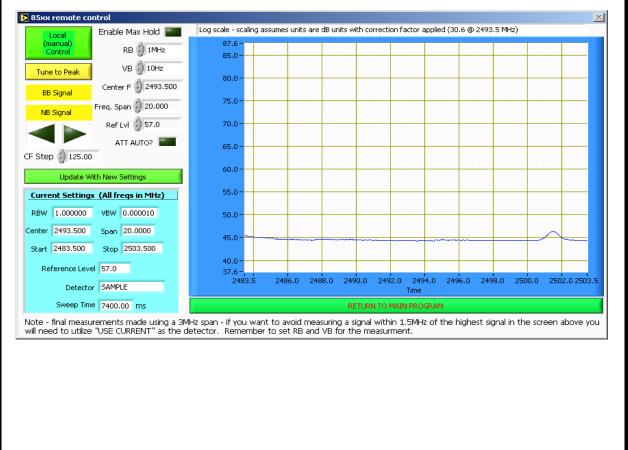
								lob Number:	J68959
					Module with	Antenna		.og Number:	
MODEL	Connector		- J					•	Dean Eriksen
Contact:	Ron Seide								
Standard:	15.247 / 1	5.E / RSS	S-210					Class:	N/A
ower Sett	Center Cha ing: 100%				104		1		
			$\frac{2}{2}$ 3m in 100 de of restric)kHz RBW:		dBμV/m dBμV/m	Limitic 20	dRc (Dook r	ower measurement)
LIIIII				leu Danus.	04	αвμν/п		ирс (реак р	
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
874.020	52.3	V	54.0	-1.7	AVG	9	1.3		
309.770	49.5	V	54.0	-4.5	AVG	347	1.3	 	
874.020 309.770	58.8 54.4	V V	74.0 74.0	-15.2 -19.6	PK PK	9 347	1.3 1.3		
					t of 15.209 w d in 100kHz.		or all other e	missions, the	e limit was set 20dB b
							or all other e	missions, the	e limit was set 20dB b


Elliott EMC Test Data Job Number: J68959 Client: Summit Data Communications T-Log Number: T69413 SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Model: Connectors Account Manager: Dean Eriksen Contact: Ron Seide Standard: 15.247 / 15.E / RSS-210 Class: N/A Run #1c: High Channel @ 2462 MHz Power Setting: 100% Fundamental Signal Field Strength: Frequency Level 15.209 / 15.247 Detector Pol Azimuth Height Comments dBµV/m V/H Pk/QP/Avg MHz Limit Margin degrees meters 2464.500 103.7 V AVG 78 1.3 --2464.500 V ΡK 78 1.3 112.3 -_ Fundamental emission level @ 3m in 100kHz RBW: 107 dBµV/m Limit for emissions outside of restricted bands 87 dB_µV/m Limit is -20dBc (Peak power measurement)

Vertical - Average

			munications 11a/g Com		Modu	Ile with	∆nt⊝r	na				lumbe lumbe					
Model:	Connecto	rs	. Hay com		mout		Antoi	ina	A			anage				en	
Contact	Ron Seide	3										5					
Standard	: 15.247 / 1	5.E / RS	S-210									Clas	ss: N	/A			
	1																
/ertical - F	Peak																
🔁 85xx rei	mote control		i 📰 loc	; scale - scaling ;	accumer	tupita are i	-B upite	with corre	ction fact	or appli	ed (30	5 @ 25	20.0 M	H2)			
Loca (manu		ble Max Hold		80.5 =	assumes	sumus are i	JD UNICS	with corre	cuonnacu	or appli	eu (30.	.ວ @ 2ວ	20.0 M	n2)			_
Conti	rol	RB 💮 1M															
Tune to		VB 🌖 1M		75.0-													
BB Sig	nal Cer	nter F 🍎 252	20.000	70.0-	_				_								_
NB Sigi	nal Freq.	Span 🔵 75.	000	65.0-													
		ef Lvi 🍎 50.1	0														
		ATT AUTO?		60.0-													
CF Step 🗧	125.00			55.0-h	, 101 H	MAN MANN	MA.	Million with	in/hithman	White White	White	AMAN	HUN AM	Ashell	highline	hmil	N.
) (Jpdate With Nev	v Settings		۲ 50.0-	h i.	1 1 11 11 11 11 11 11 11 11 11 11 11 11			1. h	ur, dl.	rų ir	Part of the second seco	1. Yr	n wwn	and.	ryn i ru	- 11
Current	Settings (All	freqs in MH	lz)														
RBW 1.	000000 VBV	1.000000		45.0-													
Center 25	20.000 Spa	n 75.0000		40.0-													
Start 24	82.500 Sto	p 2557.500		35.0-													
Refere	ence Level 50.1	2		30.5 -					_								
	Detector Pos	itive Peak		2482	2490	2495 25	00 25	05 2510		, 520 25 me	25 25	30 25	35 25	40 25	45 25	50	2558
Sv	weep Time 50,1	00 ms						RETURN T			M						
			sing a 3MHz sp							MHz of	the h	ighest	signal	in the	scree	n abo	ve you
will need t	to utilize "USE	CURRENT"	as the detect	or. Remembe	r to se	t RB and	VB for	the meas	urment.								
		<u> </u>	15.000	45.047					.								
-		Pol		/ 15.247		tector		imuth	Hei	¥	Con	nmer	nts				
	dBµV/m 52.1	V/H V	Limit 54.0	Margin		2P/Avg		grees	me		╞						
MHz		V	54.0 74.0	-1.9 -12.9	-	AVG PK		301 301	1.								
MHz 2483.510			/ +.0	-12.7	1	I IN		101	<u> </u>	J	I						
Frequency MHz 2483.510 2483.510	61.1	V												eme	nts.		
MHz 2483.510 2483.510	61.1			narker delt	a valı	ues from	n the f	undam	ental fi	eld si	trena	th me	tasui				
MHz 2483.510	61.1		racting the r	marker delt	a valı	ues from	n the f	fundam	ental fi	eld si	treng	th me	easul				
MHz 2483.510 2483.510 Note 1:	61.1	d by subt		marker delt	a valı	ues from	the t	undam	ental fi	eld si	treng	th me	easu				
MHz 2483.510 2483.510 Note 1: Dther Spui Frequency	61.1 Calculated	d by subti s sions Pol	racting the r 15.209	marker delt / 15.247	De	tector		undam	ental fi Hei		-	th me nmer					
MHz 2483.510 2483.510 lote 1: Dther Sput Frequency MHz	61.1 Calculated rious Emis Level dBµV/m	d by subti s sions Pol V/H	racting the r 15.209 Limit	/ 15.247 Margin	De Pk/0	tector 2P/Avg	Az de	imuth grees	Hei met	ght ters	-						
MHz 2483.510 2483.510 Jote 1: Jote 1: Other Spur Frequency MHz 4924.020	61.1 Calculated rious Emis Level dBµV/m 53.8	d by subti ssions Pol V/H V	racting the r 15.209 Limit 54.0	/ 15.247 Margin -0.2	De Pk/0	tector 2P/Avg	Az	imuth grees 157	Hei met	ght ters .5	-						
MHz 2483.510 2483.510 Note 1: Note 1: Dther Sput Frequency MHz 4924.020 7384.770	61.1 Calculated rious Emiss Level dBμV/m 53.8 51.6	d by subtr ssions Pol V/H V V	racting the r 15.209 Limit 54.0 54.0	/ 15.247 Margin -0.2 -2.4	De Pk/0 <i>F</i>	tector 2P/Avg AVG AVG	Az	imuth grees 157 351	Hei met	ght iers 5	-						
MHz 2483.510 2483.510 Note 1: Dther Spui Frequency	61.1 Calculated rious Emis Level dBµV/m 53.8	d by subti ssions Pol V/H V	racting the r 15.209 Limit 54.0	/ 15.247 Margin -0.2	De Pk/0	tector 2P/Avg	Az	imuth grees 157	Hei met	ght ters 5 0	-						

		•							
C	EI		Dtt					EM	IC Test Data
			munications				J	ob Number:	J68959
Model	Model: SDC-CF10AG 802.11a/g Compact Flash Module with Antenna							og Number:	T69413
	Connector						Accou	nt Manager:	Dean Eriksen
	Ron Seide								
Standard:	15.247 / 1	5.E / RS	S-210		Class:	N/A			
Run #2: Ra	adiated Sp	urious I	Emissions,	30 - 25000	MHz. Opera	ating Mode: 8	802.11g		
Ambient	Conditio	ns:	Te	emperature:	8	°C			
			Re	l. Humidity:	71	%			
NI-1	All tests w	ill be per	formed in d	ata rate of 5	4Mbps. Ave	erage band e	dge plots ar	e for referen	ce only, final
Note:	measurem	nents ma	de with VB=	=1khz to avo	oid desensiti	zation at 10H	z which red	uced signal	level by 6.6dB.
Note:	Horizontal	measur	ements wer	e not taken	due to previ	ous test that	showed vert	ical measur	ements were higher.
Run #2a: L Power Sett	ing: 100%								
Fundament Frequency		Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg		meters	Comments	
2410.070	101.7	V	-	-	AVG	79	1.3	54Mbs	
2410.070	110.6	V	-	-	PK	79	1.3	54Mbs	
Fundama	atal amiaci	on lovel	@ 2m in 10		101.0		1		
			ide of restri	OkHz RBW:		dBµV/m dBµV/m	Limitis -20	dRc (Doak r	oower measurement)
LIIIII					01.5	υσμν/π		αρς (εσακ μ	



Client.			munications							Numb				
Model:	SDC-CF1 Connecto		2.11a/g Com	pact Flash	Module with	Antenna	3		U	Numb				
Contact	Ron Seide							ACC	Countr	Manag	er: De	ean E	Inksei	1
	15.247 / 1		S_210							Clas	ss: N/	Λ		
		J.L / KJ	5-210							Cia	33. 11/	~		
ertical - F	mote control					les a al			h Líos			,		
Loc (man	a	able Max Ho		scale - scaling a 87.3 -	issumes units are o	18 units with	correcti	ion factor a	pplied (3U	1.3 @ 235	3.U MHz	2)		
Con	trol	RB 💮 1		85.0-						-				
Tune to		VB 🕘 1		80.0-						_	-	-		
BB Si	gnai	nter F 🍎 23		75.0-										
NB Sig	gnal	. Span 🍎 75												
		ef Lvl 🍦 57		70.0-										
CF Step	125.00	ATT AUTO?		65.0-										
	<i></i>	uu Cabbin		60.0-		-								
	Update With Ne			55.0-11.1		. In Mal	h.t.t.	i dan Ar				1.0	1111	N/M
	Settings (Al		_		(AMANANA)	MANAN. IAN	WWW	VWW	MANA	y water in	WW	MMM	MAMA	4V 14
RBW 1 Center 2		W 1.00000	-	50.0-										
Start 2		op 2390.50		45.0-										
	_			40.0-										
Refer	ence Level 57		_	37.3- <mark> </mark> 2316-23	20 2325 2330	2335 2340	2345		55 2360	2365 2	370 23	 375 23	380 238	5 2390
-	Detector Po					DET	IDM TO 1		ED AM					
	· · · ·		using a 3MHz sn	an - if you war	nt to avoid meas					niahest «	signal in	the s	creen a	bove voi
	e Signal Fi				r to set RB and Y	Azim		rment. Heigt	nt ICo	ommer	nts			
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg			meter			11.5			
2389.430	51.9	V	54.0	-2.1	Avg	79		1.3						
2389.580	64.5	V	74.0	-9.5	PK	79		1.3						
	rious Emis		45.000	45.017										
requency		Pol		/ 15.247	Detector	Azim		Heigh		ommer	IIS			
MHz 235.870	dBµV/m 43.4	v/h V	Limit 54.0	Margin -10.6	Pk/QP/Avg AVG	degre 286		meter 1.3	2					
200.010	43.4	V	54.0 54.0	-10.8	AVG	176		1.3						
	-TI.J													
1822.750 7235.870	50.1	V	74.0	-23.9	PK	286) [1.3						

			btt nunications			Job Number:	J68959		
					Module with	Antenna		og Number:	
Model:	Connector		5					0	Dean Eriksen
Contact:	Ron Seide								
Standard:	15.247 / 1	5.E / RSS	S-210		Class:	N/A			
ower Sett	Center Cha ing: 100%			OkHz RBW:	101 1	dBµV/m	1		
			de of restric			dBμV/m dBμV/m	l imit is -20)dBc (Peak r	oower measurement)
Linit					01.1	ασμνιπ			
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
310.670	44.0	V V	54.0 54.0	-10.0	AVG	331	1.0		
			54 ()	-11.4	AVG	185	1.1		
	42.6			າາ າ		001			
	50.8 49.7 For emissi	V V ons in re	74.0 74.0 stricted bar		PK PK t of 15.209 w d in 100kHz.		1.0 1.1	missions, the	e limit was set 20dB b
310.670 873.960	50.8 49.7 For emissi	V V ons in re	74.0 74.0 stricted bar	-24.3 nds, the limit	PK t of 15.209 w	185 vas used. Fo	1.1	missions, the	e limit was set 20dB b
310.670 873.960	50.8 49.7 For emissi	V V ons in re	74.0 74.0 stricted bar	-24.3 nds, the limit	PK t of 15.209 w	185 vas used. Fo	1.1	missions, the	e limit was set 20dB b

Elliott EMC Test Data Job Number: J68959 Client: Summit Data Communications T-Log Number: T69413 SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Model: Connectors Account Manager: Dean Eriksen Contact: Ron Seide Standard: 15.247 / 15.E / RSS-210 Class: N/A Run #2c: High Channel @ 2462 MHz Power Setting: 100% Fundamental Signal Field Strength: Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments dBµV/m V/H Pk/QP/Avg MHz Limit Margin degrees meters 2460.400 93.2 V AVG 185 1.0 --2460.400 V ΡK 185 1.0 108.7 -_ Fundamental emission level @ 3m in 100kHz RBW: 99.7 dBµV/m Limit for emissions outside of restricted bands 79.7 dBuV/m Limit is -20dBc (Peak power measurement)

Vertical - Average

Client:			munications					Job Number:	
Model:			.11a/g Com	pact Flash	Module with	Antenna		og Number:	
Contact	Connecto Ron Seide						Accou	int Manager:	Dean Eriksen
	15.247 / 1		S-210					Class:	N/A
Stariuaru.	13.24771	5.L / 105	5-210					01033.	
/ertical - P	Peak								
💽 85жж	remote contr	•ol :nable Max H		on scale - scaling	g assumes units are	e dB upits with corr	rection factor and	alied (30.6 @ 2493	5 MHz)
(m.	anual)			87.6-					
		RB 🔂 1MHz		85.0-					
	to Peak	Center F 쉬		80.0-					
	Fri	eq. Span 🌒		75.0-					
NB	Signal	Ref Lvl		70.0-					
		ATT AUT		65.0-					
CF Step	125.00			L					
	Update With	New Settings		60.0-		Maria	11		
Curre	nt Settings (All freqs in I	MHz)	55.0-	WWWWWW	AND	MANANAN	NAME AND A STREET	WANTAKA ALAMA WANYA MANJAN
RBW	1.000000	VBW 1.0000	00	50.0-	der en til st	, with , a	and could a	end A and	* ·1 ·1 · · · · · · · · · · · ·
Center	2493.500	5pan 20.000	10	45.0-					
Start	2483.500	Stop 2503.5	500	40.0-					
Ref	erence Level	57.0		37.6-					8.0 2500.0 2502.0 2503.5
	Detector	Positive Peak		2483.5	2486.0 24	188.0 2490.0	2492.0 2494. Time	0 2496.0 249	8.0 2500.0 2502.0 2503.5
J	Sweep Time						TO MAIN PROGR		
					ant to avoid me per to set RB and			of the highest si	gnal in the screen above you
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
2483.500	52.0	V	54.0	-2.0	Avg	185	1.0		
2483.510	63.3	V	74.0	-10.7	PK	185	1.0		
Other Spur	ious Emis	sions							
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
7384.920	44.6	V	54.0	-9.4	AVG	166	1.0		
4921.920	44.2	V	54.0	-9.8	AVG	229	1.9		
4921.920	52.2 51.2	V V	74.0 74.0	-21.8 -22.8	PK PK	229	1.9 1.0		
7384.920	01.Z	V	74.0	-22.ŏ	۲Ň	166	1.0		
	For emiss	ions in re	estricted bar	nds, the limi	t of 15.209 w	as used. Fo	r all other e	missions. the	e limit was set 20dB be
Note 1:									

Elliott EMC Test Data Job Number: J68959 Client: Summit Data Communications T-Log Number: T69413 SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Model: Connectors Account Manager: Dean Eriksen Contact: Ron Seide Standard: 15.247 / 15.E / RSS-210 Class: N/A **RSS 210 and FCC 15.247 Radiated Spurious Emissions** Test Specific Details The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective: specification listed above.

Date of Test: 11/27/2007 & 12/19/07 Test Engineer: Suhaila Khushzad Test Location: SVOATS #2 Config. Used: 1 Config Change: None EUT Voltage: Powered from Host System

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	11.7 °C
	Rel. Humidity:	63 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1 (802.11b Mode)	RE, 30 - 10000 MHz	RSS-GEN	Pass	41.4dBµV/m (117.5µV/m) @
	Spurious Emissions	K33-GEN	Pass	2187.3MHz (-12.6dB)
2 (802.11g Mode)	RE, 30 - 10000 MHz	RSS-GEN	Pass	38.1dBµV/m (80.4µV/m) @
	Spurious Emissions	K33-GEN	Pass	9724.3MHz (-15.9dB)
3 (802.11a - 5785	RE, 30 - 16000 MHz -	RSS-GEN	Pass	38.2dBµV/m (81.3µV/m) @
MHz)	Spurious Emissions	K33-GEN	Pass	11569.3MHz (-15.8dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

			Dtt					Job Number:	J68959
Madal	SDC-CF10)AG 802	.11a/g Com	pact Flash	Module with A	Antenna	T-l	og Number:	T69413
Model:	Connector	S	-	-			Αссоι	int Manager:	Dean Eriksen
Contact:	Ron Seide								
Standard:			S-210					Class:	N/A
				nissions 3	0 - 10000 MI	lz Oporatin	a Modo: 8		
	ni Antenn Innel @ 24	a with 2 137 MHz	.3dBi Gain				g mode. of	52.115	
requency	Level	Pol		-GEN	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2187.330	41.4	H	54.0	-12.6	AVG	325	1.5	ļ	
1287.500	38.0	V	54.0	-16.0	AVG	317	1.0		
9676.500	36.9	H	54.0	-17.1	AVG	101	1.0		
3937.330	36.7 24 F	H V	54.0	-17.3	AVG	114	1.0		
9643.000	36.5	V V	54.0	-17.5	AVG	29 251	1.0 1.0		
7187.000 7163.500	34.4 34.0	<u> </u>	54.0 54.0	-19.6 -20.0	AVG AVG	251 146	1.0		
2187.500	34.0	<u>н</u> V	54.0 54.0	-20.0	AVG	26	1.0		
3497.000	32.5	V	54.0 54.0	-20.0	AVG	20	1.0		
4970.000	32.5	 H	54.0	-21.5	AVG	150	2.0		
4863.500	30.5	V	54.0	-23.5	AVG	217	1.0		
9676.500	48.3	H	74.0	-25.7	PK	101	1.0		
3937.330	48.1	H	74.0	-25.9	PK	114	1.0		
9643.000	48.1	V	74.0	-25.9	PK	29	1.0		
1013.917	28.0	H	54.0	-26.0	AVG	306	1.0		
7187.000	46.2	V	74.0	-27.8	PK	251	1.0		
7163.500	45.5	Н	74.0	-28.5	PK	146	1.0		
2187.330	43.4	Н	74.0	-30.6	PK	325	1.5		
4970.000	42.8	Н	74.0	-31.2	PK	150	2.0		
3497.000	42.2	V	74.0	-31.8	PK	0	1.0		
4863.500	41.8	V	74.0	-32.2	PK	217	1.0		
2187.500	40.3	V	74.0	-33.7	PK	26	1.0		
1013.917	33.5	Н	74.0	-40.5	PK	306	1.0		
1287.500	33.0	V	74.0	-41.0	PK	317	1.0		
30.000	25.3	H	40.0	-14.7	QP	0	1.0		
30.000	25.0	V	40.0	-15.0	QP	360	1.0		
150.000	26.0	V	43.5	-17.5	QP	360	1.0		
290.000	27.0	H	46.0	-19.0	QP	330	1.0		
320.000	27.0	V	46.0	-19.0	QP OP	360	1.0		
250.000 150.000	26.0 23.4	H H	46.0	-20.0	QP QP	360 0	1.0		
708.000	23.4 24.5	н V	43.5	-20.1	QP QP	360	1.0 1.0		
	24.0	V	46.0 46.0	-21.5 -25.0	QP QP	<u> </u>	1.0	<u> </u>	

C	EI	lic	ott					EM	C Test Data
Client:	Summit D	ata Com	munications	5				Job Number:	J68959
Madal	SDC-CF1	0AG 802	2.11a/g Com	pact Flash	Module with	Antenna	T-L	og Number:	T69413
Model:	Connector		0				Accou	int Manager:	Dean Eriksen
Contact:	Ron Seide)							
Standard:	15.247 / 1	5.E / RS	S-210					Class:	N/A
	nni Antenn annel @ 2	a with 2 437 MHz	3dBi Gain		0 - 10000 Mi 54 Mbps	Hz. Operatin	ig Mode: 80	02.11g	
Frequency		Pol	PSS.	-GEN	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
9724.33	38.1	V	54.0	-15.9	AVG	46	1.0		
12152.33	38.0	H	54.0	-16.0	AVG	0	1.0		
12144.16	37.9	V	54.0	-16.1	AVG	0	1.0		
9724.25	36.7	H	54.0	-17.3	AVG	130	1.0		
4851.58	35.3	H	54.0	-18.7	AVG	131	1.0		
7322.17	33.8	Н	54.0	-20.2	AVG	2	1.0		
7308.33	33.4	V	54.0	-20.6	AVG	229	1.0		
4851.58	51.5	Н	74.0	-22.5	PK	131	1.0		
4845.33	31.4	V	54.0	-22.6	AVG	356	2.4		
12144.16	49.4	V	74.0	-24.6	PK	0	1.0		
12152.33	49.4	Н	74.0	-24.6	PK	0	1.0		
9724.33	48.5	V	74.0	-25.5	PK	46	1.0		
9724.25	48.3	Н	74.0	-25.7	PK	130	1.0		
4845.33	48.2	V	74.0	-25.8	PK	356	2.4		
7322.17	45.3	Н	74.0	-28.7	PK	2	1.0		
7308.33	44.1	V	74.0	-29.9	PK	229	1.0		
Note 1:					t of 15.209 w d in 100kHz.		r all other e	missions, the	e limit was set 20dB below

Model: SDC-CF10AG 802.11a/g Compact Flash Module with A Connectors Intact: Ron Seide Indard: 15.247 / 15.E / RSS-210 # 3: Rx Mode Radiated Spurious Emissions, 30 - 16000 MH	Antenna	T-L Accou	og Number: T69413						
ndard: 15.247 / 15.E / RSS-210		Accou							
ndard: 15.247 / 15.E / RSS-210									
	rd: 15.247 / 15.E / RSS-210								
* 2: Dy Modo Dadiatod Spurious Emissions 30 16000 MH			Class: N/A						
i Antenna with 5dBi Gain, Data Rate 54 Mbps er Channel @ 5785 MHz	Iz. Operatin	-)2.11a						
	fig Change:								
6	0 0		om Host System						
			J						
Spurious Emissions									
ency Level Pol RSS-GEN Detector	Azimuth	Height	Comments						
z dBμV/m v/h Limit Margin Pk/QP/Avg 2.27 38.2 H 54.0 -15.8 AVG	degrees 157	meters 1.8							
15 38.2 H 54.0 -15.8 AVG	262	1.8							
15 38.1 V 54.0 -13.9 AVG 63 34.6 V 54.0 -19.4 AVG	202	1.0							
21 33.2 H 54.0 -20.8 AVG	46	1.0							
15 50.1 V 74.0 -23.9 PK	262	1.0							
.27 49.5 H 74.0 -24.5 PK	157	1.8							
63 46.9 V 74.0 -27.1 PK	28	1.0							
21 44.5 H 74.0 -29.5 PK	46	1.0							

Client: Summit Data Communications Job Number: J68959 Model: SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors T-Log Number: T69413 Contact: Ron Seide Account Manager: Dean Eriksen Standard: 15.247 / 15.E / RSS-210 Class: N/A

RSS 210 and FCC 15.247 Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 12/19/2007 Test Engineer: Suhaila Khushzad Test Location: SVOATS # 2 Config. Used: 1 Config Change: None EUT Voltage: Powered form Host System

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	14.4 °C
	Rel. Humidity:	53 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1 (802.11b Mode)	RE, 30 - 10000 MHz - Spurious Emissions	RSS-GEN	Pass	37.7dBµV/m @ 12180.5MHz (-16.3dB)
2 (802.11g Mode)	RE, 30 - 10000 MHz - Spurious Emissions	RSS-GEN	Pass	37.9dBµV/m @ 12163.1MHz (-16.1dB)
3 (802.11a - 5785 MHz)	RE, 30 - 16000 MHz - Spurious Emissions	RSS-GEN	Pass	38.2dBµV/m (81.3µV/m) @ 11568.5MHz (-15.8dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

			btt nunications				J	lob Number:	J68959
					Module with A	Antenna		og Number:	
Model:	Connector		i ru/g oom			lineinia		0	Dean Eriksen
Contact	Ron Seide						710000	ni managen.	Dean Enksen
	15.247 / 1		5-210					Class:	N/A
				alaalama 1	80 - 10000 MH	la Onorotin	a Mada, 00		
arson PC Center Ch		a with 3.8 437 MHz	, 8 dBi Gain,			·	5		
requency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
12180.50	37.7	V	54.0	-16.3	AVG	0	1.0		
2167.33	37.6	Н	54.0	-16.4	AVG	0	1.0		
9728.83	36.6	V	54.0	-17.4	AVG	184	1.0		
9736.92	36.2	Н	54.0	-17.8	AVG	29	1.0		
4851.50	34.5	Н	54.0	-19.5	AVG	136	1.0		
7320.25	33.7	Н	54.0	-20.3	AVG	151	1.0		
7320.42	33.7	V	54.0	-20.3	AVG	202	1.0		
4851.00	31.2	V	54.0	-22.8	AVG	37	1.0		
2180.50	49.3	V	74.0	-24.7	PK	0	1.0		
2167.33	49.2	Н	74.0	-24.8	PK	0	1.0		
4851.50	48.5	H	74.0	-25.5	PK	136	1.0		
9728.83	48.5	V H	74.0 74.0	-25.5	PK PK	184 29	1.0 1.0		
9736.92 7320.25	47.4 45.5	H H	74.0	-26.6 -28.5	PK PK	 151	1.0		
7320.25	45.2	V	74.0	-28.8	PK	202	1.0		
4851.00	44.9	V	74.0	-20.0	PK	37	1.0		
1031.00	77.7	v	74.0	-27.1		57	1.0		
ote 1:					it of 15.209 w. d in 100kHz.	as used. For	r all other e	missions, the	e limit was set 20dB bel

			<u>ott</u>				I		IC Test Data
Client:			nunications					lob Number:	
Model:			.11a/g Com	pact Flash	Module with	Antenna		og Number:	
	Connector						Accou	nt Manager:	Dean Eriksen
Contact:	Ron Seide	;							
Standard:	15.247 / 1	5.E / RS	S-210					Class:	N/A
Run # 2: R	x Mode Ra	diated S	purious En	nissions, 3	0 - 10000 MI	Hz. Operatin	g Mode: 80)2.11g	
Center Ch	annel @ 24	437 MHz	8 dBi Gain,	Data Rate	54 Mbps				
Other Spu		1	15 200	15 047	Datasta	A ' 1 h	11.2.1.1	0	
Frequency	Level	Pol	15.209 /		Detector	Azimuth	Height	Comments	
MHz 12163.10	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
12163.10	37.9 37.7	H V	54.0 54.0	-16.1 -16.3	AVG AVG	128 14	1.0 1.0		
9727.17	37.7	H	54.0 54.0	-16.3	AVG	58	1.0		
9723.17	36.3	V	54.0	-17.5	AVG	0	1.0		
4851.25	35.3	H	54.0	-18.7	AVG	130	1.0		
7330.83	33.7	H	54.0	-20.3	AVG	0	1.0		
7331.00	33.6	V	54.0	-20.4	AVG	237	1.0		
4851.42	33.0	V	54.0	-21.0	AVG	196	1.9		
12163.10	50.2	Н	74.0	-23.8	PK	128	1.0		
4851.42	49.5	V	74.0	-24.5	PK	196	1.9		
4851.25	48.9	Н	74.0	-25.1	PK	130	1.0		
12142.42	48.7	V	74.0	-25.3	PK	14	1.0		
9723.17	48.2	V	74.0	-25.8	PK	0	1.0		
9727.17	48.1	Н	74.0	-25.9	PK	58	1.0		
7330.83	45.9	Н	74.0	-28.1	PK	0	1.0		
7331.00	45.0	V	74.0	-29.0	PK	237	1.0		
Note 1:				-	t of 15.209 w d in 100kHz.	as used. Fo	r all other e	missions, the	e limit was set 20dB belov

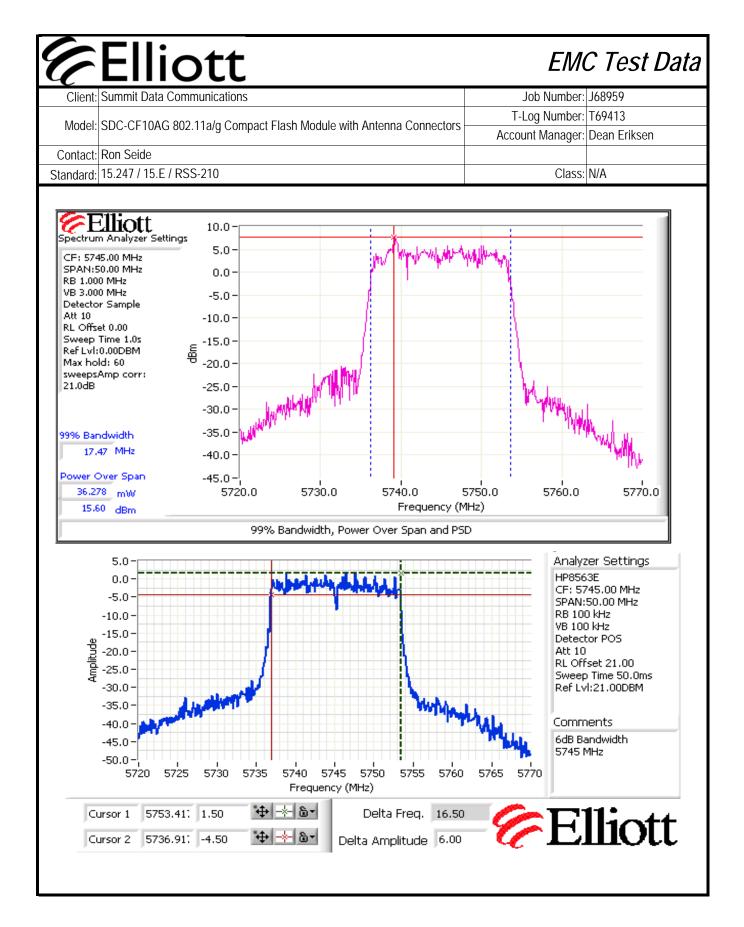
			ott					EM	
Client:			munications					ob Number:	
Model:			.11a/g Com	pact Flash	Module with	Antenna		og Number:	
	Connector						Accou	nt Manager:	Dean Eriksen
	Ron Seide								
Standard:	15.247 / 1	5.E / RS	S-210					Class:	N/A
Laird Anter Center Cha Dat Test	nna with 5 innel @ 57 te of Test: Engineer:	dBi Gair 785 MHz 1/22/200 Rafael V	n, Data Rate 08 Varelas		Co	Hz. Operatin Config. Used: nfig Change:	1 None		
Test	Location:	SVOATS	S #1		E	UT Voltage:	Powered fr	om Host Sy	stem
Othor Sour	ious Emis	cione							
Other Spur Frequency		Pol	15 200	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	COMMENIS	
11568.50	<u>ивµv/ш</u> 38.2	H	54.0	-15.8	AVG	255	1.3	1	
11568.86	38.1	V	54.0	-15.9	AVG	146	1.0		
5786.25	33.2	H	54.0	-20.8	AVG	167	1.0		
5784.14	32.9	V	54.0	-21.1	AVG	8	1.0		
11568.50	49.9	H	74.0	-24.1	PK	255	1.3		
11568.86	49.6	V	74.0	-24.4	PK	146	1.0		
5786.25	45.9	H	74.0	-28.1	PK	167	1.2		
5784.14	43.8	V	74.0	-30.2	PK	8	1.0		

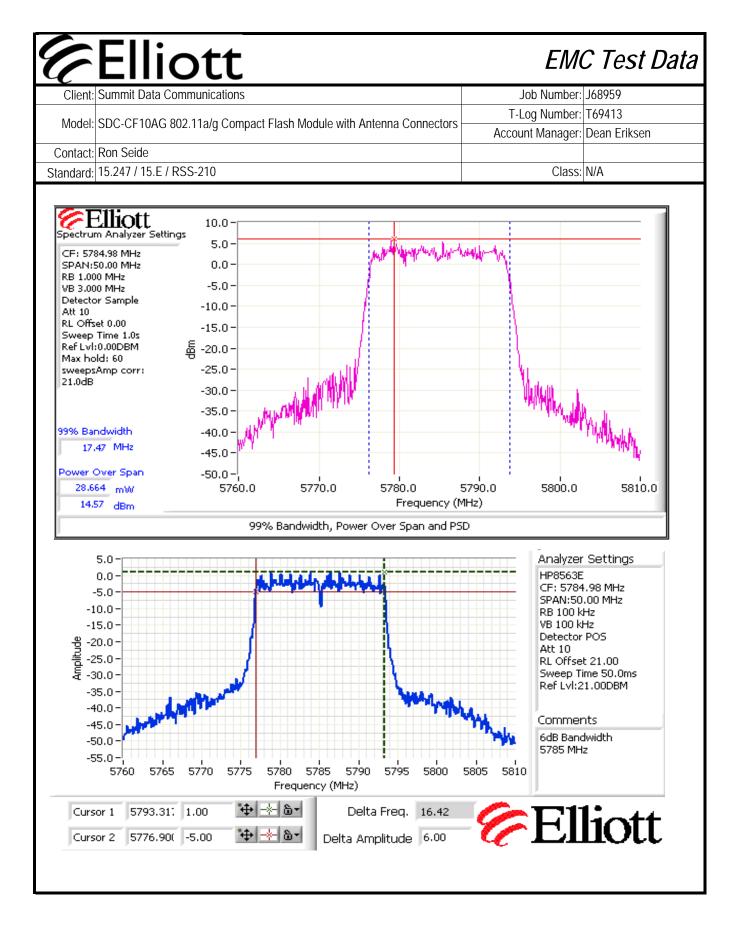
	ata Communications DAG 802.11a/g Compact Flash Module w		JU	b Number:	500707
Contact: Ron Seide	.		T-Lo	g Number:	T69413
		ith Antenna Connecto	nrc	0	Dean Eriksen
Standard: 15.24771				Class:	N1/A
).E / K33-210			CIASS.	IV/A
RSS	210 and FCC 15.247 (D Power, PSD, Bandwid				ments
Fest Specific Deta					
Objectiv	The objective of this test session is to	perform final qualificat	tion testing of the	EUT with re	espect to the
Test Enginee	t: 2/28/2008 r: Rafael Varelas n: Fremont Chamber #4	Config. Use Config Chang Host Unit Volta	ge: None		
General Test Con			ge 120V/60Hz enuator. All mea	surements v	were made on a sing
General Test Con The EUT was conne chain.	figuration cted to the spectrum analyzer or power n ave been corrected to allow for the extern	neter via a suitable att		surements v	were made on a sing
General Test Con The EUT was conne chain. All measurements ha	figuration cted to the spectrum analyzer or power n ave been corrected to allow for the extern	neter via a suitable att al attenuators used.		surements v	were made on a sing
General Test Con The EUT was conne chain. All measurements ha Ambient Conditio	figuration cted to the spectrum analyzer or power n nve been corrected to allow for the extern ns: Temperature: Rel. Humidity:	neter via a suitable att al attenuators used. 18.6 °C		surements v	were made on a sing
General Test Con The EUT was conne chain. All measurements ha Ambient Conditio	figuration cted to the spectrum analyzer or power n nve been corrected to allow for the extern ns: Temperature: Rel. Humidity:	neter via a suitable att al attenuators used. 18.6 °C			were made on a sing
General Test Con The EUT was conne chain. All measurements ha mbient Conditio Gummary of Resu	figuration cted to the spectrum analyzer or power n ave been corrected to allow for the extern ns: Temperature: Rel. Humidity: Its Test Performed Output Power	neter via a suitable att al attenuators used. 18.6 °C 41 % <u>Limit</u> 15.247(b)	enuator. All mea	R	esult / Margin dBm (36.3 mW)
General Test Con The EUT was conne chain. All measurements ha mbient Conditio Gummary of Resu Run # 1 2	figuration cted to the spectrum analyzer or power n ave been corrected to allow for the extern ns: Temperature: Rel. Humidity: Its Test Performed Output Power 6dB Bandwidth	neter via a suitable att al attenuators used. 18.6 °C 41 % Limit 15.247(b) 15.247(a)	enuator. All mea	R	esult / Margin dBm (36.3 mW) 16.5 MHz
General Test Con The EUT was conne chain. All measurements ha Ambient Conditio Gummary of Resu Run #	figuration cted to the spectrum analyzer or power n ave been corrected to allow for the extern ns: Temperature: Rel. Humidity: Its Test Performed Output Power	neter via a suitable att al attenuators used. 18.6 °C 41 % <u>Limit</u> 15.247(b)	enuator. All mea	R 15.6	esult / Margin dBm (36.3 mW)

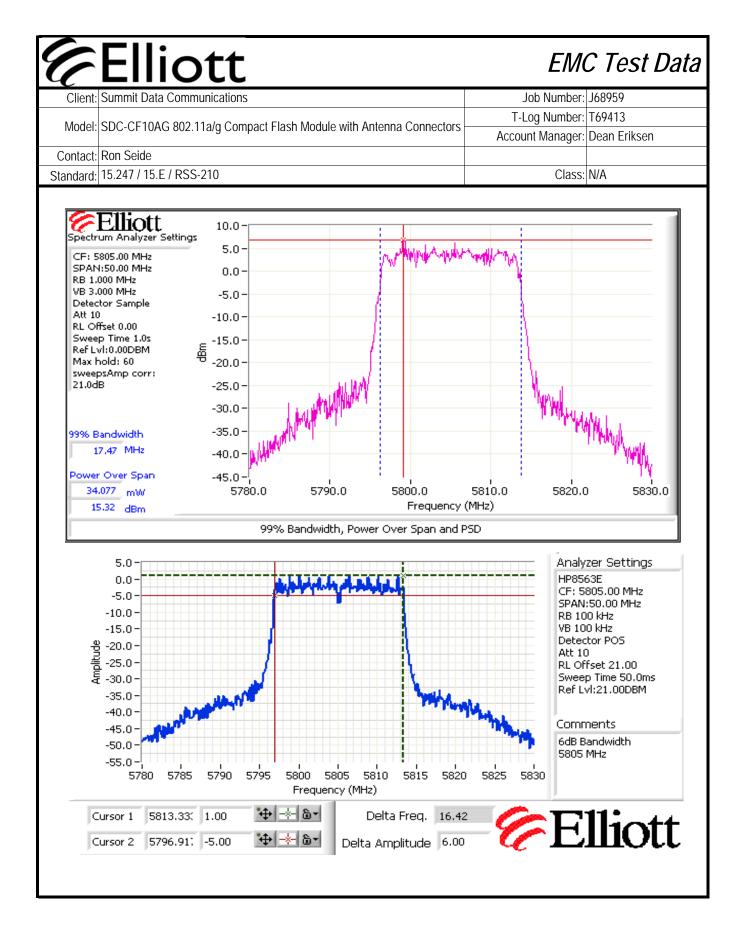
Elliott

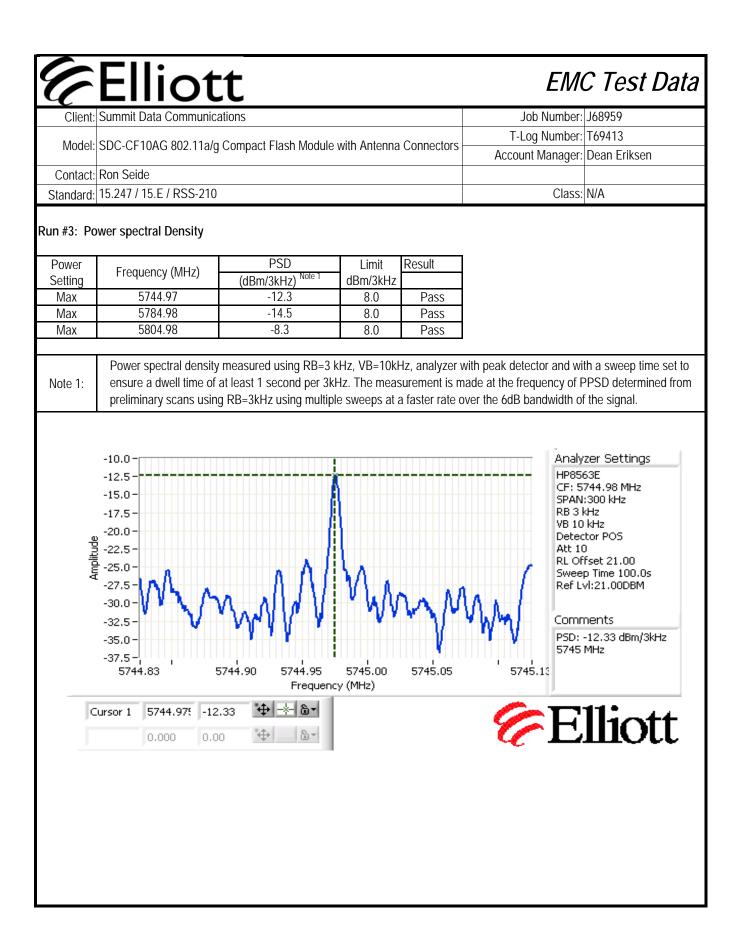
EMC Test Data

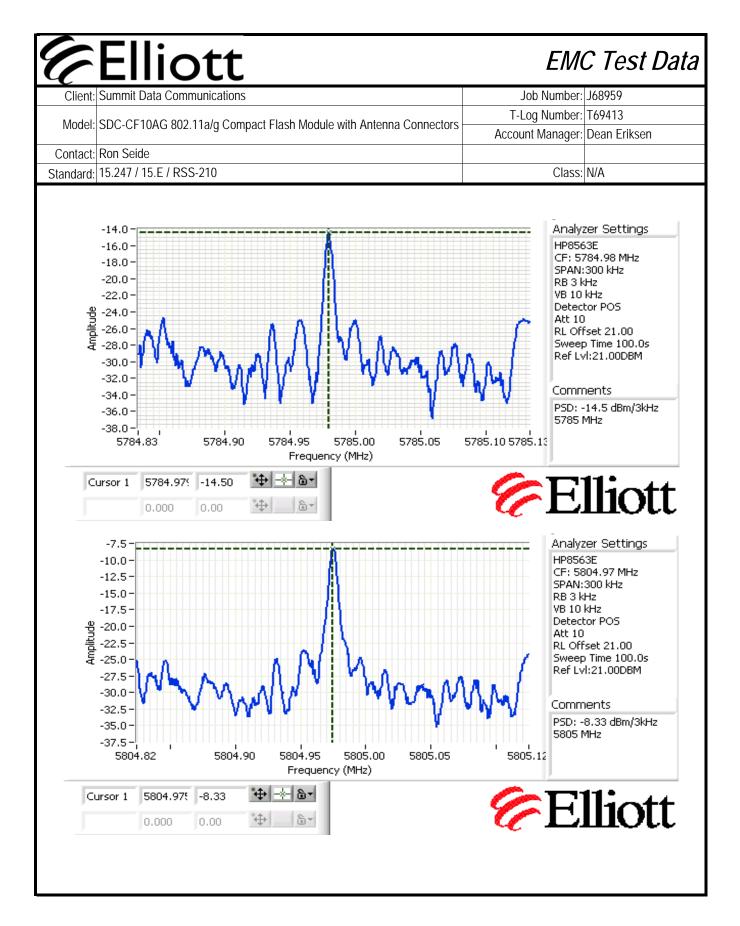
Client:	Summit Data Communications	Job Number:	J68959
Model.	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
wouer.	SDC-CFTUAG 602. Tra/g Compact Flash would with Antenna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A


Run #1: Output Power

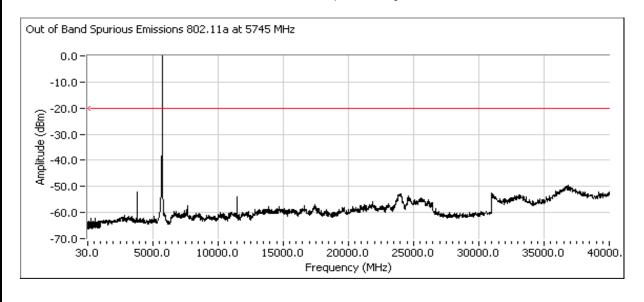

Power	Eroquopov (MHz)	Output	Power	Antenna	Result	EIRP	Note 2	Output	Power
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
Max	5745	15.6	36.3	5.0	Pass	20.6	0.115	7.5	5.6
Max	5785	14.6	28.6	5.0	Pass	19.6	0.091	5.3	3.4
Max	5805	15.3	34.0	5.0	Pass	20.3	0.108	6.0	4.0
	2								
	Output power measure	• •	-						
Note 1:	RBW=1MHz, VB=3 MI	Iz, sample d	etector, max	hold for at le	ast 60 seco	nds (transmi	itted signal w	as not contin	uous) and
	power integration over	RBW=1MHz, VB=3 MHz, sample detector, max hold for at least 60 seconds (transmitted signal was not continuous) and power integration over 50MHz							
Note 2:	Power setting - the sof	tware power	setting used	during testin	g, included for	or reference	only.		

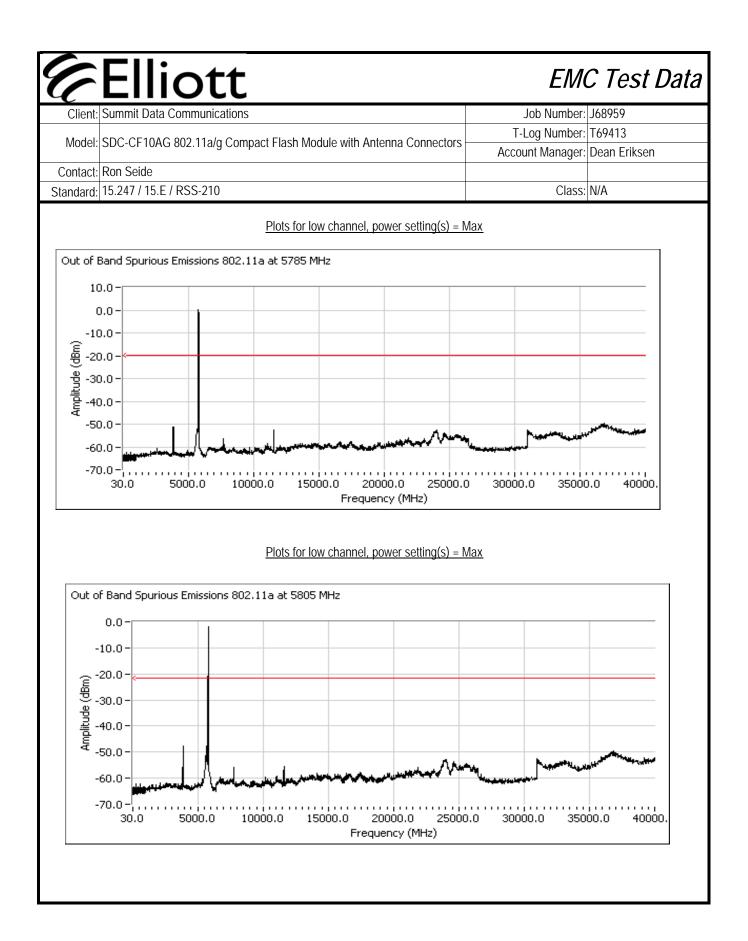

Run #2: Signal Bandwidth


Power	Fraguanes (MHz)	Resolution	Bandwid	lth (MHz)
Setting	Frequency (MHz)	Bandwidth	6dB	99%
Max	5745	1.0MHz	16.5	17.5
Max	5785	1.0MHz	16.4	17.5
Max	5805	1.0MHz	16.4	17.5


Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

Elliott


EMC Test Data


Client:	Summit Data Communications	Job Number:	J68959
Model	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
wouer.	SDC-CFTUAG 602. TTary Compact Flash would with Antenna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run #4: Out of Band Spurious Emissions

Frequency (MHz)	Limit	Result
5745	-20dBc	Pass
5785	-20dBc	Pass
5805	-20dBc	Pass

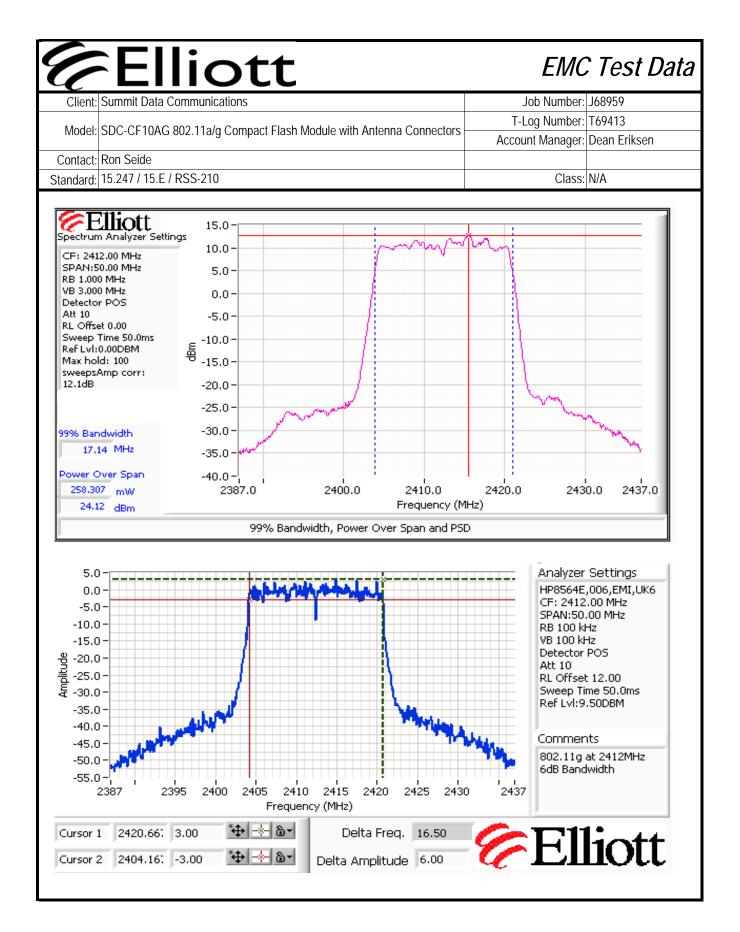
Plots for low channel, power setting(s) = Max

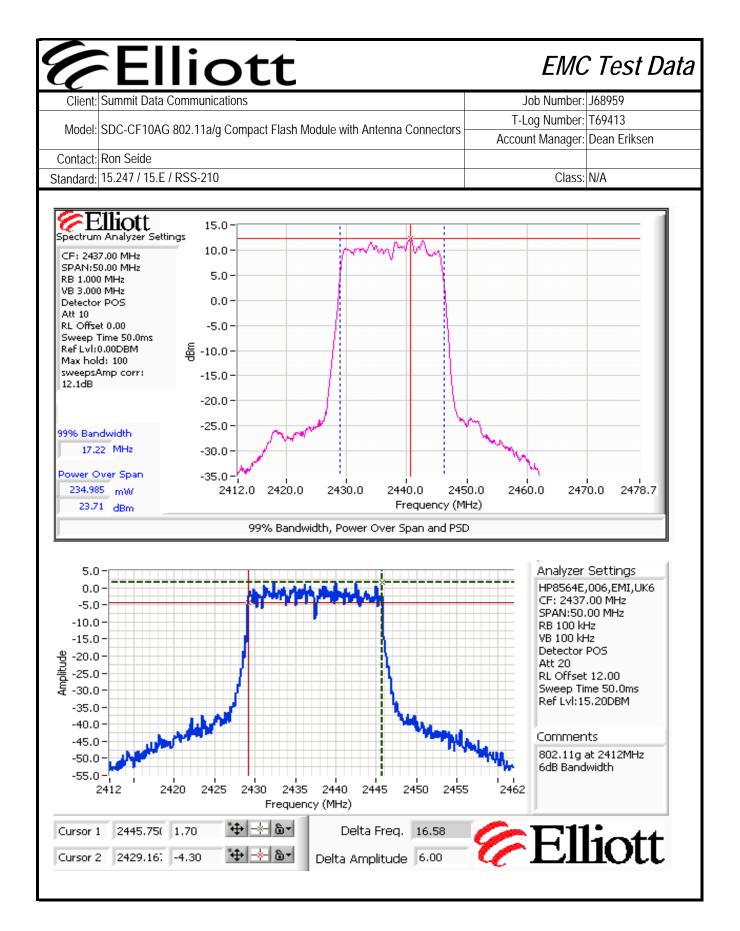
	Ellic				Lala Numu	140050
Client: Sum	mit Data Communio	ations			Job Number:	
Model: SDC	-CF10AG 802.11a/	g Compact Flash Module with	n Antenna Connectors		Log Number:	Dean Eriksen
Contact: Ron	Seide			Accou	ini wanayer.	
	47 / 15.E / RSS-210)			Class:	N/A
R		FCC 15.247 (DT SD, Bandwidth and	•			
Test Specific	ioctivo. The objecti	ve of this test session is to pe n listed above.	erform final qualificatio	n testing of th	e EUT with r	respect to the
Test En	of Test: 1/14/2008 gineer: Mehran Bir cation: Chamber #	5	Config. Used: Config Change: EUT Voltage:	None	host	
The EUT was o chain.		ectrum analyzer or power me ected to allow for the external		nuator. All me	easurements	were made on a sir
All measureme		Temperature:	20 °C			
	ditions:	Rel. Humidity:	42 %			
Ambient Con		•	42 %			
Ambient Con	Results	•	42 %	Pass / Fail	R	esult / Margin
Ambient Con Gummary of I Run # 1	Results	Rel. Humidity: Fest Performed Output Power	Limit 15.247(b)	Pass		dBm (258.2mW)
Ambient Con Summary of I Run # 1 2	Results	Rel. Humidity: Fest Performed Output Power 6dB Bandwidth	Limit 15.247(b) 15.247(a)			dBm (258.2mW) 16.5 MHz
Ambient Con Summary of I Run # 1 2 2	Results	Rel. Humidity: Fest Performed Output Power 6dB Bandwidth 99% Bandwidth	Limit 15.247(b) 15.247(a) RSS GEN	Pass Pass -	24.1	dBm (258.2mW) 16.5 MHz 17.2 MHz
Ambient Con Summary of I Run # 1 2 2 3	Results	Rel. Humidity: Test Performed Output Power 6dB Bandwidth 99% Bandwidth spectral Density (PSD)	Limit 15.247(b) 15.247(a) RSS GEN 15.247(d)	Pass Pass - Pass	-1	dBm (258.2mW) 16.5 MHz 17.2 MHz 0.9 dBm/3kHz
Ambient Con Summary of I Run # 1 2 2	Results	Rel. Humidity: Fest Performed Output Power 6dB Bandwidth 99% Bandwidth	Limit 15.247(b) 15.247(a) RSS GEN	Pass Pass -	-1	dBm (258.2mW) 16.5 MHz 17.2 MHz

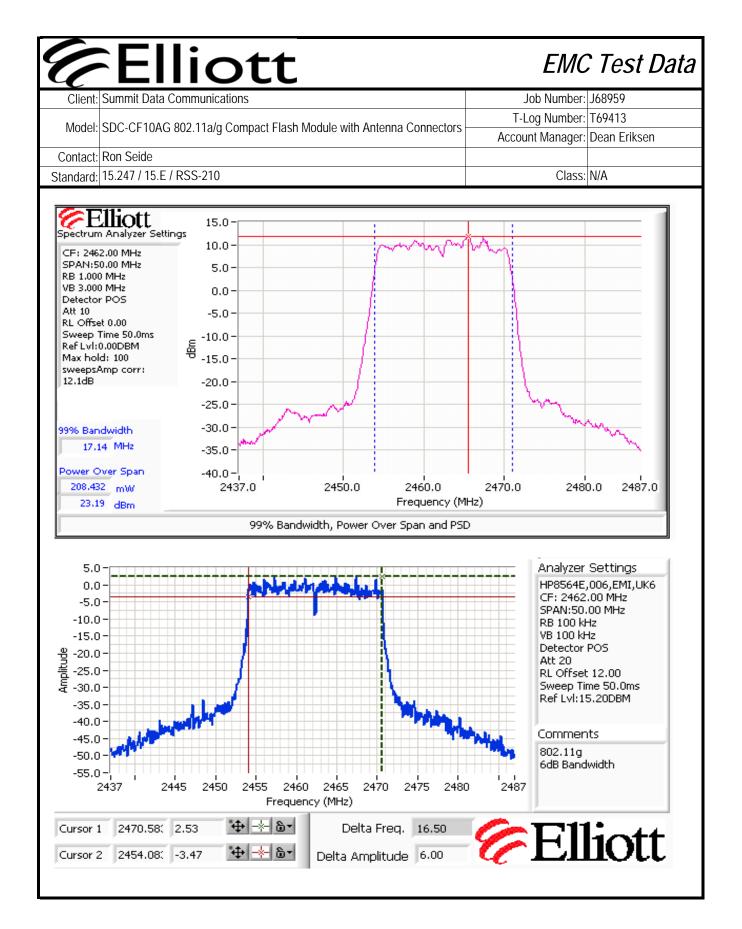
Client Summit Data Communications

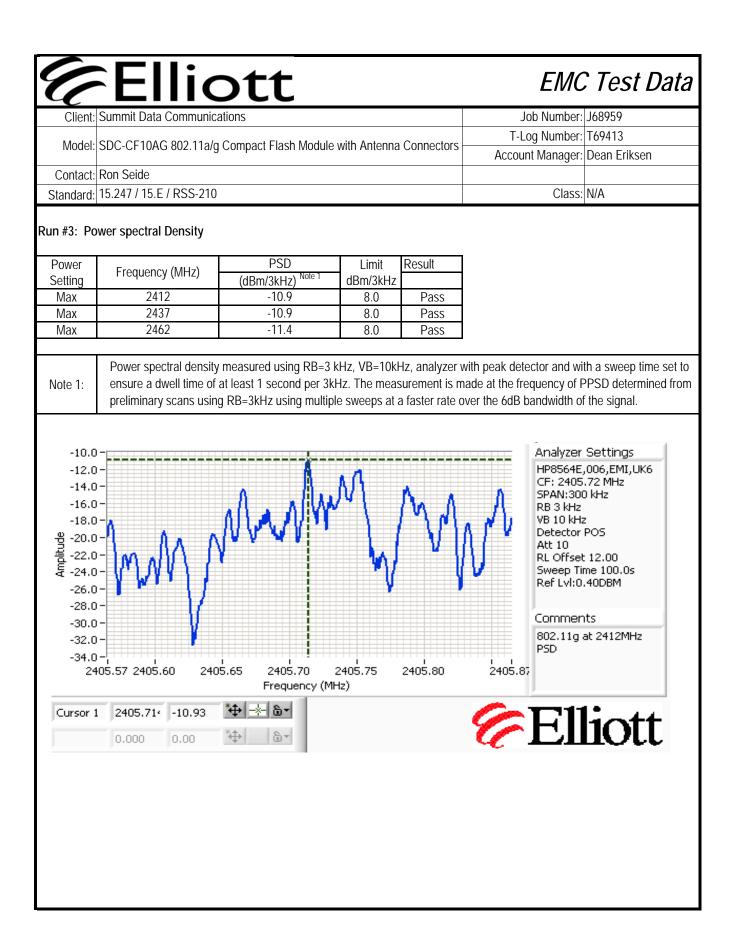
EMC Test Data

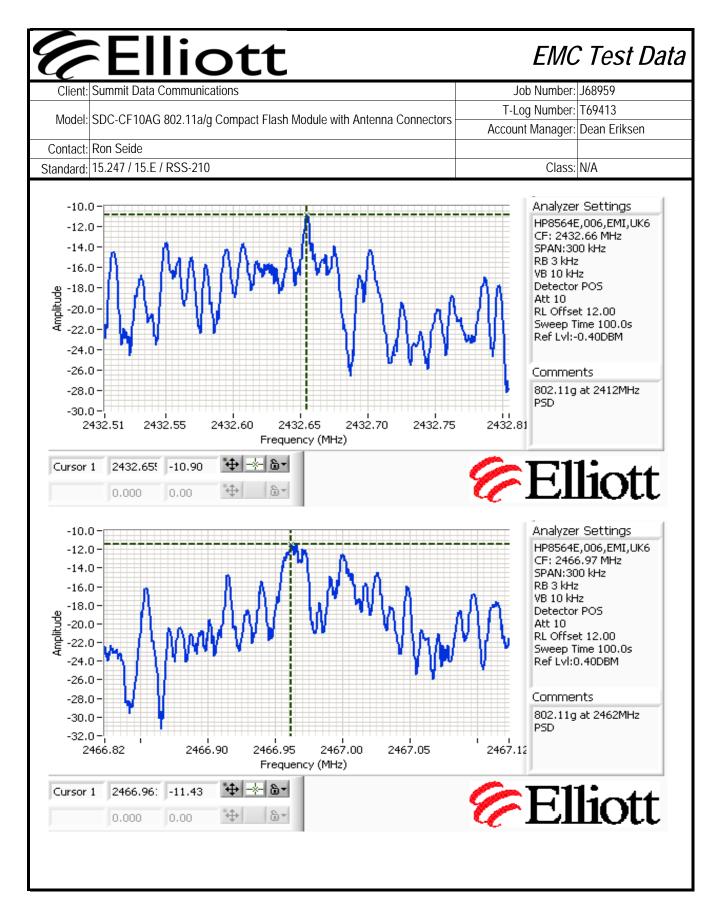
Client:	Summit Data Communications	Job Number:	J68959
Model	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
MOUEI.	SDC-CF TOAG 602. I Tary Compact Flash Module with Antenna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

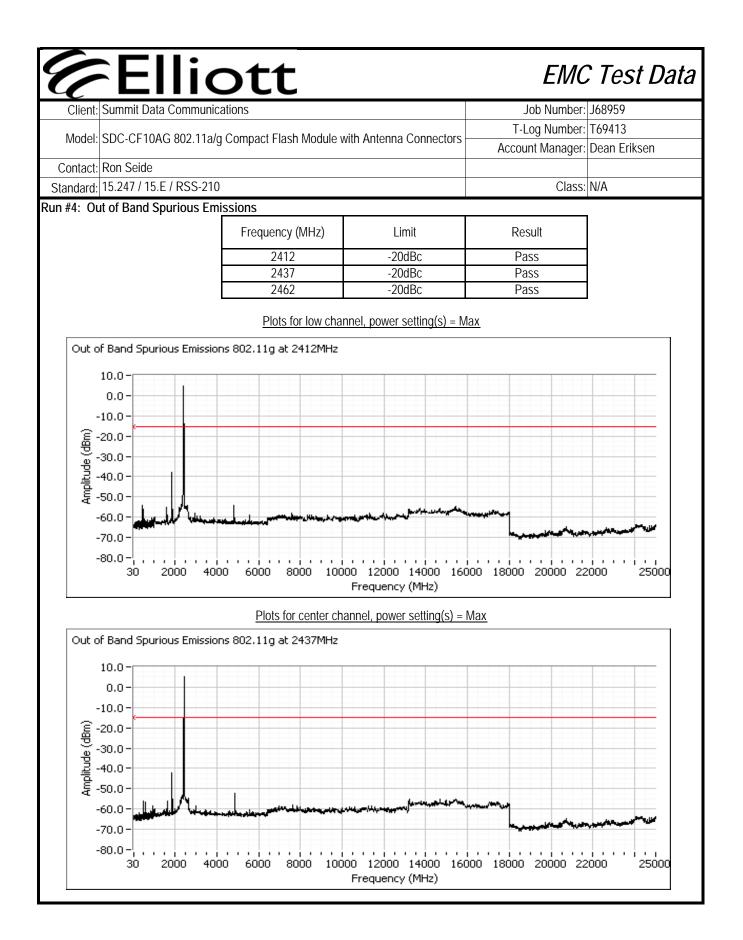

Run #1: Output Power

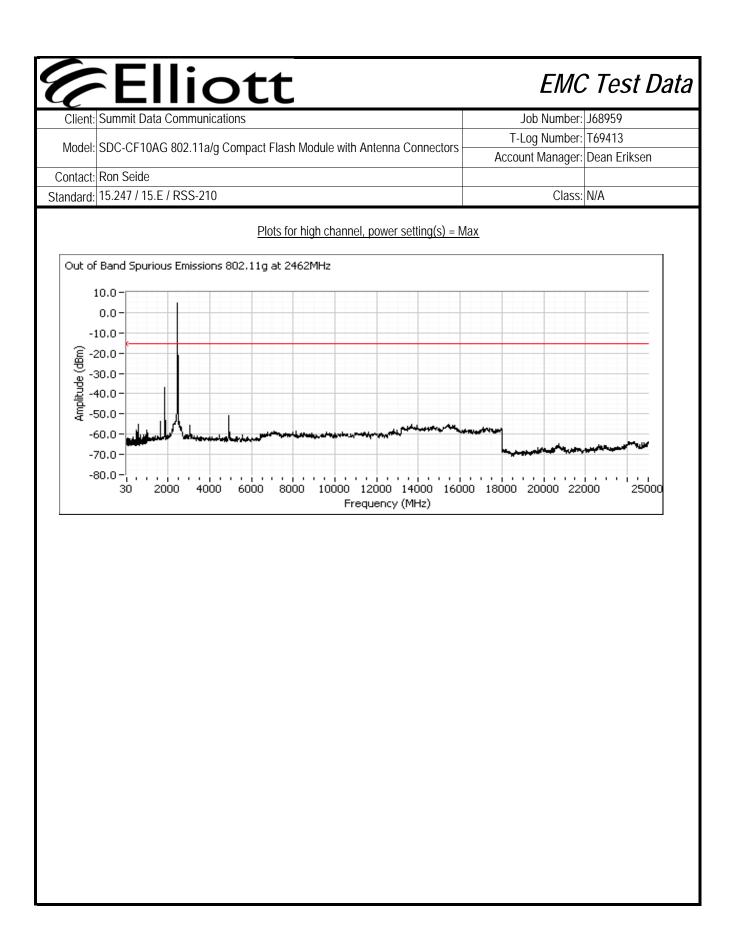

Power		Output	Power	Antenna	Decult	EIRF	Note 2	Output	Power
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
Max	2412	24.1	258.2	3.8	Pass	27.9	0.619	10.7	11.7
Max	2437	23.7	234.4	3.8	Pass	27.5	0.562	10.8	12.0
Max	2462	23.2	208.4	3.8	Pass	27.0	0.500	10.9	12.3
Note 1:	Output power measure RBW=1MHz, VB=3 Mł MHz. The output powe	Hz, peak dete	ector, max ho			s not continu	ous) and pov	ver integratio	n over 50
Note 2:	Power setting - the sof		0	0	0		only.		
Note 3:	Power measured using	g average po	wer sensor a	and is include	d for referen	ce only.			


Run #2: Signal Bandwidth


Power	Frequency (MHz)	Resolution	Bandwid	th (MHz)
Setting	Frequency (MITZ)	Bandwidth	6dB	99%
Max	2412	1MHz	16.5	17.1
Мах	2437	1MHz	16.6	17.2
Max	2462	1MHz	16.5	17.1


Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB



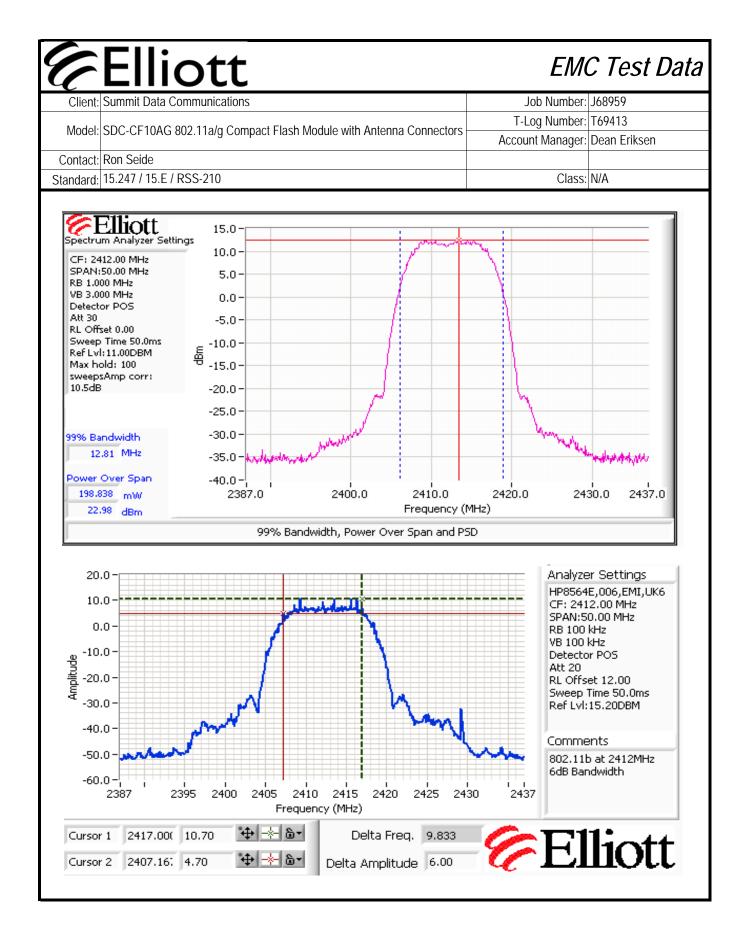


<u>CElli</u>					
Client: Summit Data	Communications			ob Number:	
Model: SDC-CF10AG	802.11a/g Compact Flash Module with	Antenna Connecto	nrs — — — — — — — — — — — — — — — — — — —	.og Number: nt Manager:	T69413 Dean Eriksen
Contact: Ron Seide					
Standard: 15.247 / 15.E	/ RSS-210			Class:	N/A
	0 and FCC 15.247 (D wer, PSD, Bandwidth and	•			
est Specific Details					
Objective: T	he objective of this test session is to pe pecification listed above.	rform final qualificat	tion testing of the	e EUT with r	espect to the
Date of Test: 1. Test Engineer: J. Test Location: C	. Caizzi & M. Birgani	Config. Use Config Chang FUT Voltad		host	
General Test Configu			-		were made on a sing
General Test Configue The EUT was connected chain. All measurements have	uration I to the spectrum analyzer or power me been corrected to allow for the external Temperature:	ter via a suitable att attenuators used. 20 °C	-		were made on a sing
General Test Configu The EUT was connected chain. All measurements have Ambient Conditions:	uration I to the spectrum analyzer or power me been corrected to allow for the external	ter via a suitable att attenuators used.	-		were made on a sing
General Test Configue The EUT was connected chain. All measurements have mbient Conditions:	uration I to the spectrum analyzer or power me been corrected to allow for the external Temperature:	ter via a suitable att attenuators used. 20 °C	-	asurements	were made on a sing
General Test Configue The EUT was connected chain. All measurements have conditions: All measurements have conditions:	to the spectrum analyzer or power me been corrected to allow for the external Temperature: Rel. Humidity: <u>Test Performed</u> Output Power	ter via a suitable att attenuators used. 20 °C 42 % Limit 15.247(b)	enuator. All me	asurements	Result / Margin 8dBm (241mW)
eneral Test Configue The EUT was connected chain. All measurements have mbient Conditions: ummary of Results Run # 1 2	to the spectrum analyzer or power me been corrected to allow for the external Temperature: Rel. Humidity: <u>Test Performed</u> Output Power 6dB Bandwidth	ter via a suitable att attenuators used. 20 °C 42 % <u>Limit 15.247(b)</u> 15.247(a)	enuator. All me Pass / Fail	asurements	Result / Margin 8dBm (241mW) 9.1 MHz
General Test Configue The EUT was connected chain. All measurements have Ambient Conditions: Gummary of Results Run # 1 2 2 2	uration I to the spectrum analyzer or power me been corrected to allow for the external Temperature: Rel. Humidity: Test Performed Output Power 6dB Bandwidth 99% Bandwidth	ter via a suitable att attenuators used. 20 °C 42 % Limit 15.247(b) 15.247(a) RSS GEN	enuator. All me Pass / Fail Pass Pass	asurements	Result / Margin 8dBm (241mW) 9.1 MHz 12.8 MHz
General Test Configue The EUT was connected chain. All measurements have Ambient Conditions: Gummary of Results Run # 1 2 2 3	uration I to the spectrum analyzer or power me been corrected to allow for the external Temperature: Rel. Humidity: Test Performed Output Power 6dB Bandwidth 99% Bandwidth Power spectral Density (PSD)	ter via a suitable att attenuators used. 20 °C 42 % <u>Limit</u> 15.247(b) 15.247(a) RSS GEN 15.247(d)	enuator. All me Pass / Fail Pass Pass - Pass	asurements	Result / Margin 8dBm (241mW) 9.1 MHz 12.8 MHz 7.5 dBm/3kHz
General Test Configue The EUT was connected chain. All measurements have Ambient Conditions: Gummary of Results Run # 1 2 2 3 4	Uration I to the spectrum analyzer or power me been corrected to allow for the external Temperature: Rel. Humidity: Test Performed Output Power 6dB Bandwidth 99% Bandwidth Power spectral Density (PSD) Spurious emissions	ter via a suitable att attenuators used. 20 °C 42 % Limit 15.247(b) 15.247(a) RSS GEN	enuator. All me Pass / Fail Pass Pass	asurements	Result / Margin 8dBm (241mW) 9.1 MHz 12.8 MHz
General Test Configue The EUT was connected chain. All measurements have Ambient Conditions: Summary of Results Run # 1 2 2 3 4 Modifications Made I	Uration I to the spectrum analyzer or power me been corrected to allow for the external Temperature: Rel. Humidity: Test Performed Output Power 6dB Bandwidth 99% Bandwidth Power spectral Density (PSD) Spurious emissions	ter via a suitable att attenuators used. 20 °C 42 % <u>Limit</u> 15.247(b) 15.247(a) RSS GEN 15.247(d)	enuator. All me Pass / Fail Pass Pass - Pass	asurements	Result / Margin 8dBm (241mW) 9.1 MHz 12.8 MHz 7.5 dBm/3kHz
General Test Configu The EUT was connected chain. All measurements have Ambient Conditions: Summary of Results Run # 1 2 2 3 4 Modifications Made I No modifications were m Deviations From The	uration I to the spectrum analyzer or power me been corrected to allow for the external Temperature: Rel. Humidity: Test Performed Output Power 6dB Bandwidth 99% Bandwidth Power spectral Density (PSD) Spurious emissions During Testing ade to the EUT during testing Standard	ter via a suitable att attenuators used. 20 °C 42 % Limit 15.247(b) 15.247(a) RSS GEN 15.247(d) 15.247(b)	enuator. All me Pass / Fail Pass Pass - Pass	asurements	Result / Margin 8dBm (241mW) 9.1 MHz 12.8 MHz 7.5 dBm/3kHz
General Test Configue The EUT was connected chain. All measurements have Ambient Conditions: Summary of Results Run # 1 2 2 3 4 Modifications Made I No modifications were me Deviations From The	uration I to the spectrum analyzer or power me been corrected to allow for the external Temperature: Rel. Humidity: Test Performed Output Power 6dB Bandwidth 99% Bandwidth Power spectral Density (PSD) Spurious emissions	ter via a suitable att attenuators used. 20 °C 42 % Limit 15.247(b) 15.247(a) RSS GEN 15.247(d) 15.247(b)	enuator. All me Pass / Fail Pass Pass - Pass	asurements	Result / Margin 8dBm (241mW) 9.1 MHz 12.8 MHz 7.5 dBm/3kHz

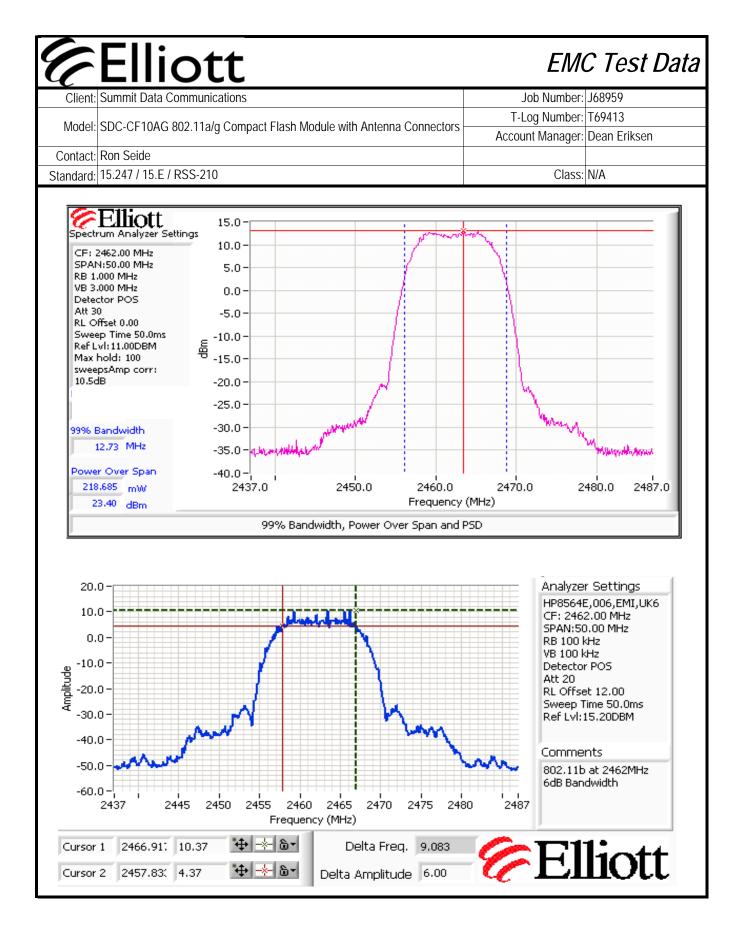
Elliott

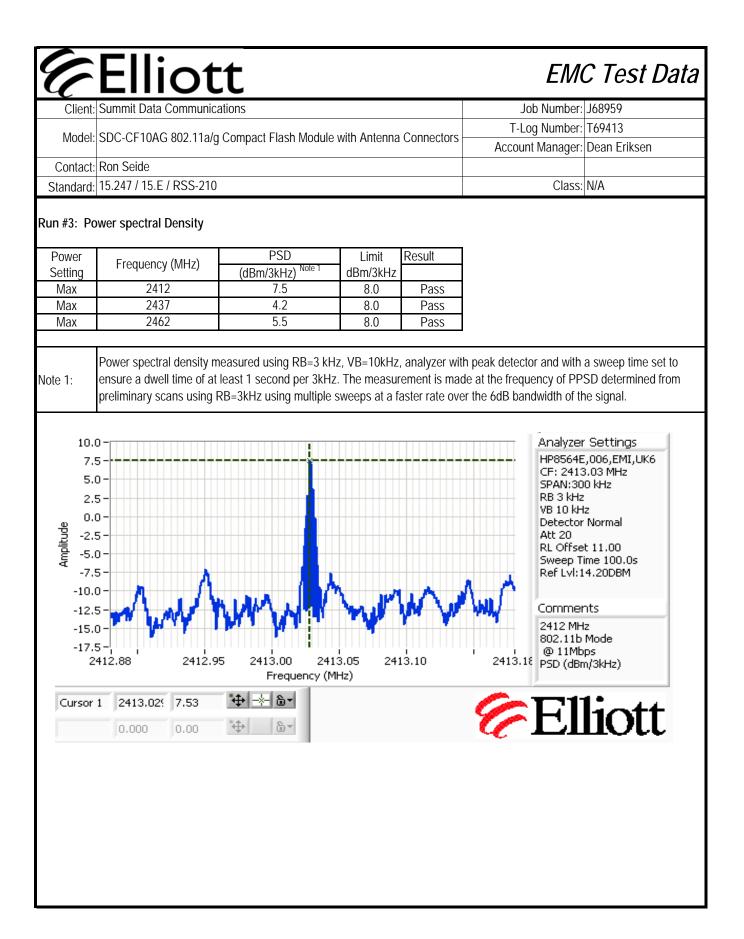
EMC Test Data

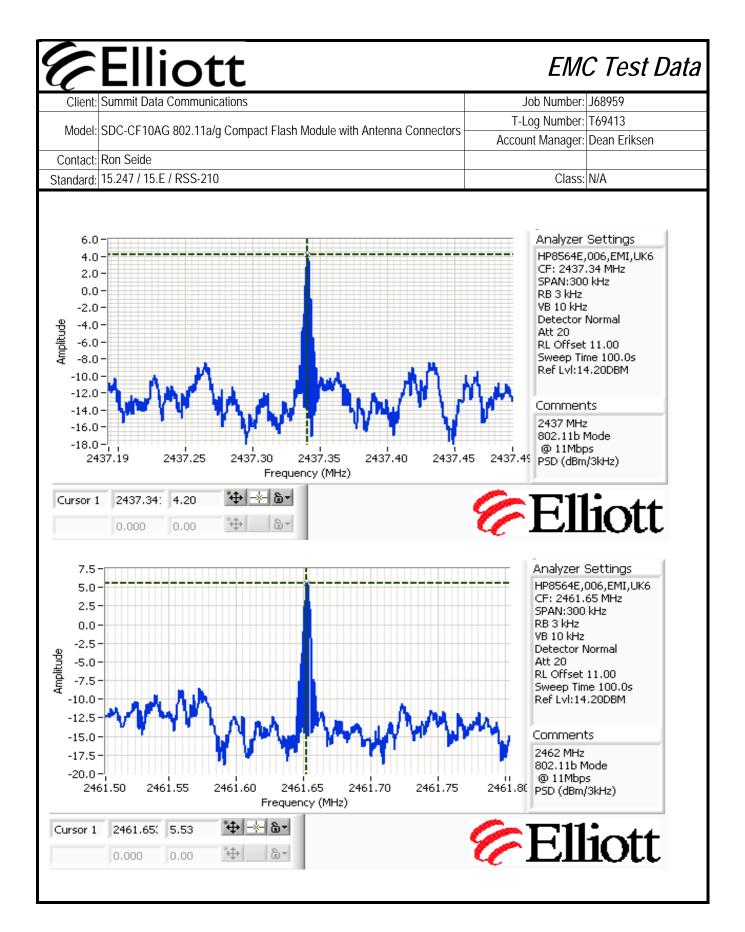
Client:	Summit Data Communications	Job Number:	J68959
Model	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
wouer.	SDC-CFTUAG 602. Trary Compact Flash would with Antenna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

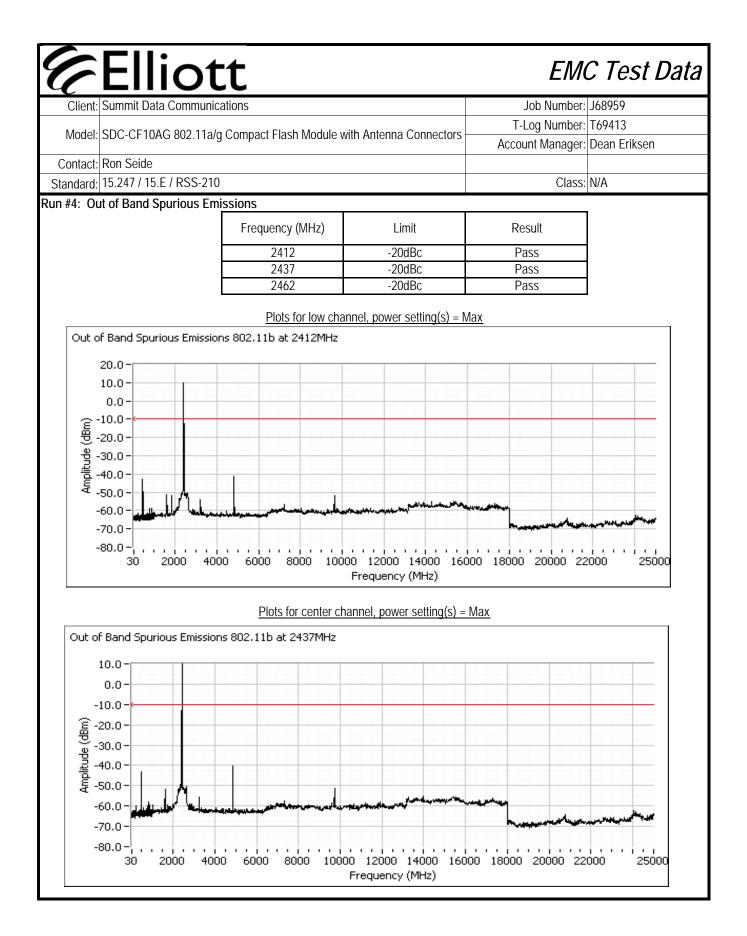

Run #1: Output Power

-							Note 2		D
Power	Frequency (MHz)	Output	Power	Antenna	Result	EIRP	Note 2	Output	Power
Setting ²	Frequency (MHZ)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
Max	2412	23.0	198.6	3.8	Pass	26.8	0.476	14.9	31.2
Max	2437	23.8	241.0	3.8	Pass	27.6	0.578	14.8	30.2
Max	2462	23.4	218.8	3.8	Pass	27.2	0.525	14.4	27.5
	Output power measure	ed using a sp	ectrum anal	yzer (see plot	s below):				
Note 1:	RBW=1MHz, VB=3 M	Hz, peak dete	ector, max h	old (transmitte	ed signal was	s not continu	ous) and pov	ver integratio	n over 50
	RBW=1MHz, VB=3 MHz, peak detector, max hold (transmitted signal was not continuous) and power integration over 50 MHz. The output power limit is 30dBm.								
Note 2:	Power setting - the sol	ftware power	setting used	I during testin	g, included f	or reference	only.		
Note 3:	Power measured using	g average po	wer sensor a	and is include	d for referen	ce only.			


Run #2: Signal Bandwidth


Power	Frequency (MHz)	Resolution	Bandwid	lth (MHz)
Setting	Frequency (MHZ)	Bandwidth	6dB	99%
Max	2412	1MHz	10.3	12.8
Max	2437	1MHz	10.3	12.8
Max	2462	1MHz	9.1	12.7


Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB



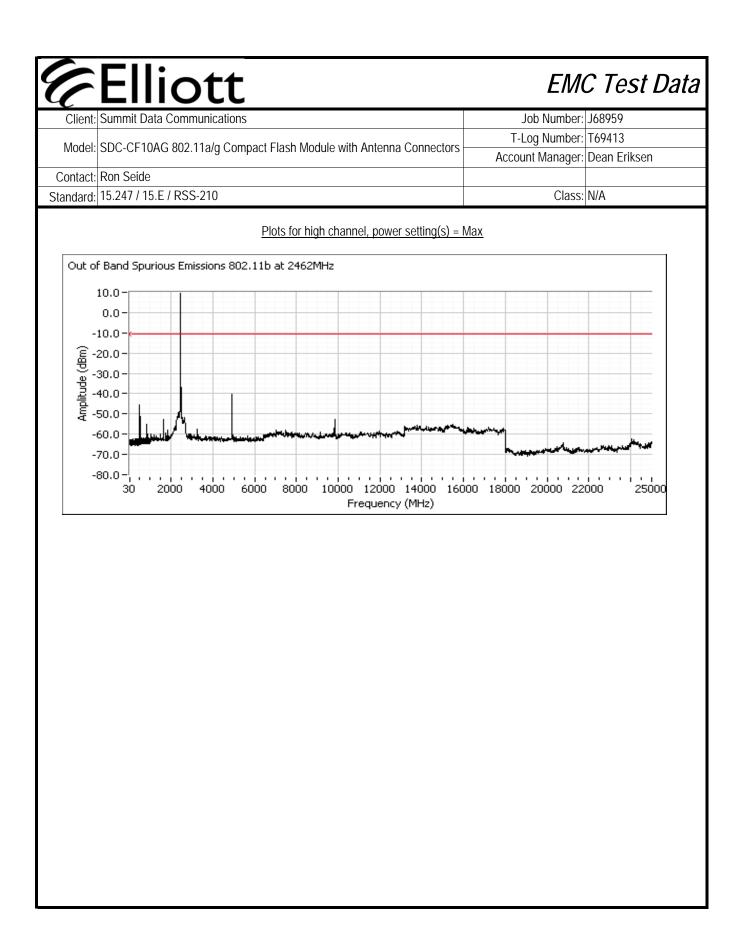


EXHIBIT 3: Photographs of Test Configurations

EXHIBIT 4: Proposed FCC ID Label & Label Location

EXHIBIT 5: Detailed Photographs of LXE Inc. Model 4831 Construction

EXHIBIT 6: Operator's Manual for LXE Inc. Model 4831

EXHIBIT 7: Block Diagram of LXE Inc. Model 4831

1 Page

EXHIBIT 8: Schematic Diagrams for LXE Inc. Model 4831

EXHIBIT 9: Theory of Operation for LXE Inc. Model 4831

1 Page

EXHIBIT 10: RF Exposure Information