

FCC Co-Location Test Report

FCC ID : MXF-WRTM-331

Equipment : THINGS

Model No. : TH-GW10, VC-FLX1

(Marketing difference)

Brand Name : Toshiba, Onkyo

(Marketing difference)

Applicant : Gemtek Technology Co., Ltd.

Address : 8F, No. 3-1, YuanQu St., NanKang, Taipei 115,

Taiwan, R.O.C.

Standard : 47 CFR FCC Part 15.247

47 CFR FCC Part 15.407

Received Date : Apr. 12, 2017

Tested Date : Apr. 27 ~ Jun. 30, 2017

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by: Approved by:

Along Chen Assistant Manager Gary Chang / Manager

RA

TAF

Testing Laboratory
2732

Report No.: FR741201CO

Report Version: Rev. 01

Page: 1 of 16

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	The Equipment List	7
1.3	Test Standards	
1.4	Measurement Uncertainty	8
2	TEST CONFIGURATION	9
2.1	Testing Condition	9
2.2	The Worst Test Modes and Channel Details	9
3	TRANSMITTER TEST RESULTS	10
3.1	Unwanted Emissions into Restricted Frequency Bands	10
4	TEST LABORATORY INFORMATION	16

Release Record

Report No.	Version	Description	Issued Date
FR741201CO	Rev. 01	Initial issue	Aug. 08, 2017

Report No.: FR741201CO Page: 3 of 16

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.247(d)			
15.407(b)	Radiated Emissions	[dBuV/m at 3m]: 393.26MHz 42.64 (Margin -3.36dB) - QP	Pass
15.209		(

Report No.: FR741201CO Page: 4 of 16

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

WLAN				
Operating Frequency	802.11b/g/n: 2412 MHz ~ 2462 MHz 802.11a/n/ac: 5180 MHz ~ 5240 MHz; 5745 ~ 5825 MHz			
Modulation Type	802.11b: DSSS (DBPSK / DQPSK / CCK) 802.11a/g/n/ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)			
BT LE				
Operating Frequency	2402 MHz ~ 2480 MHz			
Modulaton Type	Bluetooth 4.0 LE: GFSK Bluetooth EDR : GFSK /π/4-DQPSK / 8DPSK.			
ZigBee				
Operating Frequency	2405~2480			
Modulaton Type	DSSS-O-QPSK			

1.1.2 Antenna Details

For WLAN

Ant.	Model	Type	Connector	Operating Frequency	enna Gain (dBi)	
No.	Wiodei	туре	Connector	2400~2483.5	5150~5250	5725~5850
1	A8-A006-00391	Dipole	IPEX	3.61	4.34	4.34
2	A8-A006-00392	Dipole	IPEX	3.61	4.34	4.34

Ant. No.	Туре	Connector	Gain (dBi)	Remarks
1	PIFA	No	1.53	ВТ

Ant. No.	Туре	Connector	Gain (dBi)	Remarks
1	PIFA	UFL	2.61	ZigBee

Report No.: FR741201CO Page: 5 of 16

1.1.3 Specification of the Wireless Certified Module

The device contains identical certified Z-Wave modules, FCC ID: D87-ZM5304-U.

FCC ID	D87-ZM5304-U
Product Name	Z-Wave Serial Interface Module with On-Board Antenna
Brand Name	Sigma Designs
Model Name	ZM5304-U
Modulation Type & Operating Frequency	2FSK (9.6kbps) for 908.42 MHz 2FSK (40kbps) for 908.40 MHz 2GFSK (100kbps) for 916.00 MHz
Antenna Type	helical antenna, -3.74dBi gain

1.1.4 Power Supply Type of Equipment under Test (EUT)

Power Supply Type 12Vdc from adapter

Report No.: FR741201CO Page: 6 of 16

1.2 The Equipment List

Test Item	Radiated Emission					
Test Site	966 chamber1 / (03CH01-WS)					
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until	
Spectrum Analyzer	R&S	FSV40	101498	Nov. 25, 2016	Nov. 24, 2017	
Receiver	R&S	ESR3	101658	Nov. 24, 2016	Nov. 23, 2017	
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Aug. 04, 2016	Aug. 03, 2017	
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 21, 2016	Dec. 20, 2017	
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Oct. 25, 2016	Oct. 24, 2017	
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 10, 2016	Nov. 09, 2017	
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Dec. 09, 2016	Dec. 08, 2017	
Preamplifier	EMC	EMC02325	980225	Aug. 05, 2016	Aug. 04, 2017	
Preamplifier	Agilent	83017A	MY39501308	Oct. 06, 2016	Oct. 05, 2017	
Preamplifier	EMC	EMC184045B	980192	Aug. 24, 2016	Aug. 23, 2017	
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 09, 2016	Dec. 08, 2017	
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 09, 2016	Dec. 08, 2017	
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 09, 2016	Dec. 08, 2017	
LF cable 1M	EMC	EMCCFD400-NM-N M-1000	16052	Dec. 09, 2016	Dec. 08, 2017	
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Dec. 09, 2016	Dec. 08, 2017	
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Dec. 09, 2016	Dec. 08, 2017	
Measurement Software	AUDIX	e3	6.120210g	NA	NA	

1.3 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247

47 CFR FCC Part 15.407

ANSI C63.10-2013

FCC KDB 558074 D01 DTS Meas Guidance v04

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r04

FCC KDB 644545 D03 Guidance for IEEE 802 11ac New Rules v01

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

FCC KDB 412172 D01 Determining ERP and EIRP v01r01

Report No.: FR741201CO Page: 7 of 16

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty				
Parameters	Uncertainty			
Radiated emission ≤ 1GHz	±3.66 dB			
Radiated emission > 1GHz	±5.63 dB			

Report No.: FR741201CO Page: 8 of 16

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
Radiated Emissions	03CH01-WS	22-24°C / 62-64%	Vincent Yen

FCC Designation No.: TW2732
 FCC site registration No.: 181692
 IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

Test item	Test Mode				
Radiated Emissions	Wifi 2.4G 11g CH6 + Wifi 5G 11ac VHT40 CH159 + BT CH00 + Zigbee CH11 + Z-Wave 916.00MHz				

Note: The selected channel is the maximum power channel of each function

Report No.: FR741201CO Page: 9 of 16

3 Transmitter Test Results

3.1 Unwanted Emissions into Restricted Frequency Bands

3.1.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit								
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)					
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300					
0.490~1.705	24000/F(kHz)	33.8 - 23	30					
1.705~30.0	30	29	30					
30~88	100	40	3					
88~216	150	43.5	3					
216~960	200	46	3					
Above 960	500	54	3					

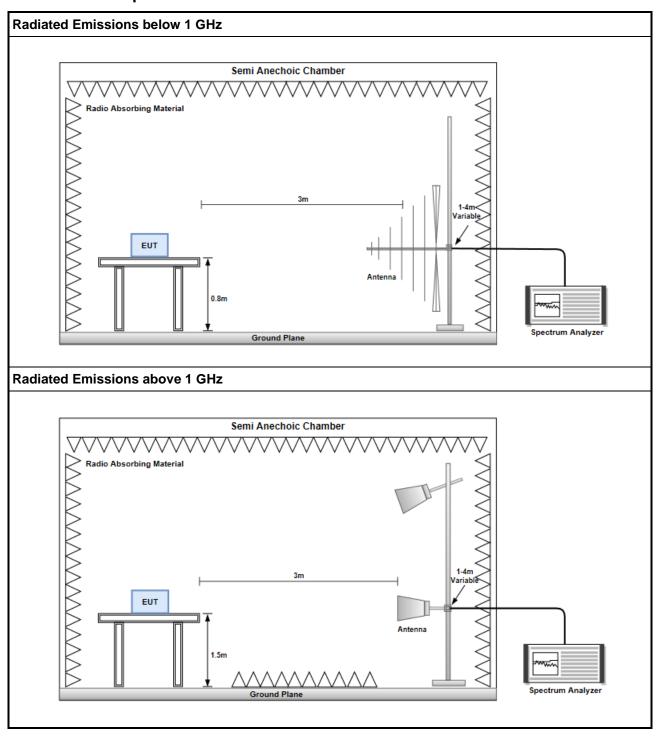
Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2**:

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

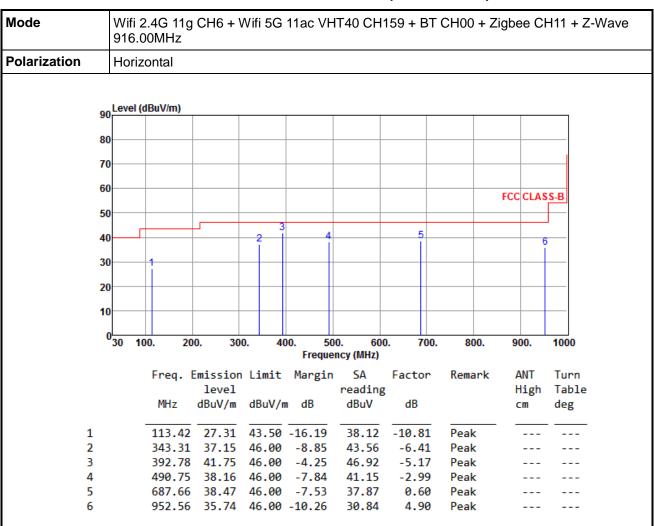
3.1.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m.
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.


Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

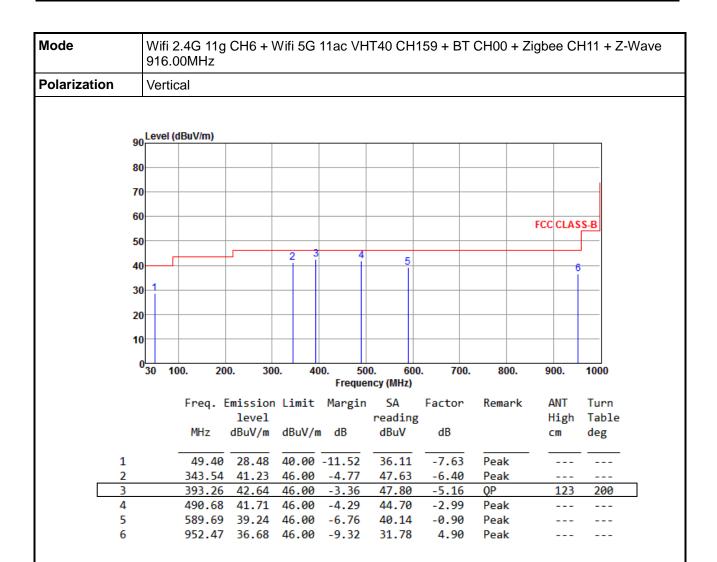
Report No.: FR741201CO Page: 10 of 16


3.1.3 Test Setup

Report No.: FR741201CO Page: 11 of 16

3.1.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor , cable loss and amplifier gain

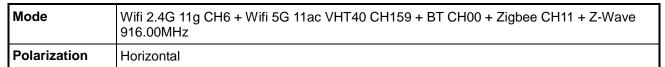
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

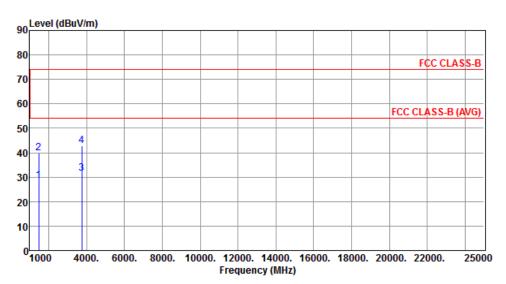
Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR741201CO Page: 12 of 16

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

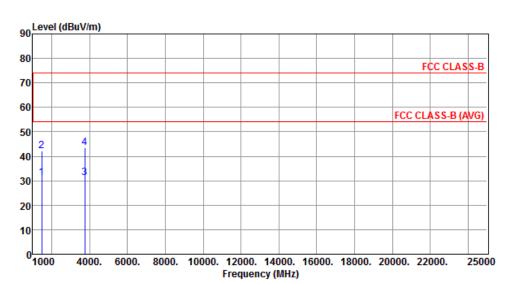

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR741201CO Page: 13 of 16

3.1.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)

	Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn
	level			reading			High	Table	
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	1489.00	28.61	54.00	-25.39	35.31	-6.70	Average	134	318
2	1489.00	39.73	74.00	-34.27	46.43	-6.70	Peak	134	318
3	3760.00	31.40	54.00	-22.60	30.88	0.52	Average	100	258
4	3760.00	42.86	74.00	-31.14	42.34	0.52	Peak	100	258

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR741201CO Page: 14 of 16

	Wifi 2.4G 11g CH6 + Wifi 5G 11ac VHT40 CH159 + BT CH00 + Zigbee CH11 + Z-Wave 916.00MHz
Polarization	Vertical

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	1489.00	31.34	54.00	-22.66	38.04	-6.70	Average	142	158
2	1489.00	42.13	74.00	-31.87	48.83	-6.70	Peak	142	158
3	3760.00	31.28	54.00	-22.72	30.76	0.52	Average	100	147
4	3760.00	43.53	74.00	-30.47	43.01	0.52	Peak	100	147

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR741201CO Page: 15 of 16

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City,

Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C..

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==

Report No.: FR741201CO Page: 16 of 16