7Layers

for

Smart Modular Technologies

naviPlay iPod Adapter

naviPlay Stereo Remote

December 8, 2004

Report No. 7LAY0028

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2004 Northwest EMC, Inc

Certificate of Test

Issue Date: December 8, 2004 Smart Modular Technologies Model NIA.S10 naviPlay iPod Adapter Model NSR.H100 naviPlay Stereo Remote

	Emissions		
Specification	Test Method	Pass	Fail
FCC 15.247(a) Occupied Bandwidth:2004	ANSI C63.4:2003		
FCC 15.247(b) Output Power:2004	ANSI C63.4:2003		
FCC 15.247(c) Band Edge Compliance:2004	ANSI C63.4:2003		
FCC 15.247(c) Spurious Conducted Emissions:2004	ANSI C63.4:2003	\square	
FCC 15.247(c) Spurious Radiated Emissions:2004	ANSI C63.4:2003		
FCC 15.247(d) Power Spectral Density:2004	ANSI C63.4:2003		
FCC 15.207 AC Power Line Conducted Emissions:2004	ANSI C63.4:2003	\square	

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facilities used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124 Phone: (503) 844-4066 Fax: 844-3826

Northwest EMC, Inc. 41 Tesla, Irvine, CA 92618 Phone: (949) 861-8918 Fax: 861-8923

The sites have been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:	
Donald Mantan	
Don Facteau, IS Manager	

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada. Accreditation has been granted to Northwest EMC, Inc. under Certificate Numbers: 200629-0, 200630-0, and 200676-0.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C

Accreditations and Authorizations

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992. TUV Rheinland **NEMKO:** Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory NEMKO assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119). **Technology International:** Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request. Australia/New Zealand: The National Association of Testing Authorities (NATA). Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (NVLAP) VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Nos. -Hillsboro: C-1071 and R-1025, Irvine: C-2094 and R-1943, Newberg: C-1877 and R-1760, Sultan: R-871, C-1784 and R-1761) **BSMI:** Northwest EMC has been designated by NIST and validated by C-Taipei BSMI (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017. **GOST:** Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC. Inc. for product certification

> SCOPE For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/scope.asp</u>

How important is it to understand performance criteria?

It is the responsibility of the test laboratory to observe the results of the tests that are performed and to accurately report those results. As the responsible party (manufacturer, importer, etc) it is your responsibility to take those results, compare them against the specifications and standards, then, if appropriate make a declaration of conformity. As the responsible party it makes sense that you are fully aware of the requirements, how your device performs when tested to those requirements, and what information is being used to declare conformity.

To better assist you in making those conformity decisions, Northwest EMC has adopted a very simple, yet very clear performance assessment procedure. The following criteria is used when performing immunity or susceptibility tests:

Performance Criteria 1:

- □ The EUT exhibited no change in performance when operating as specified by the manufacturer. In this case no changes were observed during the test.
- In most cases this would be equivalent to Performance Criteria A. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, no changes were observed. Basically nothing happened.

Performance Criteria 2:

- The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment recovered without any operator intervention. The data sheets will detail the exact phenomena observed.
- In most cases this would be equivalent to Performance Criteria B. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. The EUT was able to recover from those changes without any operator intervention.

Performance Criteria 3:

- The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment required some operator intervention in order to recover. This intervention may be in the form of reducing the test levels, changing parameters, or even resetting the system. The data sheets will detail the exact phenomena observed.
- In most cases this would be equivalent to Performance Criteria C. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. The EUT required some sort of operator intervention to recover. There was no permanent damage and the EUT appeared to function normally after completion test.

Performance Criteria 4:

- The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment was damaged and would not recover. The data sheets will detail the exact phenomena observed.
- In most cases there is no specific criterion to compare this to, it typically ends the test. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. There was no recovery; the equipment would no longer function as intended.

Each of the standards and specifications has unique performance criteria. In order to make an accurate assessment, one must compare the test results provided with the specific performance criteria. To ensure that a responsible party is compliant with the specifications, one must read and understand those specifications. Provided below is a sample performance criteria, taken from EN 50082-1.

EN 50082-1 Performance Criteria

Performance Criteria A: The apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

Performance Criteria B: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

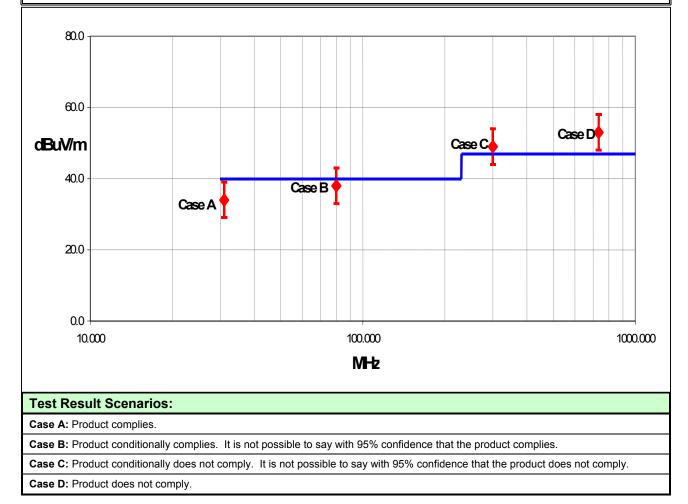
Performance Criteria C: Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of controls.

How should a device perform in order for a declaration of conformity to be made?

As already stated, it is the responsible party that must interpret and understand the results in such a way that a declaration of conformity is made. Having said that, we are often asked to render our opinion as to how a device should perform. Our recommendation simply follows the standards, as can be referenced below. Most of the standards and specifications offer the same performance criterion shown below as their requirements.

Test	Performance Criteria typically specified by the Standard	Equivalent Northwest EMC Performance Criteria
ESD	Performance Criteria B	Performance Criteria 1 or 2
Radiated RF	Performance Criteria A	Performance Criteria 1
EFT/Burst	Performance Criteria B	Performance Criteria 1 or 2
Surge	Performance Criteria B	Performance Criteria 1 or 2
Conducted RF	Performance Criteria A	Performance Criteria 1
Magnetic Field	Performance Criteria A	Performance Criteria 1
Voltage Dips and Variations	Performance Criteria B & C	Performance Criteria 1, 2, or 3

What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and – measurement uncertainty, then test results can be interpreted from the diagram below.

Radiated Emissions ≤ 1 GHz		Value (dB)				
	Probability	bability Biconical		Log Po	eriodic	D	ipole
	Distribution	Antenna		Ante	enna	An	tenna
Test Distance		3m	10m	3m	10m	3m	10m
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25
uncertainty <i>u_c(y)</i>		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25
Expanded uncertainty U	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49
(level of confidence $\approx 95\%$)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49

Radiated Emissions > 1 GHz	Value (dB)		
	Probability	Without High	With High
	Distribution	Pass Filter	Pass Filter
Combined standard uncertainty <i>u_c(y)</i>	normal	+ 1.29 - 1.25	+ 1.38 - 1.35
Expanded uncertainty U	normal (k=2)	+ 2.57	+ 2.76
(level of confidence $\approx 95\%$)		- 2.51	2.70

Conducted Emissions					
	Probability	Value			
	Distribution	(+/- dB)			
Combined standard uncertainty <i>uc(y)</i>	normal	1.48			
Expanded uncertainty <i>U</i> (level of confidence ≈ 95 %)	normal (k = 2)	2.97			

Radiated Immunity					
	Probability	Value			
	Distribution	(+/- dB)			
Combined standard uncertainty <i>uc(y)</i>	normal	1.05			
Expanded uncertainty <i>U</i>	normal (k = 2)	2.11			
(level of confidence \approx 95 %)	$\operatorname{Horman}(K=Z)$	2.11			

Conducted Immunity					
	Probability	Value			
	Distribution	(+/- dB)			
Combined standard uncertainty <i>uc(y</i>)	normal	1.05			
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.10			

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

U = combined standard uncertainty multiplied by the coverage factor: **k**. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then k=3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility 22975 NW Evergreen Pkwy., Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

 Trails End Facility

 30475 NE Trails End Lane

 Newberg, OR 97132

 (503) 844-4066

 FAX (503) 537-0735

Washington

Sultan Facility

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Party Requesting the Test	
Company Name:	7 Layers US
Address:	9361 Irvine Blvd
City, State, Zip:	Irvine, CA 92618
Test Requested By:	Patrick Lomax
Model:	Model NIA.S10 naviPlay iPod Adapter
Wodel.	Model NSR.H100 naviPlay Stereo Remote
First Date of Test:	11-14-2004
Last Date of Test:	11-30-2004
Receipt Date of Samples:	11-14-2004
Equipment Design Stage:	Production
Equipment Condition:	No visual damage.

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	Not provided at the time of test
I/O Ports:	Audio, Power

Functional Description of the EUT (Equipment Under Test):

Model NIA.S10 naviPlay iPod Adapter – which connects to an Apple iPod MP3 Player. It then works with the Model NSR.H100 to allow wireless connection to a Stereo Remote. **Model NSR.H100 naviPlay Stereo Remote** – provides remote, wireless stereo output from the iPod Adapter.

Both devices emply the same Bluetooth Radio Module, only the antenna is different. The Model NIA.S10 has a 0 dBi gain antenna, the Model NSR.H100 has a 1 dBi gain antenna.

Client Justification for EUT Selection:

Not Provided at the time of test.

Client Justification for Test Selection:

Not Provided at the time of test.

Modifications

	Equipment modifications					
Item	Test	Date	Modification	Note	Disposition of EUT	
1	Band Edge Compliance	11/14/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT remained at Northwest EMC.	
2	Occupied Bandwidth	11/14/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT remained at Northwest EMC.	
3	Output Power	11/14/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT remained at Northwest EMC.	
4	Power Spectral Density	11/14/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT remained at Northwest EMC.	
5	Spurious Conducted Emissions	11/14/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT remained at Northwest EMC.	
6	Spurious Radiated Emissions	11/14/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT remained at Northwest EMC.	
7	Conducted Emissions	11/29/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT remained at Northwest EMC.	

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated:

No Hop

Data Rates Investigated: Maximum

Power Input Settings Investigated: 120 VAC, 60 Hz

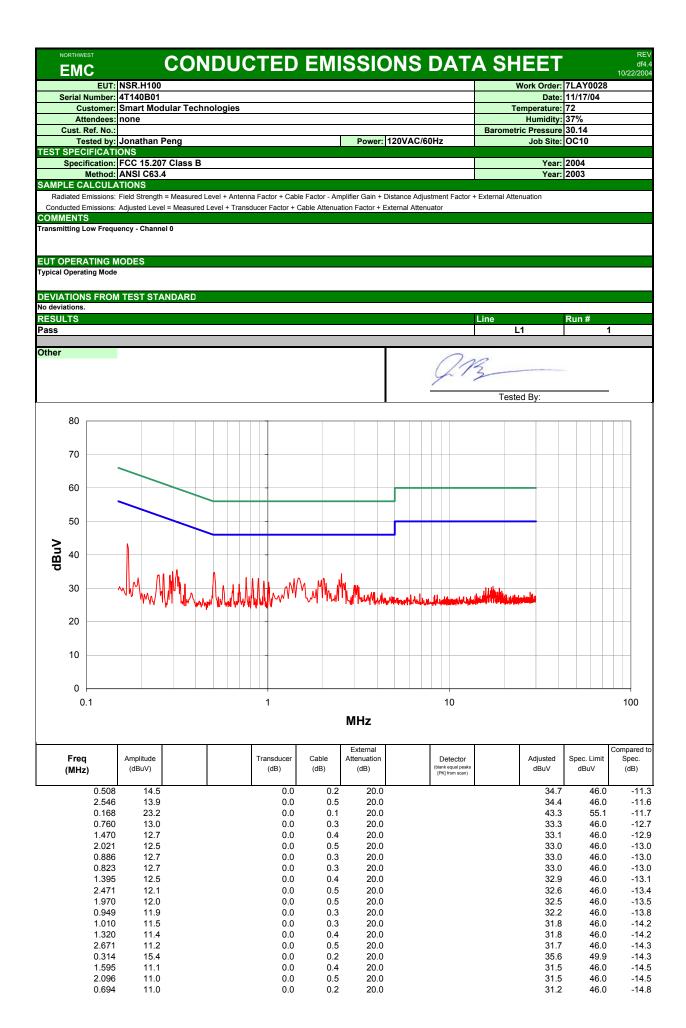
Software\Firmware Applied During Test						
Exercise software	HyperTerminal	Version	1.2			
Exercise software	Zeevo	Version	Release 6.2			
Description						
The eveters were tested w	aing angaigt agftward d	avalanced to toot all functi	and of the device during the test			

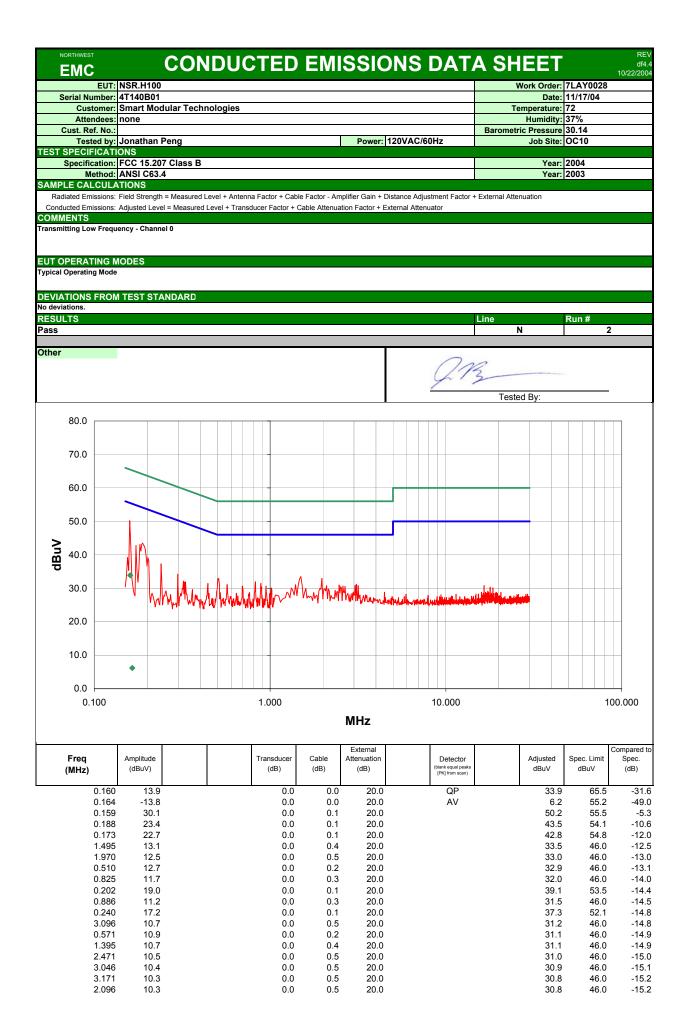
The system was tested using special software developed to test all functions of the device during the test.

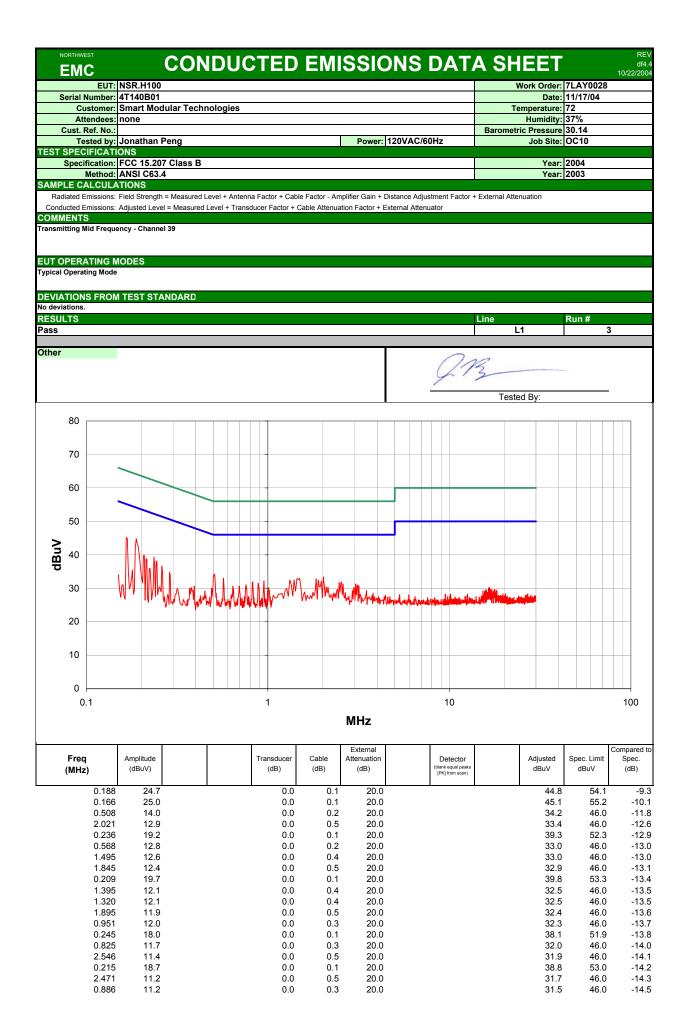
EUT and Peripherals in Test Setup Boundary							
Description	Manufacturer	Model/Part Number	Serial Number				
naviPlay Stereo Remote	Smart Modular Technologies	NSR.H100	4T140B01				
naviPlay iPod Adapter	Smart Modular Technologies	NIA.S10	4T130B01				
AC/DC Power Supply/Adapter	Sunfone Electronics, Co.	ACDL-04	4T130				
Equipment isolated from the EUT so a	s not to contribute to the measurement resu	It is considered to be outside th	e test setup boundary.				

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	No	0.3	No	AC/DC Power Supply/Adapter	AC Mains
DC Leads	No	2.0	No	Remote Bluetooth Module	AC/DC Power Supply/Adapter
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Measurement Equipment							
Description	Manufacturer	Model	Identifier	Last Cal	Interval		
LISN	Solar	9252-50-24-BNC	LIA	12/16/2003	13 mo		
Spectrum Analyzer	Hewlett Packard	8593E	AAP	03/22/2004	13 mo		
Receiver	Schaffner	SCR 3101	ARC	04/28/2003	24 mo		

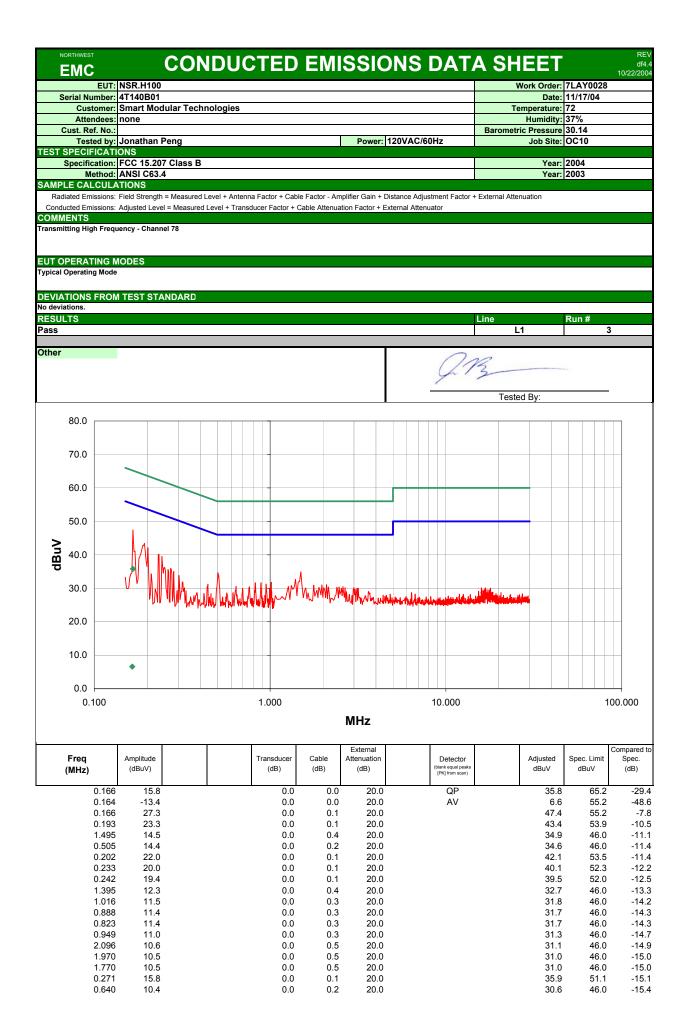

Test Description

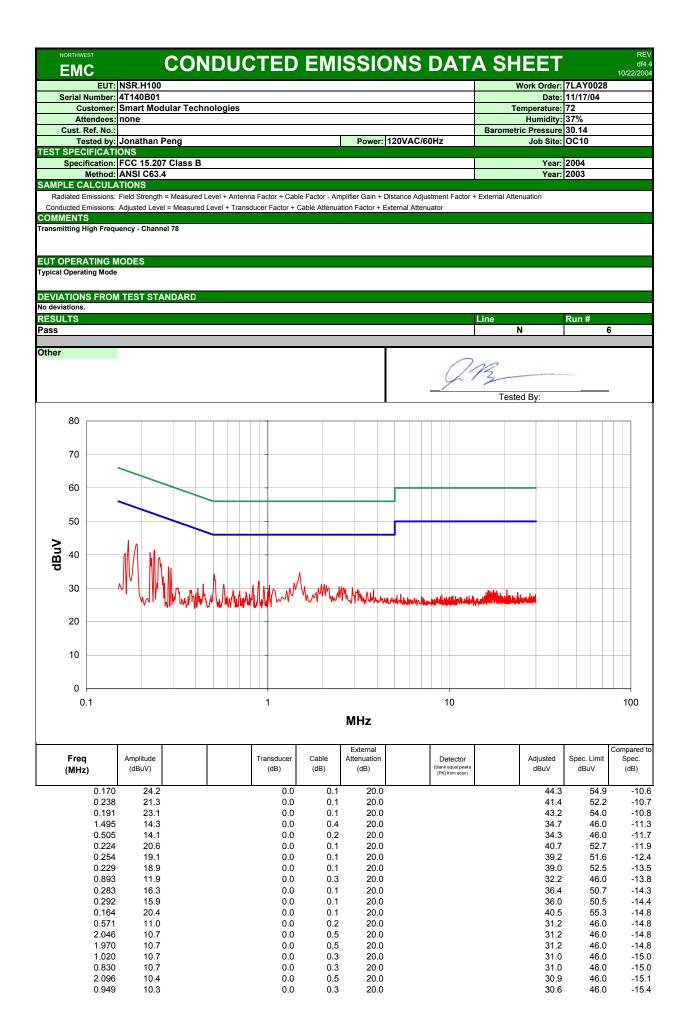

<u>Requirement:</u> Per 47 15.207(d), if the EUT is connected to the AC power line indirectly, obtaining its power from another device that is connected to the AC power line, then it should be tested to demonstrate compliance with the conducted limits of 15.207.

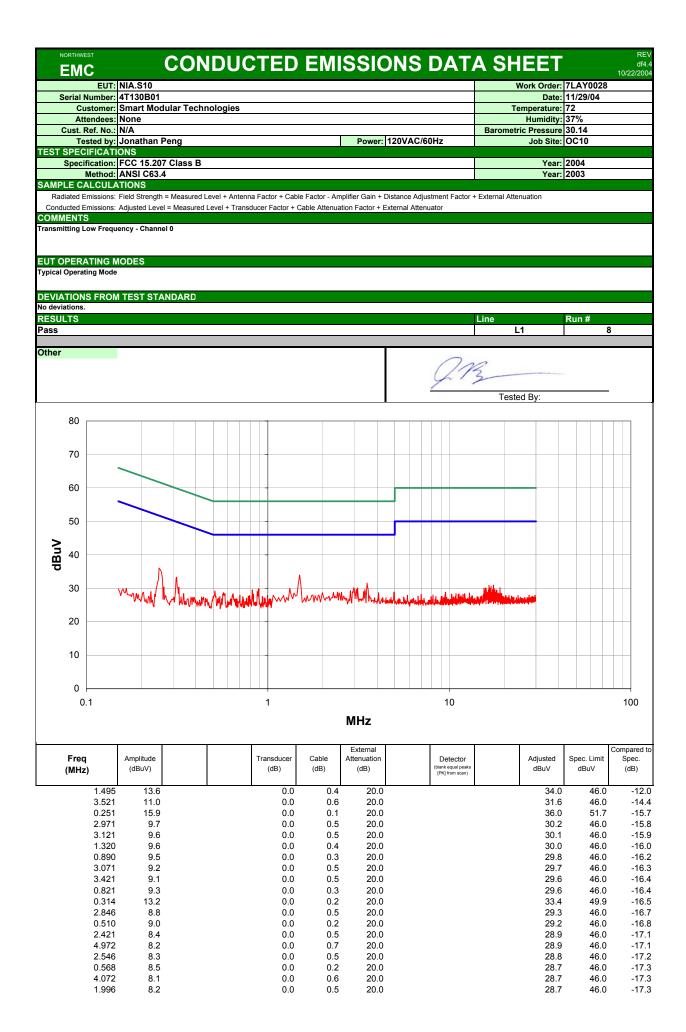

<u>Configuration</u>: The EUT will be powered from a device that could be connected to the AC power line. Therefore, the measurements were made on the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.4-2003.

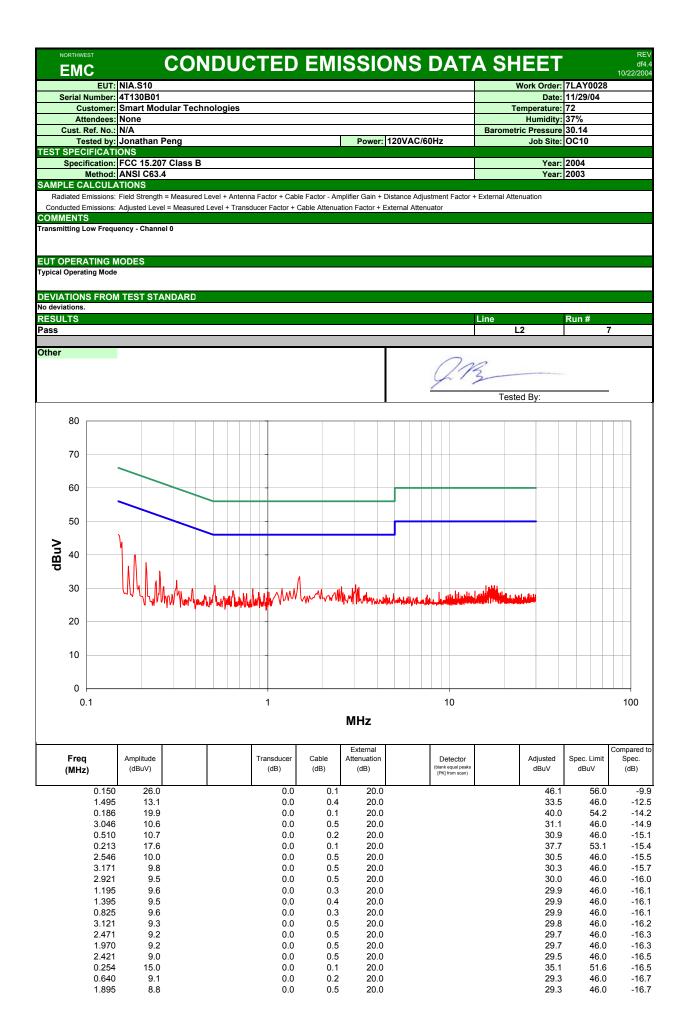

Measurement Bandwidths						
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)			
0.01 – 0.15	1.0	0.2	0.2			
0.15 – 30.0	10.0	9.0	9.0			
30.0 - 1000	100.0	120.0	120.0			
Above 1000	1000.0	N/A	1000.0			
Measurements were	Measurements were made using the bandwidths and detectors specified. No video filter was used.					

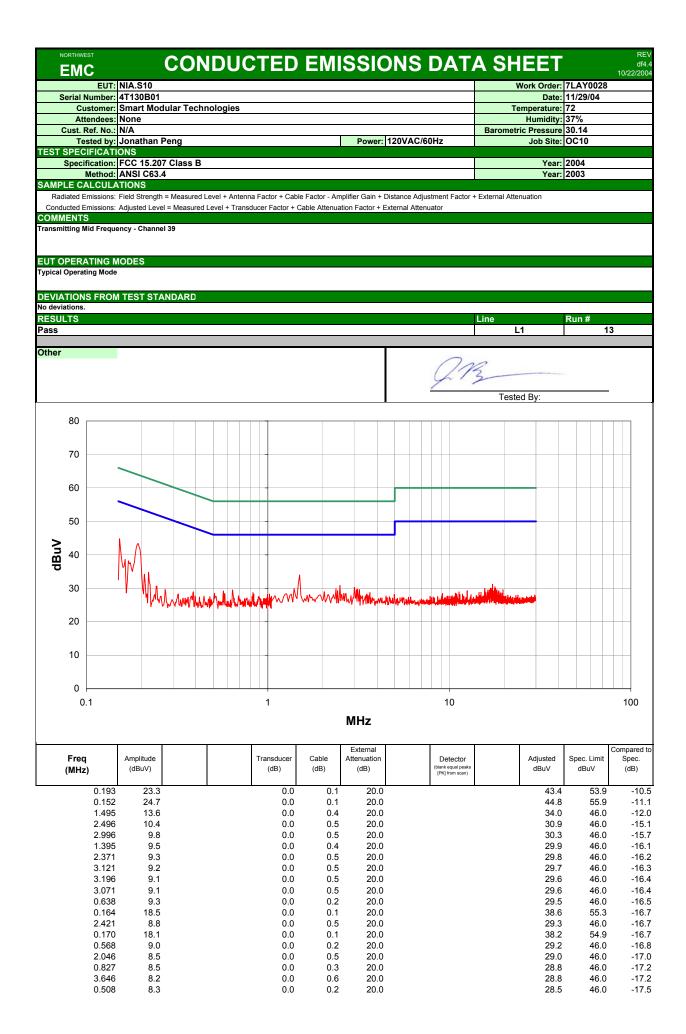
Completed by:	
QB	

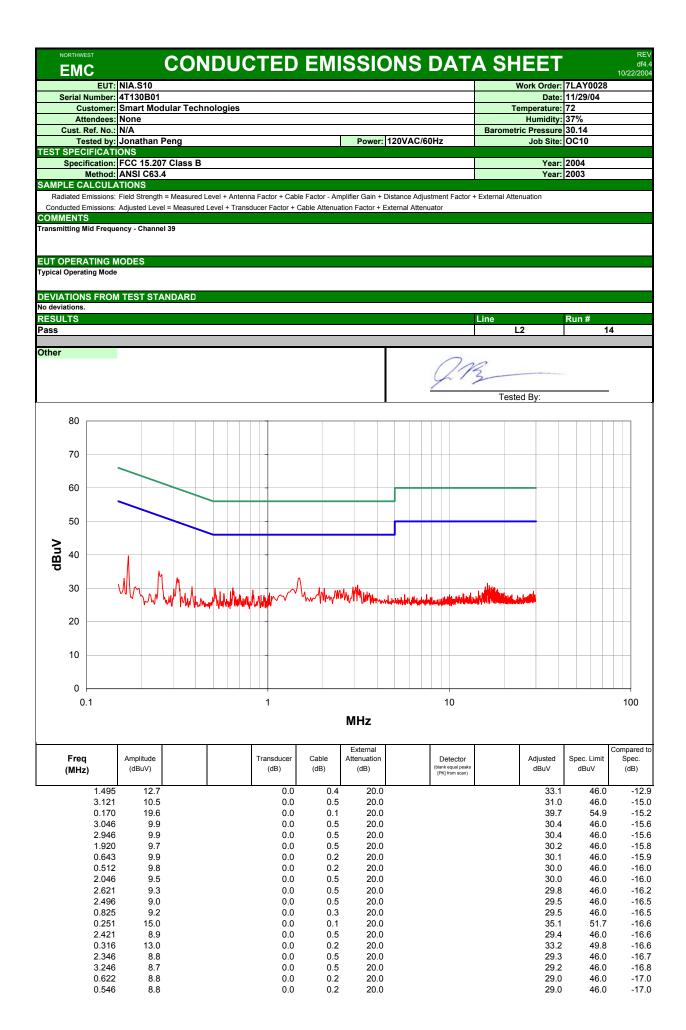


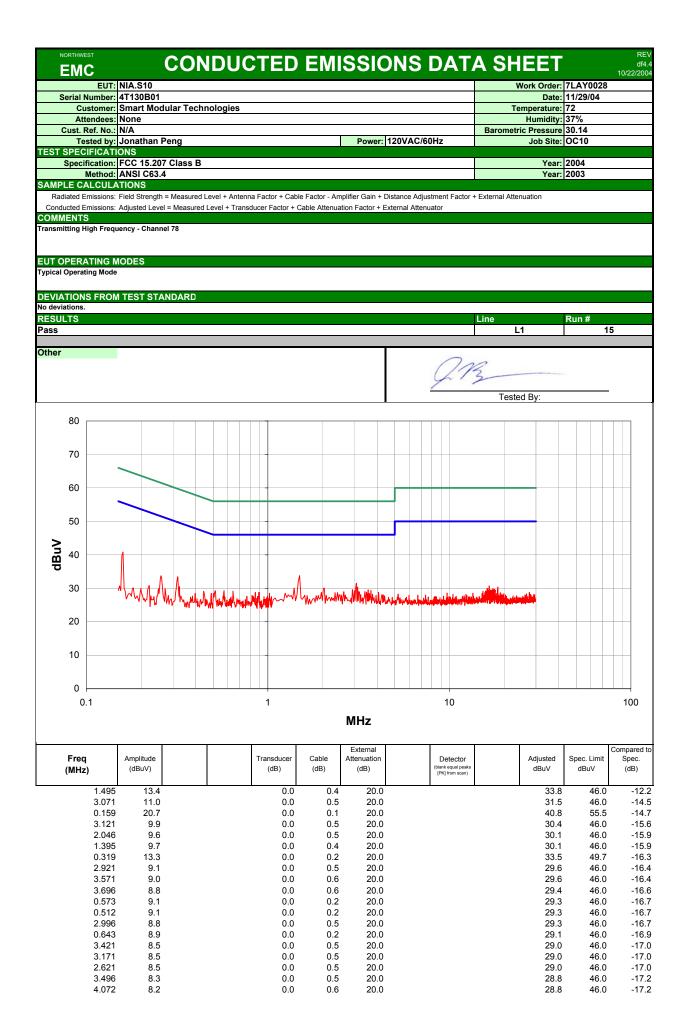


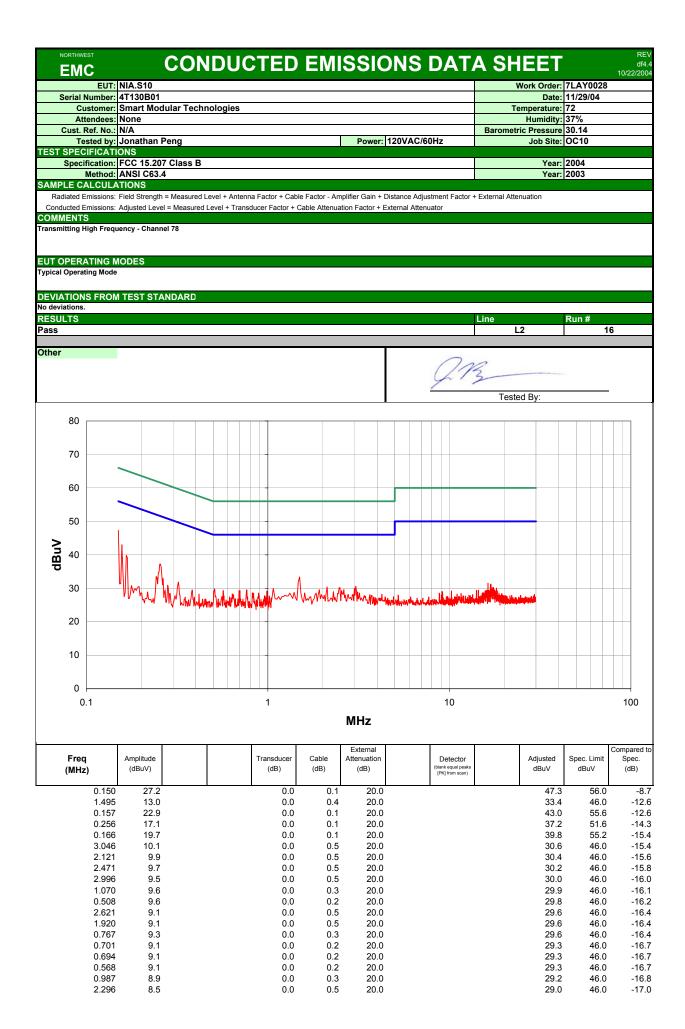





0.0 0.1 20.0









Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

Software\Firmware Applied During Test					
Exercise software	HyperTerminal	Version	1.2		
Exercise software	Zeevo	Version	Release 6.2		
Description					
The system was tested us	ing special software develo	pped to test all functions of	the device during the test.		

EUT and Peripherals							
Description	Manufacturer	Model/Part Number	Serial Number				
naviPlay Stereo Remote	Smart Modular Technologies	NSR.H100	4T140B01				
EUT AC Adapter	Sunfone	ACDL-04	4T130				
Notebook PC	Gateway	Solo 2500	BC699085606				
Notebook AC Adapter	Gateway	ADP-50FB	AC299065953				

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Serial	Yes	2.0	No	EUT	Notebook PC
DC Leads	PA	2.0	PA	EUT AC Adapter	EUT
AC Power	PA	0.5	PA	EUT AC Adapter	AC Mains
AC Power	No	2.0	No	Notebook AC Adapter	AC Mains
DC Leads	PA	2.0	PA	Notebook AC Adapter	Notebook PC
PA = Cable is pe	ermanently a	ttached to the dev	ice. Shieldi	ng and/or presence of ferrite n	nay be unknown.

Measurement Equipment						
Description	Manufacturer	Model	Identifier	Last Cal	Interval	
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo	

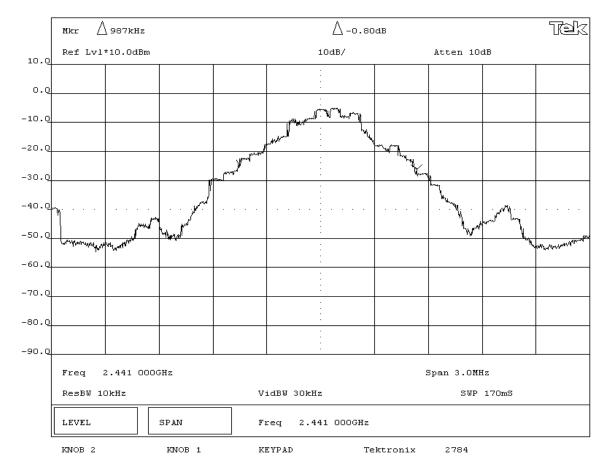
Test Description

<u>Requirement</u>: Per an FCC Interpretation # 20021209-001, "Bluetooth devices may apply under the rules in 15.247 as either a Digital Transmission System (DTS), a Frequency Hopping System (FHSS), or a Hybrid System whichever provides an advantage to the grantee as long as all the requirements are met... The hopping function (*of a hybrid*) must be a true hopping system, as described in Section 15.247(a)(1)."

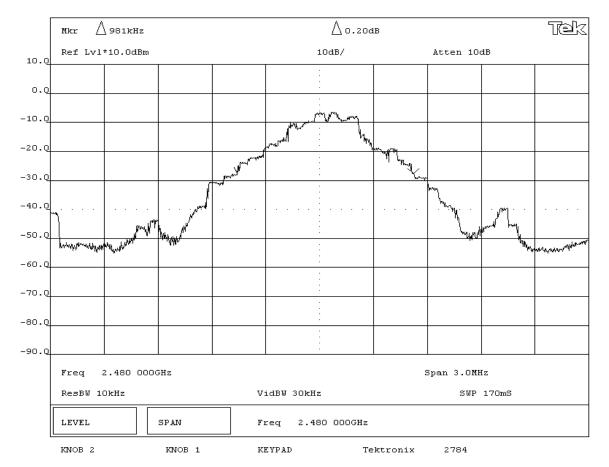
As a DTS system, the minimum 6 dB bandwidth is 500 kHz.

As a FHSS, the maximum 20dB bandwidth of the hopping channel is equal to 1.5 times the channel separation (see 47 CFR 15.247(a)(1)). For example, channel separation for Bluetooth is 1 MHz, therefore the maximum 20 dB bandwidth is 1.5 MHz.

As a Hybrid, it must meet the FHSS requirement as described above.


<u>Configuration</u>: The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.

Completed by:	
ADU.K.P	


NORTHWEST EMC	EMISSIONS	DATA SHEET		Rev BETA 01/30/01			
EUT: NSR.H100			Work Order:	7LAY0028			
Serial Number: 4T140B01			Date:	11/14/04			
Customer: Smart Modular Technologies			Temperature:	70 °F			
Attendees: None		Tested by: Greg Kiemel	Humidity:	47% RH			
Customer Ref. No.: N/A							
TEST SPECIFICATIONS							
Specification: 47 CFR 15.247(a)	Year: 2004	Method: DA 00-705, ANSI C63.4	Year:	2003			
SAMPLE CALCULATIONS							
COMMENTS							
Measured with a direct connection between the RF output	it and a spectrum analyzer						
EUT OPERATING MODES	at and a speetrum analyzer.						
Modulated by PRBS at maximum data rate							
DEVIATIONS FROM TEST STANDARD							
None							
REQUIREMENTS							
Bluetooth can be authorized as either a Frequency Hopp	ing System (FHSS), a Digital Trans	smission System (DTS), or a Hybrid System.					
As a FHSS, the maximum 20dB bandwidth of the hoppin maximum 20 dB bandwidth is 1.5 MHz.	g channel is equal to 1.5 times the	channel separation. For example, channel sep	paration for Bluetooth i	s 1 MHz, therefore the			
As a DTS system, the minimum 6 dB bandwidth is 500 k	Hz. As a Hybrid, it must meet the I	FHSS requirement as described above.					
RESULTS		BANDWIDTH					
Pass		0.972 MHz					
SIGNATURE	SIGNATURE						
Tested By:							
DESCRIPTION OF TEST							
20dB Bandwidth - Low Channel							

	Mkr	∆ 972 kHz				Δ-0.30	dB			Tek
10.0	Ref I	vl*10.0dBm			10	dB/		Atten 100	ЗВ	
0.0										
-10.0					min	n.n				
-20.0				mad	entral .	where the second	w.			
-30.0							- And and a second			
-40.Q	m 	 Marina							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-50.0	- ht-+-1644-4	Mart Well	MMM 1						hva	White and the second
-60.Q										
-80.0										
-90.0					: : :					
	Freq	2.402 000	GHz				5	Span 3.0MH	Iz	
	ResBl	J 10kHz		v	idBW 30kHz			SWP	170mS	
	LEVEI	,	SPAN	F	req 2.402	OOOGHz				
	KNOB	2	KNOB 1	K	EYPAD	Te	ktronix	2784		

NORTHWEST EMISSIONS DATA SHEET Rev BETA O170001							
EUT:	NSR.H100				Work O	Order: 7LAY0028	
Serial Number:	4T140B01					Date: 11/14/04	
Customer:	Smart Modular Technologies				Tempera	ature: 70 °F	
Attendees:	None	None Tested by: Greg Kiemel Humidity: 47%					
Customer Ref. No.:	N/A	Job	Site: EV06				
TEST SPECIFICATION	IS						
Specification:	47 CFR 15.247(a)	Year: 2004	Method:	DA 00-705, ANSI C63.4		Year: 2003	
SAMPLE CALCULATI	ONS						
COMMENTS							
	t connection between the RF outp	ut and a spectrum analyzer					
EUT OPERATING MO	-	at and a spectrum analyzer.					
Modulated by PRBS a							
DEVIATIONS FROM T							
None							
REQUIREMENTS							
Bluetooth can be auth	norized as either a Frequency Hop	ping System (FHSS), a Digital Tra	ansmission System (DTS), or a Hybrid System.			
therefore the maximu	num 20dB bandwidth of the hoppir m 20 dB bandwidth is 1.5 MHz. minimum 6 dB bandwidth is 500 k				eparation for Blu	uetooth is 1 MHz,	
RESULTS			BANDWIDTH				
Pass			0.987 MHz				
SIGNATURE							
Tested By:							
DESCRIPTION OF TE	ST						
20dB Bandwidth - Mid Channel							

EMISSIONS DATA SHEET Rev BETA 013001						
EUT:	NSR.H100			Work Order: 7LAY002	28	
Serial Number:	4T140B01			Date: 11/14/04		
Customer:	Smart Modular Technologies	Tested by: Greg Kiemel	Temperature: 70 °F			
Attendees:	None	Humidity: 47% RH				
Customer Ref. No.:	N/A	Power: 120VAC/60Hz	Job Site: EV06			
TEST SPECIFICATION	NS					
Specification:	47 CFR 15.247(a)	Year: 2004	Method: DA 00-705, ANSI C63.4	4 Year: 2003		
SAMPLE CALCULATI	ONS					
COMMENTS						
	ct connection between the RF outp	out and a spectrum analyzer.				
EUT OPERATING MO						
Modulated by PRBS a						
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
			nsmission System (DTS), or a Hybrid System.			
		ng channel is equal to 1.5 times th	e channel separation. For example, channel s	separation for Bluetooth is 1 MH	iz,	
	m 20 dB bandwidth is 1.5 MHz.		5000			
	minimum 6 dB bandwidth is 500 k	Hz. As a Hybrid, it must meet the	FHSS requirement as described above.			
RESULTS			BANDWIDTH			
Pass			0.981 MHz			
SIGNATURE						
Tested By:						
DESCRIPTION OF TE	DESCRIPTION OF TEST					
20dB Bandwidth - High Channel						

Output Power

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

Software\Firmware Applied During Test					
Exercise software	HyperTerminal	Version	1.2		
Exercise software	Zeevo	Version	Release 6.2		
Description					
The system was tested using special software developed to test all functions of the device during the test.					

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
naviPlay Stereo Remote	Smart Modular Technologies	NSR.H100	4T140B01
EUT AC Adapter	Sunfone	ACDL-04	4T130
Notebook PC	Gateway	Solo 2500	BC699085606
Notebook AC Adapter	Gateway	ADP-50FB	AC299065953

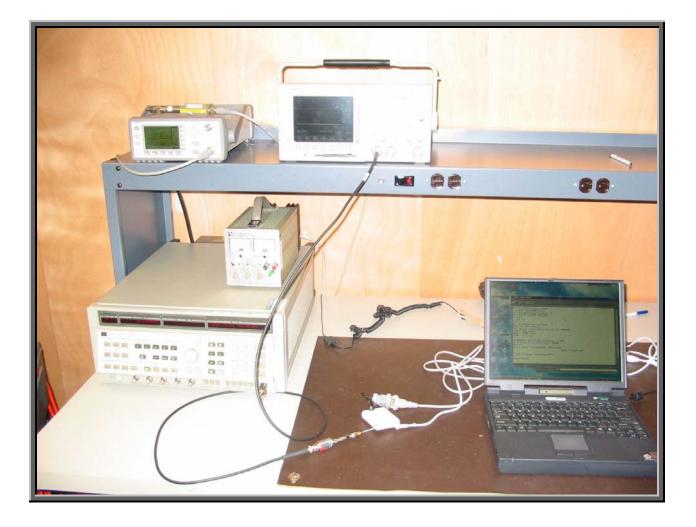
Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Serial	Yes	2.0	No	EUT	Notebook PC
DC Leads	PA	2.0	PA	EUT AC Adapter	EUT
AC Power	PA	0.5	PA	EUT AC Adapter	AC Mains
AC Power	No	2.0	No	Notebook AC Adapter	AC Mains
DC Leads	PA	2.0	PA	Notebook AC Adapter	Notebook PC
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Measurement Equipment								
Description	Manufacturer	Model	Identifier	Last Cal	Interval			
Power Meter	Hewlett Packard	E4418A	SPA	07/23/2004	24 mo			
Power Sensor	Hewlett-Packard	8481H	SPB	07/23/2004	24 mo			
RF Detector	RLC Electronics	CR-133-R	ZZA	NCR	NA			
Oscilloscope	Tektronix	TDS 3052	TOF	07/21/2004	12 mo			
Signal Generator	Hewlett Packard	8341B	TGN	01/23/2004	13 mo			

Test Description

Requirement: Per 47 CFR 15.247(b), the maximum peak output power must not exceed 1 Watt.

<u>Configuration</u>: The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The EUT was transmitting at its maximum output power. The data rate of the radio was varied to determine the level that produced the highest output power.


The measurement was made using a direct connection between the RF output of the EUT and a RF detector diode. The DC output of the diode was measured with the oscilloscope. The signal generator, tuned to the transmit frequency, was then substituted for the EUT. The CW output of the signal generator was adjusted until the DC output of the RF detector diode match the peak level produced when connected to the EUT. To further reduce measurement error, the power meter and sensor were then used to measure the output power level of the signal generator.

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

Completed by:	
ADU.K.P	

NORTHWEST EMC		EMISSIONS	DATA SH	EET		Rev BETA	
						01/30/01	
EUT:	NSR.H100				Work Order:	7LAY0028	
Serial Number:	4T140B01				Date:	11/14/04	
Customer:	Smart Modular Technologies Temperature: 70 °F						
Attendees:	None		Tested by:	Greg Kiemel	Humidity:	47% RH	
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06	
TEST SPECIFICATION	IS						
Specification:	47 CFR 15.247(b)	Year: 2004	Method:	DA 00-705, ANSI C63.4	4 Year:	2003	
SAMPLE CALCULATIO	ONS						
COMMENTS							
EUT OPERATING MOD	DES						
Modulated by PRBS a	t maximum data rate						
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
Maximum peak condu	cted output power does not exce	ed 1 Watt					
RESULTS			AMPLITUDE				
Pass			1.94 mW				
SIGNATURE							
	ADU.K.P						
Tested By:	00						
DESCRIPTION OF TES	ST						
Output Power							

Frequency (MHz)	Peak Power Measured w/ Diode Detector (dBm)	Peak Power (mW)	Spec (mW)
2402.0	2.88	1.94	1000.0
2441.0	1.52	1.42	1000.0
2480.0	0.04	1.01	1000.0

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
High

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:	
120 VAC, 60 Hz.	

Software\Firmware Applied During Test						
Exercise software HyperTerminal Version 1.2						
Exercise software Zeevo Version Release 6.2						
Description						
The system was tested using special software developed to test all functions of the device during the test.						

EUT and Peripherals								
Description	Manufacturer	Model/Part Number	Serial Number					
naviPlay Stereo Remote	Smart Modular Technologies	NSR.H100	4T140B01					
EUT AC Adapter	Sunfone	ACDL-04	4T130					
Notebook PC	Gateway	Solo 2500	BC699085606					
Notebook AC Adapter	Gateway	ADP-50FB	AC299065953					

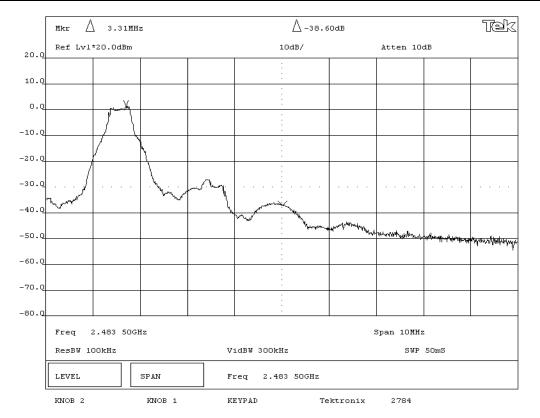
Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
Serial	Yes	2.0	No	EUT	Notebook PC		
DC Leads	PA	2.0	PA	EUT AC Adapter	EUT		
AC Power	PA	0.5	PA	EUT AC Adapter	AC Mains		
AC Power	No	2.0	No	Notebook AC Adapter	AC Mains		
DC Leads	PA	2.0	PA	Notebook AC Adapter	Notebook PC		
PA = Cable is per	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

Measurement Equipment						
Description	Manufacturer	Model	Identifier	Last Cal	Interval	
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo	

Requirement: Per 47 CFR 15.247(d), in any 100 kHz bandwidth outside the authorized band, the maximum level of radio frequency power must be at least 20dB down from the highest emission level within the authorized band. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100 kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.

Configuration: The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from 5 MHz below the band edge to 5 MHz above the band edge.

Completed by:
ADU.K.P


NORTHWEST							
EMC		EMISSIONS I	DATA SHEET	Rev BETA 01/30/01			
	NSR.H100			Work Order: 7LAY0028			
Serial Number:	4T140B01			Date: 11/14/04			
Customer:	Smart Modular Technologies			Temperature: 70 °F			
Attendees:	None		Tested by: Greg Kiemel	Humidity: 47% RH			
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site: EV06			
TEST SPECIFICATION	IS						
Specification:	47 CFR 15.247(d)	Year: 2004	Method: DA 00-705, ANSI C63.4	Year: 2003			
SAMPLE CALCULATI	ONS						
COMMENTS							
EUT OPERATING MO	DES						
Modulated by PRBS a	t maximum data rate						
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
Maximum level of any	spurious emission at the edge of	the authorized band is 20 dB dow	n from the fundamental				
RESULTS			AMPLITUDE				
Pass			-36.9 dB				
SIGNATURE							
	An U.K.P						
Tested By:	VV						
DESCRIPTION OF TE	ST						
BEGORIA HON OF TEX	Band Edge Compliance - Low Channel						
		Band Edge Compile	ance - Low Channel				

	Mkr 🛆	-2.66MH	Iz						Tek
20.0	Ref Lvl [;]	*20.0dBm			10dB/		Atten 100	цВ	
10.0									
0.0						n n	-Xi		
-10.0									
-20.0									
-30.0								~~~	M
-40.0					Thomas	w r	1	\sim	
-50.0	may prychastic	un and a second	month and an and the fact	and and a grant with a state					
-60.0	ľ				- - - -				
-70.0									
-80.0					•				
	Freq 2	2.400 OOGH	z			:	Span 10MHz	:	
	ResBW 10	OckHz		V:	idBW 300kHz		SWP	50mS	
	LEVEL		SPAN	SI	pan 10MHz				
	KINOB 2		KNOB 1	KI	EYPAD	Tektronix	2784		

EMISSIONS DATA SHEET						
	NSR.H100		•		Work Orde	er: 7LAY0028
Serial Number:	: 4T140B01		<u>.</u>			e: 11/14/04
Customer:					Temperatur	
Attendees:				Greg Kiemel		ty: 47% RH
Customer Ref. No.:			Power:	120VAC/60Hz	Job Sit	e: EV06
TEST SPECIFICATION						
	: 47 CFR 15.247(d)	Year: 2004	Method:	DA 00-705, ANSI C63.4	Yea	ar: 2003
SAMPLE CALCULATIO	ONS					
COMMENTS						
EUT OPERATING MOD						
Modulated by PRBS at						
DEVIATIONS FROM TE	EST STANDARD					
None						
REQUIREMENTS						
	spurious emission at the edge of t					
RESULTS			AMPLITUDE			
Pass			-38.6 dB			
SIGNATURE						
Tested By:	* BUK-P					
DESCRIPTION OF TES	вт					
Band Edge Compliance - High Channel						

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

Software\Firmware Applied During Test								
Exercise softwareHyperTerminalVersion1.2								
Exercise software	Zeevo	Version	Release 6.2					
Description								
The system was tested us	ing special software develo	ped to test all functions of	the device during the test.					

EUT and Peripherals										
Description	Manufacturer	Model/Part Number	Serial Number							
naviPlay Stereo Remote	Smart Modular Technologies	NSR.H100	4T140B01							
EUT AC Adapter	Sunfone	ACDL-04	4T130							
Notebook PC	Gateway	Solo 2500	BC699085606							
Notebook AC Adapter	Gateway	ADP-50FB	AC299065953							

Cables									
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2				
Serial	Yes	2.0	No	EUT	Notebook PC				
DC Leads	PA	2.0	PA	EUT AC Adapter	EUT				
AC Power	PA	0.5	PA	EUT AC Adapter	AC Mains				
AC Power	No	2.0	No	Notebook AC Adapter	AC Mains				
DC Leads	PA	2.0	PA	Notebook AC Adapter	Notebook PC				
PA = Cable is per	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.								

Measurement Equipment								
Description	Manufacturer	Model	Identifier	Last Cal	Interval			
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo			

Requirement: Per 47 CFR 15.247(d), in any 100 kHz bandwidth outside the authorized band, the maximum level of radio frequency power must be at least 20dB down from the highest emission level within the authorized band. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100 kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.

Configuration: The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. For each transmit frequency, the spectrum was scanned throughout the specified frequency.

Completed by:	
ADU.K.P	

NORTHWEST					
EMC		EMISSIONS [DATA SHEET		Rev BETA 01/30/01
EUT:	NSR.H100			Work Order:	7LAY0028
Serial Number:	4T140B01			Date:	11/14/04
Customer:	Smart Modular Technologies			Temperature:	70 °F
Attendees:	None		Tested by: Greg Kiemel	Humidity:	47% RH
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATIONS	3				
Specification:	47 CFR 15.247(d)	Year: 2004	Method: DA 00-705, ANSI C63.4	Year:	2003
SAMPLE CALCULATIO	INS				
COMMENTS					
EUT OPERATING MOD					
Modulated by PRBS at	maximum data rate				
DEVIATIONS FROM TE	ST STANDARD				
None					
REQUIREMENTS					
Maximum level of any	spurious emission outside of the au	thorized band is 20 dB down from	the fundamental		
RESULTS					
Pass					
SIGNATURE					
	111.0				
	An U.K.P				
	12				
Tested By:					
DESCRIPTION OF TES	Т				
		ustad Spurious Emi	aniona Law Channel OMH		
	Antenna Cond	ucted Spurious Emi	ssions - Low Channel 0MH	IZ-JUNZ	

									Tek
20.0	Ref Lv1*20.0)dBm		10dB/	,		Atten 100	1B	
10.0				-					
10.0				:					
0.0									
-10.0				:					
-20.Q				:					
-30.Q				· · · · · · · · ·					
-40.0									
-50.Q								hun naha	
-60.0	(dentiny/angualistenstrightervisjed	deraka hayatan manahasan karana ang	and along and and a start of the second of the second second second second second second second second second s	hand and a deal definition and any and any and any	ylan.yhaynaddwn	www.uhridini	wy.h/1	yan waanga ya	ilentration and the second states
-70.0									
-80.0									
·00.Q	OMHz	to	3.00	DOGHz	I				
	ResBW 100kHz		Vi	VidBW 300kHz			SWP	1.75	
	LEVEL	SPAN	Re	f Lv1*20.0dBm	n				
	KNOB 2	KNOB 1	KE	YPAD	Tekt	ronix	2784		

NORTHWEST			
EMC	EMISSIONS	DATA SHEET	Rev BET. 01/30/01
EUT: NSR.H100			Work Order: 7LAY0028
Serial Number: 4T140B01			Date: 11/14/04
Customer: Smart Modular	Technologies		Temperature: 70 °F
Attendees: None		Tested by: Greg Kiemel	Humidity: 47% RH
Customer Ref. No.: N/A		Power: 120VAC/60Hz	Job Site: EV06
TEST SPECIFICATIONS			
Specification: 47 CFR 15.247(d) Year: 2004	Method: DA 00-705, ANSI C63.4	Year: 2003
SAMPLE CALCULATIONS			
COMMENTS			
EUT OPERATING MODES			
Modulated by PRBS at maximum data	rate		
DEVIATIONS FROM TEST STANDARD			
None			
REQUIREMENTS			
Maximum level of any spurious emiss	ion outside of the authorized band is 20 dB down fr	om the fundamental	
RESULTS			
Pass			
SIGNATURE			
AB	U.K.P		
Tested By:			
DESCRIPTION OF TEST			
Anten	na Conducted Spurious Emis	ssions - Low Channel 3GH	z-6.5GHz

Antenna Conducted Spurious Emissions - Low Channel 3GHz-6.5GHz

										Tek
20.0	Ref Lvl*	20.0dBm			10)dB/		Atten 100	1B	
10.0					:					
10.0					· · · · · · · · · · · · · · · · · · ·					
0.0					•					
-10.0										
-20.Q										
-30.Q										
-40.Q										
-50.Q										
-60.0	vern-enternetetter	ray (nighthe dife beginnen wir	Yan,wilawalawalawalawa	uly water the water and	where we address of the	wonderstanding	here the second second	unnhannha	wanner an	dent and a second
-70.0					· · · · · · · · · · · · · · · · · · ·					
-80.0					:					
00.0	2.990	GHz	to	6.5	OOGHz		1			
	ResBW 100kHz		v	VidBW 300kHz			SWP	2.05		
	LEVEL		SPAN	R	ef Lv1*20.0)dBm				
	KINOB 2		KNOB 1	K	EYPAD	Te	ktronix	2784		

NORTHWEST				
EMC		EMISSIONS	DATA SHEET	Rev BETA 01/30/01
	NSR.H100			Work Order: 7LAY0028
Serial Number:	4T140B01			Date: 11/14/04
Customer:	Smart Modular Technologies			Temperature: 70 °F
Attendees:	None		Tested by: Greg Kiemel	Humidity: 47% RH
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site: EV06
TEST SPECIFICATION	IS			
Specification:	47 CFR 15.247(d)	Year: 2004	Method: DA 00-705, ANSI C63.4	Year: 2003
SAMPLE CALCULATION	ONS			
COMMENTS				
EUT OPERATING MOI				
Modulated by PRBS a				
DEVIATIONS FROM T	EST STANDARD			
None				
REQUIREMENTS				
	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental	
RESULTS				
Pass				
SIGNATURE				
	An U.K.P			
Tested By:	14			
DESCRIPTION OF TES				
	Antenna Conduc	cted Spurious Emis	sions - Low Channel 6.5G	Hz-15GHz

Antenna Conducted Spurious Emissions - Low Channel 6.5GHz-15GHz

	Mkr 7	.213GHz	*-4	6.10dBm						Tek
20.0	Ref Lvl	*20.0dBm			10	DdB/		Atten 100	1B	
					:					
10.0										
0.0					:					
-10.0					:					
-20.0										
-30.Q					· · · · ·					
-40.0										
-50.Q	Ϋ́				· · · · · ·					
	and the state of t	n ^{underl} endersterneler	- Anorthe Annal and a state of the state of	they an all the factor	help-doct-whitered pathers	WWW. Harris Harris Harris	mornwyauna	wadantal providential	n'slownighelen, haven gelyen	Warned and the star of the start of the star
					:					
-70.0										
-80.0					:					
	6.49	ƏGHz	to	15.0	OOGHz					
	ResBW 1	DOkHz		v	idBW 300kH:	z		SWP	4.85	
	LEVEL		SPAN	S1	trt 6.499	9GHz				
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST					
EMC		EMISSIONS I	DATA SHEET		Rev BETA
					01/30/01
EUT:	NSR.H100			Work Order: 7LAY00	28
Serial Number:	4T140B01			Date: 11/14/04	
Customer:	Smart Modular Technologies			Temperature: 70 °F	
Attendees:	None		Tested by: Greg Kiemel	Humidity: 47% RH	
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site: EV06	
TEST SPECIFICATION	IS				
Specification:	47 CFR 15.247(d)	Year: 2004	Method: DA 00-705, ANSI C63.4	Year: 2003	
SAMPLE CALCULATI	ONS				
COMMENTS					
EUT OPERATING MO	DES				
Modulated by PRBS a					
DEVIATIONS FROM T					
None					
REQUIREMENTS					
	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental		
RESULTS					
Pass					
SIGNATURE					
	An U.K.P				
	alt -				
Tested By:	00				
DESCRIPTION OF TES	ST				
	Antenna Conduc	ted Spurious Emis	sions - Low Channel 15Gł	17 - 25GHz	

Antenna Conducted Spurious Emissions - Low Channel 15GHz - 25GHz

										Tek
20.0	Ref Lv1*2	0.0dBm			10	dB/		Atten 100	1B	
10.0										
					:					
0.0										
-10.0					:					
-20.Q					:					
-30.Q										
-40. <u>0</u>										
-50.Q							particular	word the with you with you	wandream	white when the state of the sta
	work while while when we	the half mar have	men where and	พ.๛ _{เม} ษณ-พ.พ.พ.ศ.	white white	Yaa,Amaraadahada	erel .			
-60.0										
-70.0										
-80.0										
	14.99GH	z	to	25.	OOGHz					
	ResBW 100	kHz		V:	idBW 300kHz			SWP	5.7%	
	LEVEL		SPAN	Re	≘f Lv1*20.0	dBm				
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST		
EMC EMISSIONS	DATA SHEET	Rev BETA
EUT: NSR.H100		01/30/01 Work Order: 7LAY0028
Serial Number: 4T140B01		Date: 11/14/04
Customer: Smart Modular Technologies		Temperature: 70 °F
Attendees: None	Tested by: Greg Kiemel	Humidity: 47% RH
Customer Ref. No.: N/A	Power: 120VAC/60Hz	Job Site: EV06
TEST SPECIFICATIONS	Power: 120VAC/60HZ	30b 3ite. E 400
Specification: 47 CFR 15.247(d) Year: 2004	Method: DA 00-705, ANSI C63.4	Year: 2003
SAMPLE CALCULATIONS	Method: DA 00-705, ANSI C65.4	Teal. 2003
COMMENTS		
EUT OPERATING MODES		
Modulated by PRBS at maximum data rate		
DEVIATIONS FROM TEST STANDARD		
None		
REQUIREMENTS		
Maximum level of any spurious emission outside of the authorized band is 20 dB down	from the fundamental	
RESULTS		
Pass		
SIGNATURE		
An U.K.P		
UCT		
Tested By:		
DESCRIPTION OF TEST		
		U- 20U-
Antenna Conducted Spurious Er	nissions - wid Channel um	HZ-3GHZ

Antenna Conducted Spurious Emissions - Mid Channel 0MHz-3GHz

											Tek
20.0	Ref Lvl'	20.0dBm			10dB	/		Atten 10)dB	1	
-											
10.0									╈		
0.0									┢		
-10.0											
-20.0											
-20.0											
-30.Q											
-40.0											
-50.Q											
					:			hunder	Л	Warnahalana an	الع أضغاط والمناسبة والمعالم
-60.Q	yunaariadadhahariya	ትላላ{/ ት እድላያ ^{ለዋ8} ቀየግዥነቁ	raantaan madala da bahad		annany in white the state	NAMANAL	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	11WY 17	-		
-70.0									_		
-80.Q											
	OMHz		to	3.0	OOGHz						
	ResBW 10)0kHz		V:	idBW 300kHz			SWP	1	.75	
	LEVEL		SPAN	Re	≘f Lv1*20.0dB	m					
	KINOB 2		KNOB 1	KI	EYPAD	Tel	ktronix	2784			

NORTHWEST			
EMC	EMISSIONS	DATA SHEET	Rev BETA 01/30/01
EUT: NSR.H100			Work Order: 7LAY0028
Serial Number: 4T140B01			Date: 11/14/04
Customer: Smart Modular Techr	nologies		Temperature: 70 °F
Attendees: None		Tested by: Greg Kiemel	Humidity: 47% RH
Customer Ref. No.: N/A		Power: 120VAC/60Hz	Job Site: EV06
TEST SPECIFICATIONS			
Specification: 47 CFR 15.247(d)	Year: 2004	Method: DA 00-705, ANSI C63.4	Year: 2003
SAMPLE CALCULATIONS			
COMMENTS			
EUT OPERATING MODES			
Modulated by PRBS at maximum data rate			
DEVIATIONS FROM TEST STANDARD			
None			
REQUIREMENTS			
Maximum level of any spurious emission or	utside of the authorized band is 20 dB down f	rom the fundamental	
RESULTS			
Pass			
SIGNATURE			
	1.0		
An U.I	LP		
04			
Tested By:			
DESCRIPTION OF TEST			
	Conducted Sourious Em	issions Mid Channel 3GH	
Antenna	conducted spurious Em	issions - Mid Channel 3GH	2-0.3002

Antenna Conducted Spurious Emissions - Mid Channel 3GHz-6.5GHz

										Tek
20.0		*20.0dBm			10d	в/		Atten 100	iB	
					-					
10.Q					:					
0.0					:					
-10.Q					:					
-20.0										
-20.0					:					
-30.Q										
-40.Q					:					
-50.Q										
	hill ward added	unghe many any south	where where where	appentional tendpowers and appl	alphayhattanasalaraharatiana	man proved the	www.webarantarhadaph		kinnlakterspinne	مەلىلەنىيە ئەتلىكى يەلىكى ي يەلىكى يەلىكى
-60. <u>0</u>					:					
-70.Q										
-80.Q					- - -					
	2.990	OGHz	to	6.5	OOGHz					
	ResBW 10	OOkHz		v	idBW 300kHz			SWP	2.05	
	LEVEL		SPAN	Re	ef Lv1*20.0d	Bm				
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST				
EMC		EMISSIONS	DATA SHEET	Rev BETA 01/30/01
	NSR.H100			Work Order: 7LAY0028
Serial Number:	4T140B01			Date: 11/14/04
Customer:	Smart Modular Technologies			Temperature: 70 °F
Attendees:	None		Tested by: Greg Kiemel	Humidity: 47% RH
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site: EV06
TEST SPECIFICATION	IS			
Specification:	47 CFR 15.247(d)	Year: 2004	Method: DA 00-705, ANSI C63.4	Year: 2003
SAMPLE CALCULATION	ONS			
COMMENTS				
EUT OPERATING MOI				
Modulated by PRBS a				
DEVIATIONS FROM T	EST STANDARD			
None				
REQUIREMENTS				
	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental	
RESULTS				
Pass				
SIGNATURE				
	An U.K.P			
Tested By:	00			
DESCRIPTION OF TES	ST			
	Antenna Condu	cted Spurious Emis	ssions - Mid Channel 6.5G	Hz-15GHz

Antenna Conducted Spurious Emissions - Mid Channel 6.5GHz-15GHz

	Mkr 7	.332GHz	*-4	5.40dBm						Tek
20.0		*20.0dBm			:	LOdB/		Atten 100	1B	
-										
10.0										
0.0										
-10.0										
-20.Q										
-30.0										
						· · · · ·				
-40.Q						·				
-50.Q		Í								
-60.0	~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~	munner	rrankhanningananak	Wandt Hat what you a fear of	When any all and an approximately and	in white the manufacture	and windurgene	gentersol interpretabilities.	yrshuth ^e rye _{rer} unde	Nylogolian Starting
-70.0										
-80.Q										
	6.49	9GHz	to	15.0	OOGHz					
	ResBW 1	00kHz		v:	idBW 300kH	Iz		SWP	4.85	
	LEVEL		SPAN	SI	trt 6.49	9GHz				
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST				
EMC		EMISSIONS [DATA SHEET	Rev BETA 01/30/01
EUT:	NSR.H100			Work Order: 7LAY0028
Serial Number:	4T140B01			Date: 11/14/04
Customer:	Smart Modular Technologies			Temperature: 70 °F
Attendees:	None		Tested by: Greg Kiemel	Humidity: 47% RH
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site: EV06
TEST SPECIFICATION	15			
Specification:	47 CFR 15.247(d)	Year: 2004	Method: DA 00-705, ANSI C63.4	Year: 2003
SAMPLE CALCULATI	ONS			
COMMENTS				
COMMENTO				
EUT OPERATING MO	DES			
Modulated by PRBS a				
DEVIATIONS FROM T	EST STANDARD			
None				
REQUIREMENTS				
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental	
RESULTS				
Pass				
SIGNATURE				
	A DU.K.P			
Tested By:				
DESCRIPTION OF TES	ST			
	Antenna Condu	cted Spurious Emis	sions - Mid Channel 15Gl	Hz-25GHz

Antenna Conducted Spurious Emissions - Mid Channel 15GHz-25GHz

										Tek
20.0	Ref Lv1*20	.OdBm			10	dB/		Atten 100	1B	
10.0										
0.0										
-10.0										
-20.Q										
-30.Q										
-40.0										
-50.Q	other and her the concerning				-		MAN Herperson	www.	Anna marinteriore	p. M. M. M. L. M.
	offer and ferral and a second	_	HAL Wellen wind you	and the second	broub to a sub-	4,49\$1.09\$1.0\$41.04*1.0**	hauthi i			
-60.Q										
-70.Q										
-80.0					•					
	14.99GHz	z	to	25.	OOGHz					
	ResBW 100)	tHz		V:	idBW 300kHz			SWP	5.75	
	LEVEL		SPAN	Re	ef Lv1*20.0	dBm				
	KINOB 2		KNOB 1	к	EYPAD	Te	ktronix	2784		

NORTHWEST					
EMC		EMISSIONS	DATA SHEET		Rev BETA
	1				01/30/01
	NSR.H100			Work Order: 7LAY0028	
Serial Number:				Date: 11/14/04	
	Smart Modular Technologies			Temperature: 70 °F	
Attendees:			Tested by: Greg Kiemel	Humidity: 47% RH	
Customer Ref. No.:			Power: 120VAC/60Hz	Job Site: EV06	
TEST SPECIFICATION					
Specification:	47 CFR 15.247(d)	Year: 2004	Method: DA 00-705, ANSI C63.4	Year: 2003	
SAMPLE CALCULATI	ONS				
COMMENTS					
EUT OPERATING MO	DES				
Modulated by PRBS a	t maximum data rate				
DEVIATIONS FROM T	EST STANDARD				
None					
REQUIREMENTS					
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental		
RESULTS					
Pass					
SIGNATURE					
	An U.K.P				
	04				
Tested By:	~ ~				
DESCRIPTION OF TES					
	Antenna Condi	icted Spurious Emi	issions - High Channel 0M	Hz-3GHz	

Antenna Conducted Spurious Emissions - High Channel 0MHz-3GHz

										Tek
20.0	Ref Lvl*	20.0dBm			10dB,	/		Atten 100	цВ	
10.0										
0.0					:				1	
-10.Q					:					
-20.0										
-30.Q										
-40.Q										
-50.Q										
		a sa kanalara da a dara	anone a solution	Millio	h management have been a reason	Ironwood	1-131-614-14-15-1-1-c	erenter the states	w.Abhanna	down wanter
-60.0	Milesete exhibite	an an feithe an da ai			:					
-70. <u>0</u>										
-80.Q					:					
	OMHz		to	3.0	OOGHz					
	ResBW 10	OkHz		V:	idBW 300kHz			SWP	1.75	
	LEVEL		SPAN	Re	≘f Lv1*20.0dBr	m				
	KINOB 2		KNOB 1	KI	EYPAD	Tel	ctronix	2784		

NORTHWEST					
EMC		EMISSIONS [DATA SHEET		Rev BETA
	1				01/30/01
	NSR.H100			Work Order:	
Serial Number:					11/14/04
	Smart Modular Technologies			Temperature:	
Attendees:			Tested by: Greg Kiemel	Humidity:	
Customer Ref. No.:			Power: 120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION	IS				
Specification:	47 CFR 15.247(d)	Year: 2004	Method: DA 00-705, ANSI C63.4	Year:	2003
SAMPLE CALCULATI	ONS				
COMMENTS					
EUT OPERATING MO	DES				
Modulated by PRBS a	t maximum data rate				
DEVIATIONS FROM T	EST STANDARD				
None					
REQUIREMENTS					
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental		
RESULTS					
Pass					
SIGNATURE					
	An U.K.P				
	- 04				
Tested By:	0				
DESCRIPTION OF TES	ST				
DESCRIPTION OF TEX		ata d Onemiana Emia	alama Illink Okamual 201		
	Antenna Condu	ctea Spurious Emis	sions - High Channel 3G	1Z-0.3GHZ	

Antenna Conducted Spurious Emissions - High Channel 3GHz-6.5GHz

										Tek
20.0	Ref Lvl*	20.0dBm			10)dB/		Atten 100	1B	
10.0					· · · · · · · · · · · · · · · · · · ·					
					· ·					
0.0					· · ·					
-10.0										
-20.Q										
-30.Q										
-40.Q					:					
-50.Q					:					
-60.0	the the second states and	he have been and here	ndparter allated at	≁ _{₽₽₽} ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	un million and more star	444 apriller and the	aru-nhaqais[8]w/1414449nsy	And the state of t	internet and the property in the	hanger an
-70.0										
-80.0										
-00.0	2.990)GHz	to	6.5	OOGHz		1	1		
	ResBW 10	OkHz		v	idBW 300kHz	:		SWP	2.05	
	LEVEL		SPAN	R	ef Lv1*20.0)dBm				
	KINOB 2		KNOB 1	K	EYPAD	Te	ktronix	2784		

NORTHWEST					
EMC		EMISSIONS I	DATA SHEET		Rev BETA 01/30/01
	NSR.H100			Work Order:	
Serial Number:					11/14/04
	Smart Modular Technologies			Temperature:	
Attendees:	•		Tested by: Greg Kiemel	Humidity:	
Customer Ref. No.:			Power: 120VAC/60Hz	Job Site:	
TEST SPECIFICATION			Power: 120VAC/60HZ	Job Site.	2000
	47 CFR 15.247(d)	Year: 2004	Method: DA 00-705, ANSI C63.4	Year:	2002
SAMPLE CALCULATI		Tear. 2004	Method: DA 00-705, ANSI C65.4	Tear.	2003
SAMPLE CALCULATI					
COMMENTS					
COMMENTS					
EUT OPERATING MO	DES				
Modulated by PRBS a					
DEVIATIONS FROM T					
None	EST STANDARD				
REQUIREMENTS					
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental		
RESULTS					
Pass					
SIGNATURE					
	-				
	An U.K.P				
	~04				
Tested By:	22				
DESCRIPTION OF TES	27				
DESCRIPTION OF TEX					
	Antenna Conduc	tea Spurious Emis	sions - High Channel 6.5G	Hz-15GHz	

Antenna Conducted Spurious Emissions - High Channel 6.5GHz-15GHz

	Mkr 7	.443GHz	*-4	5.60dBm						Tek
20.0		*20.0dBm			10	dB/		Atten 100	цв	
					:					
10.0										
0.0					:					
-10.0										
-20.0										
-30.0										
-40.0					:					
-50.0		Y								
	new secondary and a for	human	all marked with the	However label and the sound at the	humannot	udation and when	w.madage.cog/dagle-liste	denter approximation	and a star and a star with	www.
-60.0					:					
-70.0					:					
-80.0										
	6.49	9GHz	to	15.0	OOGHz					
	ResBW 1	.00kHz		v	idBW 300kHz			SWP	4.85	
	LEVEL		SPAN	SI	trt 6.499	GHz				
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST								
EMC		EMISSIONS I	DATA SHEET		Rev BETA			
					01/30/01			
-	NSR.H100			Work Order:				
Serial Number:					11/14/04			
Customer:	Smart Modular Technologies			Temperature:	70 °F			
Attendees:			Tested by: Greg Kiemel	Humidity:	47% RH			
Customer Ref. No.:			Power: 120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION	IS							
Specification:	47 CFR 15.247(d)	Year: 2004	Method: DA 00-705, ANSI C63.4	Year:	2003			
SAMPLE CALCULATI	ONS							
COMMENTS								
EUT OPERATING MO	DES							
Modulated by PRBS a	t maximum data rate							
DEVIATIONS FROM T	EST STANDARD							
None								
REQUIREMENTS								
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental					
RESULTS								
Pass								
SIGNATURE								
SIGNATORE								
Anukil								
$\sim 0^{+}$								
Tested By:	Tested By:							
DESCRIPTION OF TES								
	Antenna Conducted Spurious Emissions - High Channel 15GHz-25GHz							
			~					

Antenna Conducted Spurious Emissions - High Channel 15GHz-25GHz

										Tek
20.0	Ref Lv1*2(0.OdBm			10	dB/		Atten 100	dB	
10.0					-					
0.0										
-10.0					•					
-20.Q										
-30.Q										
-40.Q										
-50.Q							pedronumente	gered the well water	-the states and the second	where where the
-60.0	assively associated and a	howhandpray	with had the state of	amagenteringederter	anterpresimption of the second	(Yailloway)arant	ww.			
-70.0					•					
-80.Q										
	14.99GH: ResBW 100)		to		OOGHz idBW 300kHz			SWP	5.78	
			en M			dBu				
	LEVEL		SPAN		ef Lv1*20.0					
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

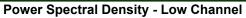
Software\Firmware Applied During Test								
Exercise software	HyperTerminal	Version	1.2					
Exercise software	Zeevo	Version	Release 6.2					
Description								
The system was tested using special software developed to test all functions of the device during the test.								

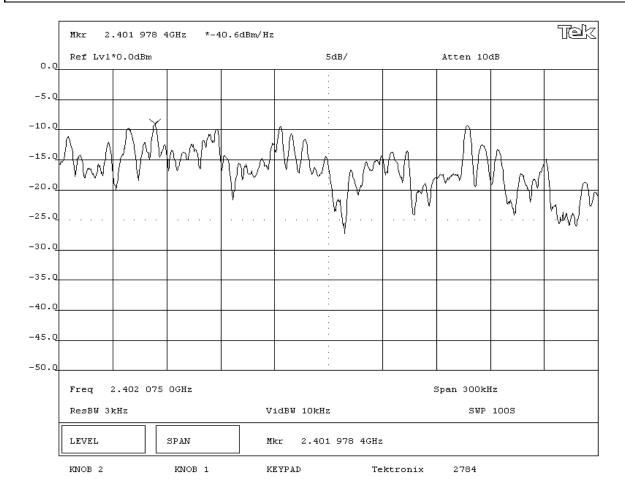
EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
naviPlay Stereo Remote	Smart Modular Technologies	NSR.H100	4T140B01
EUT AC Adapter	Sunfone	ACDL-04	4T130
Notebook PC	Gateway	Solo 2500	BC699085606
Notebook AC Adapter	Gateway	ADP-50FB	AC299065953

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
Serial	Yes	2.0	No	EUT	Notebook PC	
DC Leads	PA	2.0	PA	EUT AC Adapter	EUT	
AC Power	PA	0.5	PA	EUT AC Adapter	AC Mains	
AC Power	No	2.0	No	Notebook AC Adapter	AC Mains	
DC Leads	PA	2.0	PA	Notebook AC Adapter	Notebook PC	
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

Measurement Equipment									
Description	Manufacturer	Model	Identifier	Last Cal	Interval				
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo				

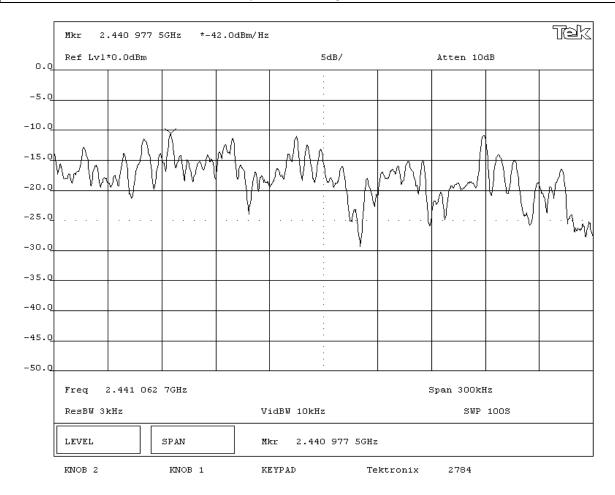
Requirement: Per 47 CFR 15.247(e), the peak power spectral density conducted from the antenna port of a direct sequence transmitter must not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission.

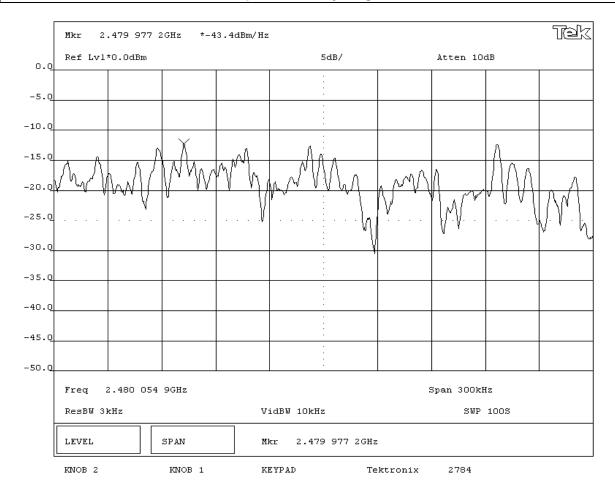

Configuration: The peak power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. Per the procedure outlined in FCC 97-114, the spectrum analyzer was used as follows:


The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be $1.5 \times 106 \div 3 \times 103 = 500$ seconds. External attenuation was used and added to the reading. The following FCC procedure was used for modifying the power spectral density measurements:

"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 34.8 dB for correction to 3 kHz."

Completed by:	
ADU.K.P	


NORTHWEST						
EMC		EMISSIONS [DATA SH	EET		Rev BETA 01/30/01
EUT: NSR.H100					Work Orde	r: 7LAY0028
Serial Number: 4T140B01					Date	e: 11/14/04
Customer: Smart Mod	dular Technologies				Temperature	: 70 °F
Attendees: None			Tested by:	Greg Kiemel	Humidity	/: 47% RH
Customer Ref. No.: N/A			Power:	120VAC/60Hz	Job Site	e: EV06
TEST SPECIFICATIONS						
Specification: 47 CFR 15	.247(e)	Year: 2004	Method:	FCC 97-114, ANSI C63.4	4 Year	r: 2003
SAMPLE CALCULATIONS						
Meter reading on spectrum analy	zer is internally comper	sated for cable loss and external	attenuation.			
Power Spectral Density per 3kHz	bandwidth = Power Spe	ectral Density per 1 Hz bandwidth	+ Bandwidth Correction	on Factor.		
Bandwidth Correction Factor = 10	0*log(3kHz/1Hz) = 34.8 d	В				
COMMENTS						
EUT OPERATING MODES						
Modulated by PRBS at maximum	data rate					
DEVIATIONS FROM TEST STAND	DARD					
None						
REQUIREMENTS						
Maximum peak power spectral de	ensity conducted from a	DSSS transmitter does not excee	d 8 dBm in any 3 kHz	band		
RESULTS			AMPLITUDE			
Pass		1	Power Spectral Densit	ty = -5.8 dBm / 3kHz		
SIGNATURE						
Tested By:	BU.K.P					
DESCRIPTION OF TEST						


NORTHWEST							
EMC		EMISSIONS [DATA SH	EET		Rev BETA 01/30/01	
EUT:	NSR.H100				Work Order	r: 7LAY0028	
Serial Number:	4T140B01				Date	: 11/14/04	
Customer:	Smart Modular Technologies				Temperature	: 70 °F	
Attendees:	None		Tested by:	Greg Kiemel	Humidity	/: 47% RH	
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site	: EV06	
TEST SPECIFICATION	S						
Specification:	47 CFR 15.247(e)	Year: 2004	Method:	FCC 97-114, ANSI C63.4	4 Year	: 2003	
SAMPLE CALCULATIO	ONS						
Meter reading on spec	ctrum analyzer is internally compe	nsated for cable loss and external	attenuation				
Power Spectral Densit	ty per 3kHz bandwidth = Power Sp	ectral Density per 1 Hz bandwidth	+ Bandwidth Correction	on Factor.			
Bandwidth Correction	1 Factor = 10*log(3kHz/1Hz) = 34.8 c	dB					
COMMENTS							
EUT OPERATING MOD							
Modulated by PRBS at	t maximum data rate						
DEVIATIONS FROM TE	EST STANDARD						
None							
REQUIREMENTS							
Maximum peak power	spectral density conducted from a	a DSSS transmitter does not excee	ed 8 dBm in any 3 kHz	band			
RESULTS			AMPLITUDE				
Pass	Pass Power Spectral Density = -7.2 dBm / 3kHz						
SIGNATURE	SIGNATURE						
Tested By:	Tested By:						
DESCRIPTION OF TES	ST						

NORTHWEST								
EMC		EMISSIONS [EET		Rev BETA 01/30/01		
EUT:	NSR.H100				Work Order	: 7LAY0028		
Serial Number:	4T140B01				Date	: 11/14/04		
Customer:	Smart Modular Technologies				Temperature	: 70 °F		
Attendees:	None		Tested by:	Greg Kiemel	Humidity	r: 47% RH		
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site	: EV06		
TEST SPECIFICATION	IS							
Specification:	47 CFR 15.247(e)	Year: 2004	Method:	FCC 97-114, ANSI C63.4	4 Year	: 2003		
SAMPLE CALCULATION	ONS							
Meter reading on spec	trum analyzer is internally compe	nsated for cable loss and external	attenuation					
Power Spectral Densit	ty per 3kHz bandwidth = Power Sp	ectral Density per 1 Hz bandwidth	+ Bandwidth Correctio	n Factor.				
Bandwidth Correction	Factor = 10*log(3kHz/1Hz) = 34.8 d	dB						
COMMENTS								
EUT OPERATING MOD								
Modulated by PRBS at								
DEVIATIONS FROM T	EST STANDARD							
None								
REQUIREMENTS								
	spectral density conducted from a			band				
RESULTS			AMPLITUDE					
Pass	Pass Power Spectral Density = -8.6 dBm / 3kHz							
SIGNATURE								
Tested By:								
DESCRIPTION OF TES	DESCRIPTION OF TEST							

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:			
Low			
Mid			
High			

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Maximum	

Power Input Settings Investigated: 120 VAC, 60 Hz.

Frequency Range Invest	gated		
Start Frequency	30 MHz	Stop Frequency	26 GHz

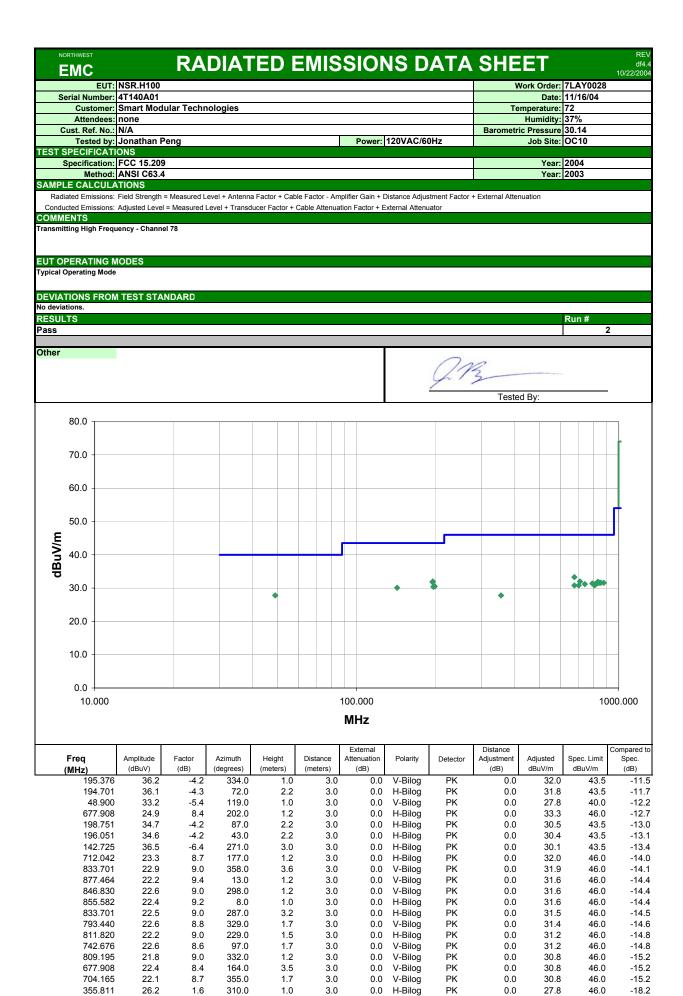
Software\Firmware Applied During Test					
Exercise software	HyperTerminal	Version	1.2		
Exercise software	Zeevo	Version	Release 6.2		
Description					
The system was tested using special software developed to test all functions of the device during the test.					

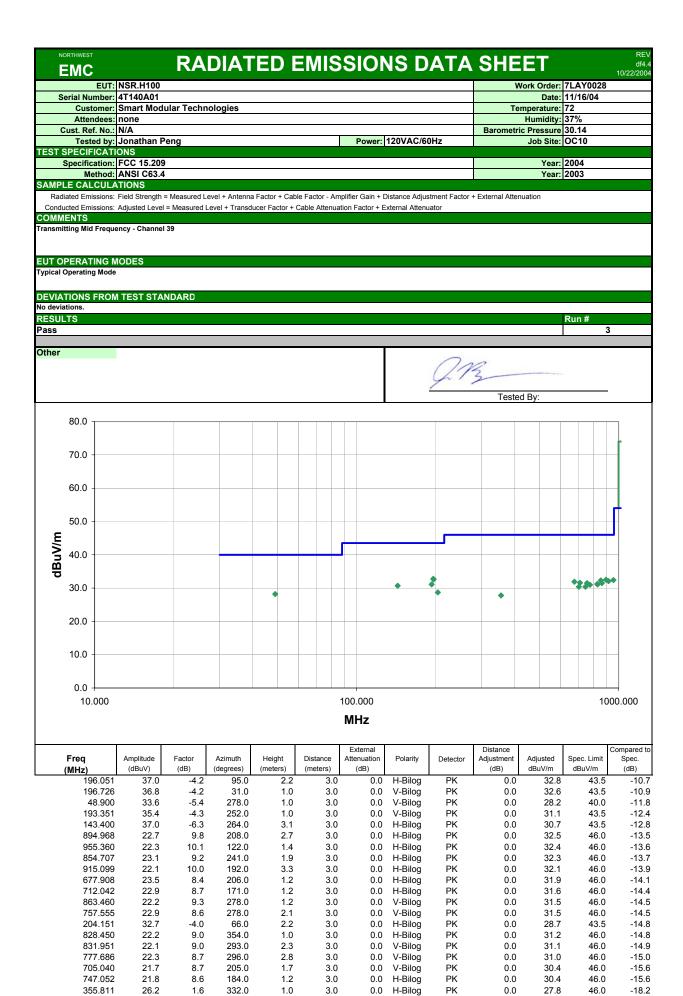
EUT and Peripherals						
Description	Manufacturer	Model/Part Number	Serial Number			
EUT AC Adapter	Sunfone	ACDL-04	4T130			
Headphones	Apple	ipod	None			
naviPlay Stereo Remote	Smart Modular Technologies	NSR.H100	4T140A01			
naviPlay iPod Adapter	Smart Modular Technologies	NIA.S10	4T130B01			
iPod	Apple Computer, Inc.	A1040	JQ4239FJQQF			

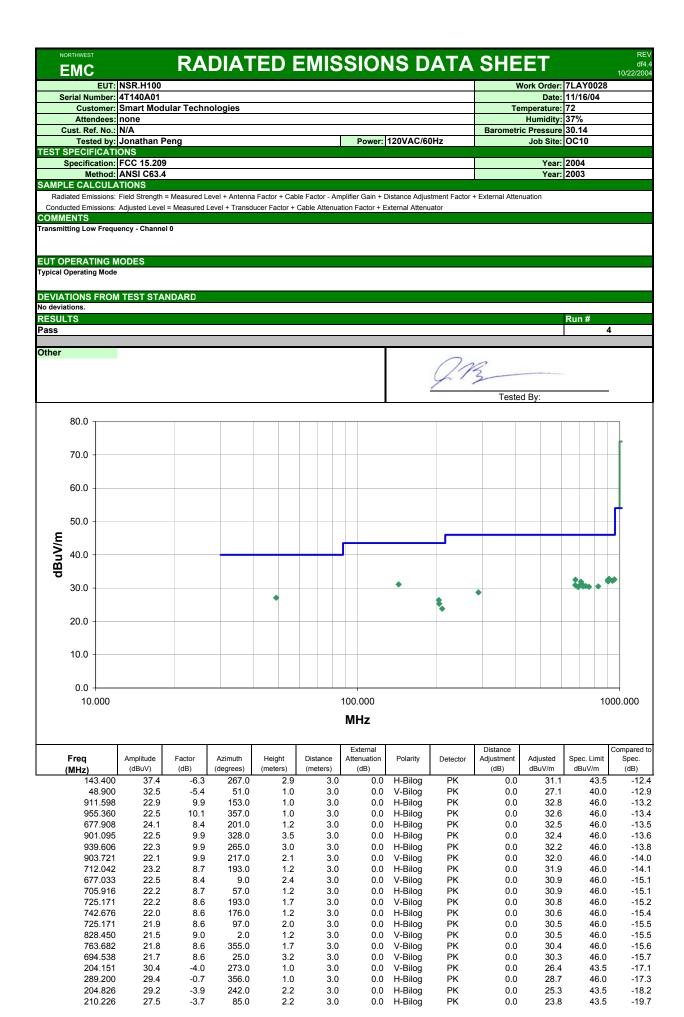
Remote Equipment Outside of Test Setup Boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Notebook PC	Gateway	Solo 2500	BC699085606			
Notebook AC Adapter	Gateway	ADP-50FB	AC299065953			
Equipment isolated from the EUT so as not to contribute to the measurement result is considered to be outside the test setup boundary						

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Serial	Yes	2.0	No	EUT	Notebook PC
DC Leads	PA	2.0	PA	EUT AC Adapter	EUT
AC Power	PA	0.5	PA	EUT AC Adapter	AC Mains
AC Power	No	2.0	No	Notebook AC Adapter	AC Mains
DC Leads	PA	2.0	PA	Notebook AC Adapter	Notebook PC
Audio	PA	1.0	PA	Bluetooth Remote (EUT)	Headphones
PA = Cable is p	ermanently a	ttached to the de	vice. Shiel	ding and/or presence of ferrite ma	ay be unknown.

Measurement Equipment							
Description	Manufacturer	Model	ldentifi er	Last Cal	Interval		
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/23/2003	13 mo		
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/23/2003	13 mo		
Antenna, Horn	EMCO	3115	AHC	09/07/2004	12 mo		
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo		
Pre-Amplifier	Amplifier Research	LN1000A	APS	02/05/2004	13 mo		
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APJ	01/05/2004	13 mo		
Antenna, Horn	EMCO	3160-08	AHK	NCR	NA		
High Pass Filter	Micro-Tronics	HPM50111	HFO	04/13/2004	13 mo		
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	10/08/2004	13 mo		
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo		

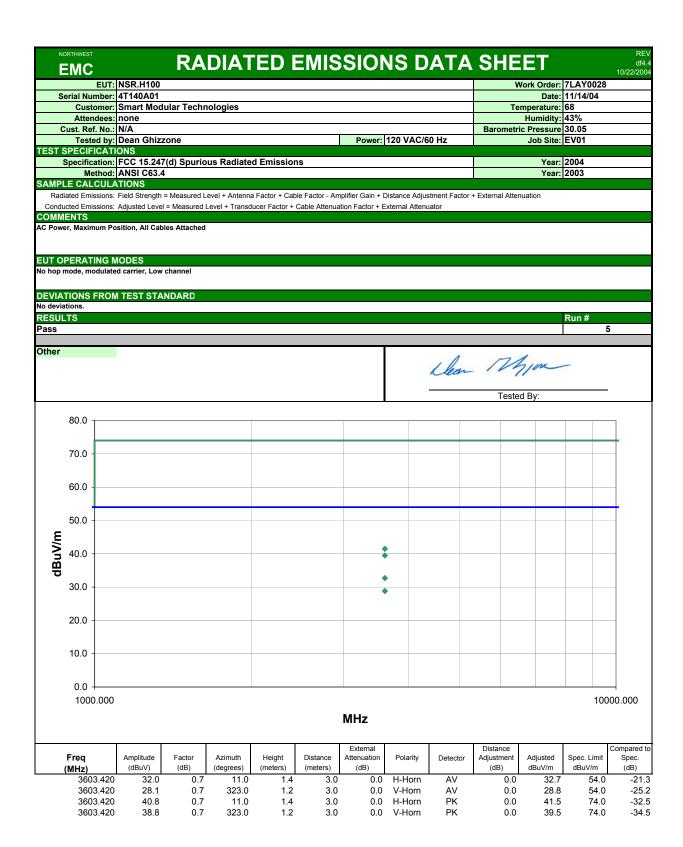


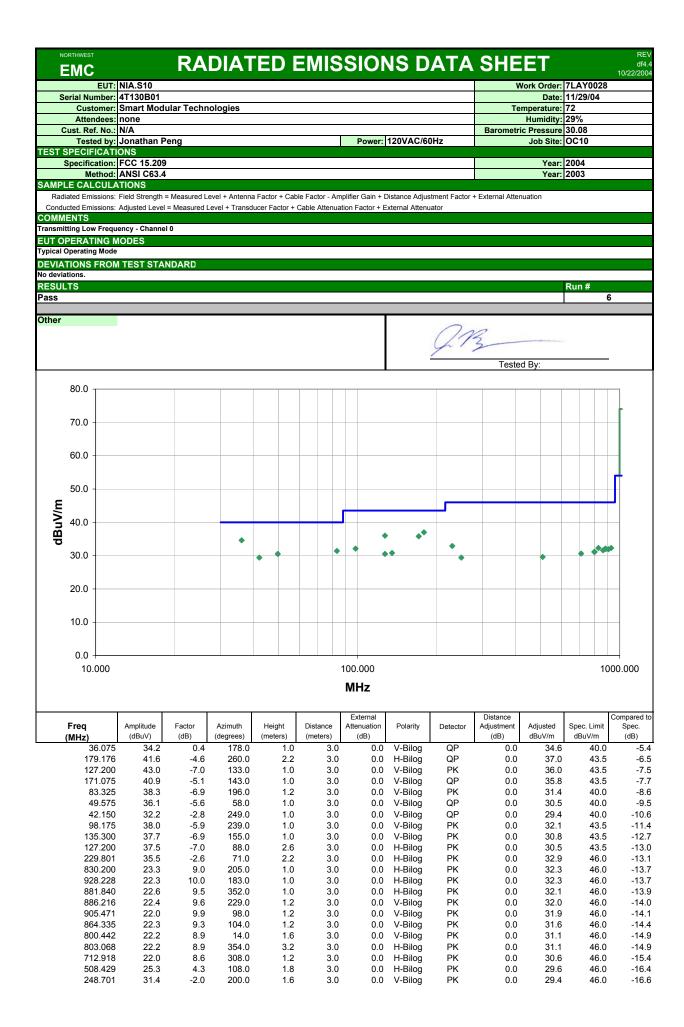

<u>Requirement</u>: The field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 47 CFR 15.205, is measured. The peak level must comply with the limits specified in 47 CFR 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209.

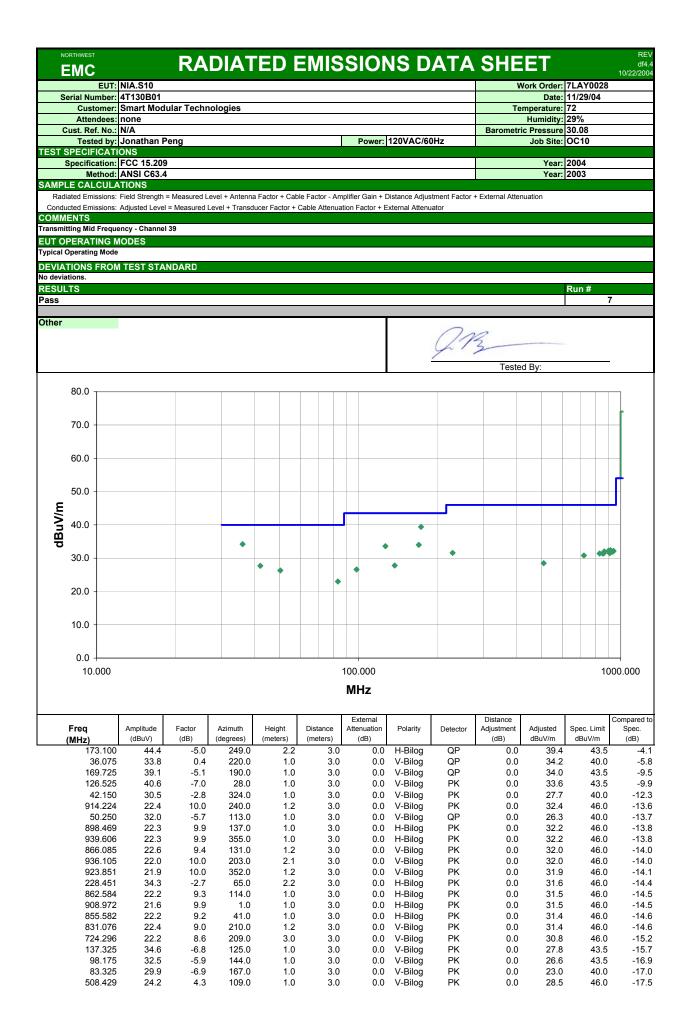

<u>Configuration</u>: The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

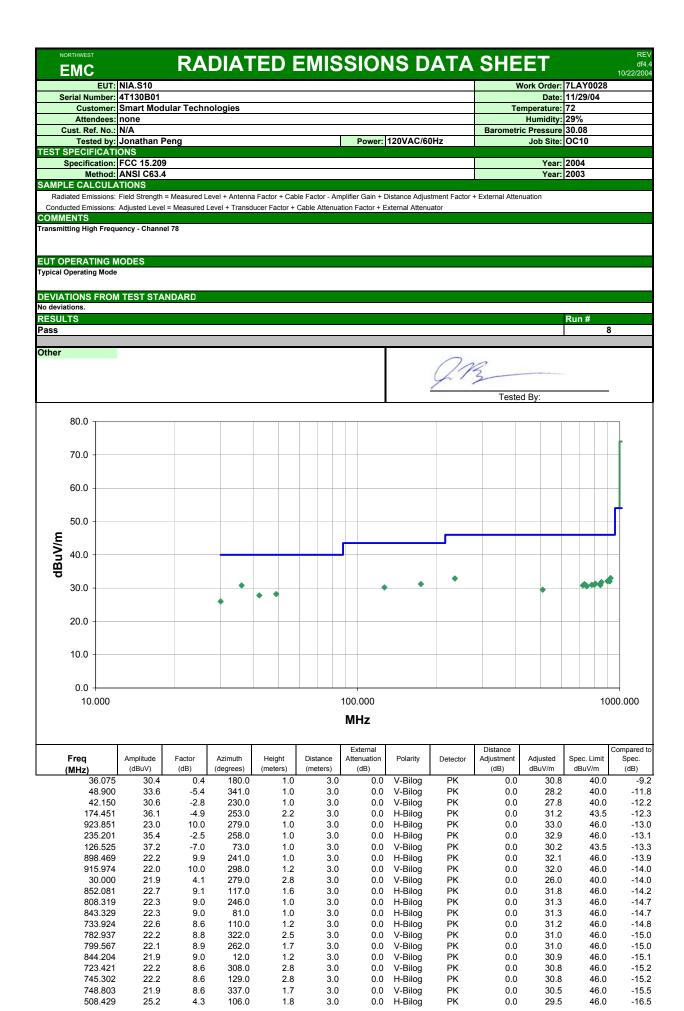
Bandwidths Used for Meas	surements				
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)		
0.01 – 0.15	1.0	0.2	0.2		
0.15 – 30.0	10.0	9.0	9.0		
30.0 - 1000	100.0	120.0	120.0		
Above 1000	1000.0	N/A	1000.0		
Measurements were made using the bandwidths and detectors specified. No video filter was used.					

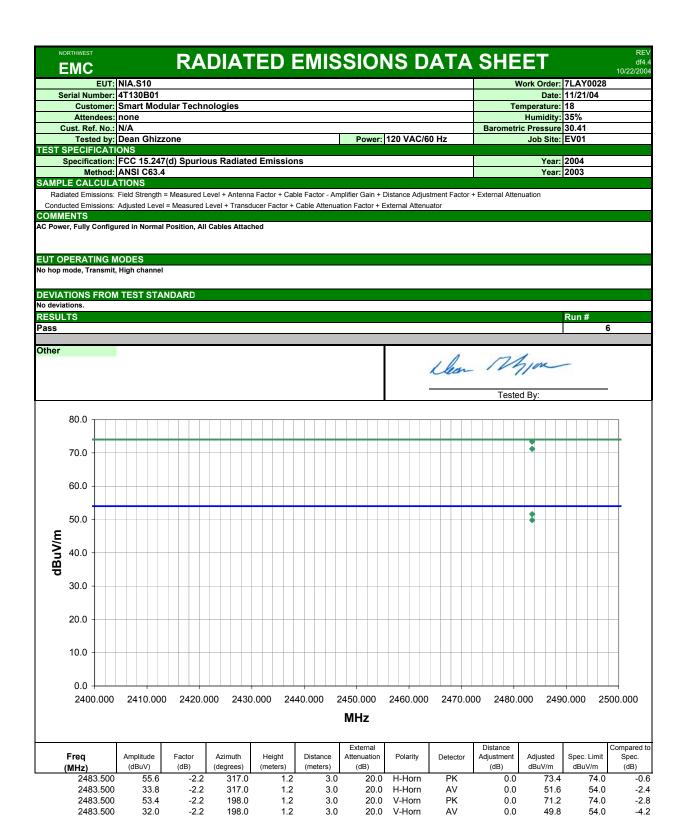
Completed I	by:
lear	Mjor

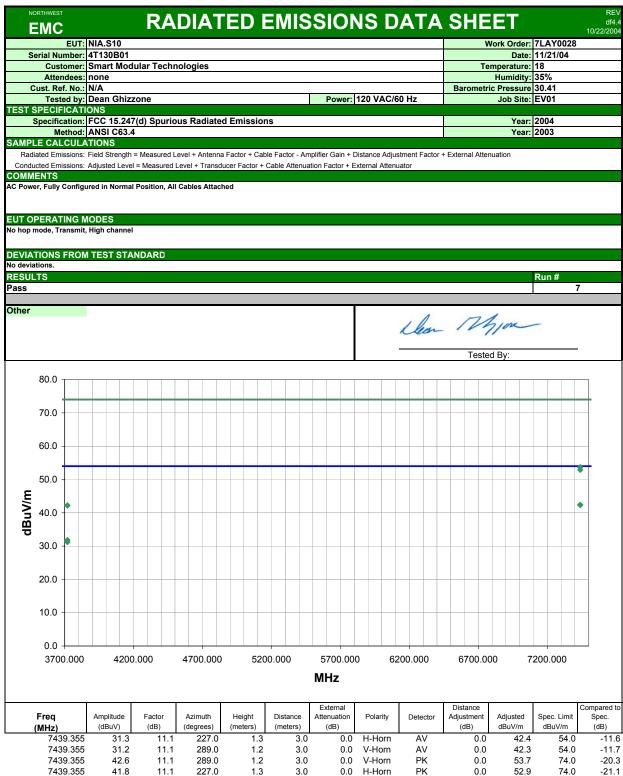





RADIATED EMISSIONS DATA SHEET (44.4 102/00/44																
	ЕМС			RA	DIAT	ED	EMIS	SIO	NS D	ΑΤΑ	SHE	ET		df4.4 10/22/2004		
		EUT:	NSR.H100								V	Vork Order:	7LAY0028			
S	Serial Number: 4T140A01										Date: 11/14/04					
	Customer: Smart Modular Technologies										Temperature: 68					
	Attendees: none Cust. Ref. No.: N/A											Humidity: 43% Barometric Pressure 30.05				
	Tested by: Dean Ghizzone Power: 120 VAC/60 Hz											Job Site: EV01				
	TEST SPECIFICATIONS															
-	Specification: FCC 15.247(d) Spurious Radiated Emissions Method: ANSI C63.4											Year: 2004 Year: 2003				
SAMP	SAMPLE CALCULATIONS											redi.	2003			
Rad	Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator															
Condu COMM		sions:	Adjusted Leve	I = Measured	Level + Transo	lucer Factor +	Cable Attenua	ation Factor + E	External Atten	uator						
		um Po	sition, All Cab	les Attached												
EUT O	PERATI															
			d carrier, High	n channel												
DEVIA No devia		ROM	TEST STA	NDARD												
RESU													Run #			
Pass													2	2		
Other									-							
Other										, 1	N	6.00				
										llen	10	1100				
											Teste	d Dvr				
-											Teste	а Бу.				
	80.0 _T													_		
	70.0 -															
	70.0						*									
							•									
	60.0 -													-		
	- +													-		
	50.0 -						2							_		
5							•									
≥	40.0 -															
dBuV/m	10.0															
σ																
	30.0 -															
	20.0 -													_		
	10.0 -													_		
	0.0 + 1000	000											100			
	1000	.000											100	00.000		
								MHz								
	Freq		Amplitude	Factor	Azimuth	Height	Distance	External Attenuation	Polarity	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.		
	(MHz)		(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)	-		(dB)	dBuV/m	dBuV/m	(dB)		
	2483		51.1	-2.2	211.0	1.1	3.0	20.0	V-Horn	PK	0.0	68.9	74.0	-5.1		
	2483		30.8 29.3	-2.2 -2.2		1.1 1.3	3.0 3.0	20.0 20.0	V-Horn H-Horn	AV AV	0.0 0.0	48.6 47.1	54.0 54.0	-5.4 -6.9		
2483.500 2483.500			48.0	-2.2	191.0	1.3	3.0			PK	0.0	65.8	74.0	-0.9		


	ORTHWEST			R۵	ΠΑΤ	ED I	EMIS	SIO		ΟΑΤΑ	SHE	FT		REV df4.4
	EMC													10/22/2004
			NSR.H100								v		7LAY0028	
S			4T140A01	ulan Taabu							T		11/14/04	
			Smart Mod none	ular Techr	lologies						le	emperature: Humidity:		
	Cust. Ref.										Barometr	ic Pressure		
			Dean Ghiz	zone				Power:	120 VAC	/60 Hz	Baromea	Job Site:		
TEST	SPECIFI			-										
			FCC 15.247		us Radiate	d Emission	าร					Year:		
			ANSI C63.4									Year:	2003	
				Managerald	and the Antonia	- Eastan (Oak	la Esstan As	anlifian Onlin i I	Distance Asli		· Eutomal Atta			
								ation Factor + E		ustment Factor nuator	+ External Atte	nuation		
COMM			.,											
AC Pow	er, Maxim	um Po	sition, All Cab	les Attached										
	PERATI													
No hop	mode, mo	dulate	d carrier, High	channel										
		ROM	I TEST STA	NDARD										
No devia													Run #	
Pass	_10													3
Other										. 1	M	1		
										lean	N	gjore		
ļ											Teste	ed By:		
	80.0 т													_
	00.0													
														+
	70.0 -													_
	60.0 -													
	00.0 -													
	- 4													-
	50.0 -													_
5														
dBuV/m									*					
n,	40.0 -								· ·					-
빙									•					
_	30.0 -													
	00.0								•					
	20.0 -													_
	10.0 -													
	10.0													
	0.0 +													_
	1000	.000											100	000.000
								MHz						
								External			Distance			Compared to
	Freq		Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
	(MHz)		(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
).567).567	32.9 28.0	1.2 1.2	23.0 65.0	1.2 1.2	3.0 3.0		H-Horn V-Horn	AV AV	0.0 0.0	34.1 29.2	54.0 54.0	-19.9 -24.8
).567).567	28.0 42.1	1.2	65.0 23.0	1.2	3.0 3.0		V-Horn H-Horn	AV PK	0.0	29.2 43.3	54.0 74.0	-24.8 -30.7
).567	42.1	1.2	23.0 65.0	1.2	3.0		V-Horn	PK	0.0	41.6	74.0	-32.4


			RA		FD	=MIS	SIO	NS C)ΔΤΔ	SHE	FT.		REV df4.4
	EMC												10/22/2004
		NSR.H100								V		7LAY0028	
S	erial Number:		ulan Taabu							T		11/14/04	
	Attendees	Smart Mod	ular Techr	lologies						16	emperature: Humidity:		
c	Cust. Ref. No.:									Barometr	ic Pressure		
		Dean Ghizz	zone				Power:	120 VAC/	60 Hz	24.01.04	Job Site:		
TEST S	SPECIFICAT												
	Specification:			ous Radiate	d Emissio	าร					Year:	2004	
		ANSI C63.4	ļ								Year:	2003	
-	LE CALCUL												
	iated Emissions: ucted Emissions:									+ External Atte	nuation		
COMM		. Aujusteu Level	- Measureu		IUCEI Facioi +			ziemai Allei	luator				
	er, Maximum Po	osition, All Cab	les Attached										
	PERATING I	MODES											
	mode, modulate		channel										
-													
	TIONS FROM	M TEST STA	NDARD										
No devia													
RESUL	LTS											Run #	
Pass			_	_	_	_	_	_	_		_	<u> </u>	4
Other													
									11	N	hime-	-	
									Clean	- / / /	110.00		
										Teste	ed By:		
	00 0												
	80.0												
													-
	70.0												_
dBuV/m													
	60.0												-
	50.0												
	30.0												
								•					
	40.0							•					_
Ē								•					
σ													
	30.0							•					-
	20.0												_
	20.0												
	10.0												
	0.0 +				1								
	1000.000											100	000.000
							MHz						
		<u> </u>					External		1	Distance			Compared to
	Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
	(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
	3662.085		1.0	14.0	1.2	3.0			AV	0.0	35.1	54.0	-18.9
	3662.085		1.0	16.0 14.0	1.2	3.0		V-Horn	AV	0.0	31.1	54.0 74.0	-22.9 -30.5
	3662.085 3662.085		1.0 1.0	14.0 16.0	1.2 1.2	3.0 3.0			PK PK	0.0 0.0	43.5 41.6	74.0 74.0	-30.5 -32.4
	0002.000		1.0	10.0	1.4	0.0	0.0	* 1000		0.0	÷1.0	7 0	-04.4



227.0 H-Horn ΡK 52.9 41.8 11.1 1.3 3.0 0.0 0.0 74.0 30.6 1.2 220.0 3.0 0.0 H-Horn AV 0.0 31.8 54.0 1.2 30.0 1.2 180.0 3.0 0.0 V-Horn 1.4 AV 0.0 31.2 54.0 ΡK 220.0 H-Horn 41.0 1.2 1.2 3.0 0.0 0.0 42.2 74.0

0.0

V-Horn

ΡK

0.0

42.2

-22.2

-22.8

-31.8

-31.8

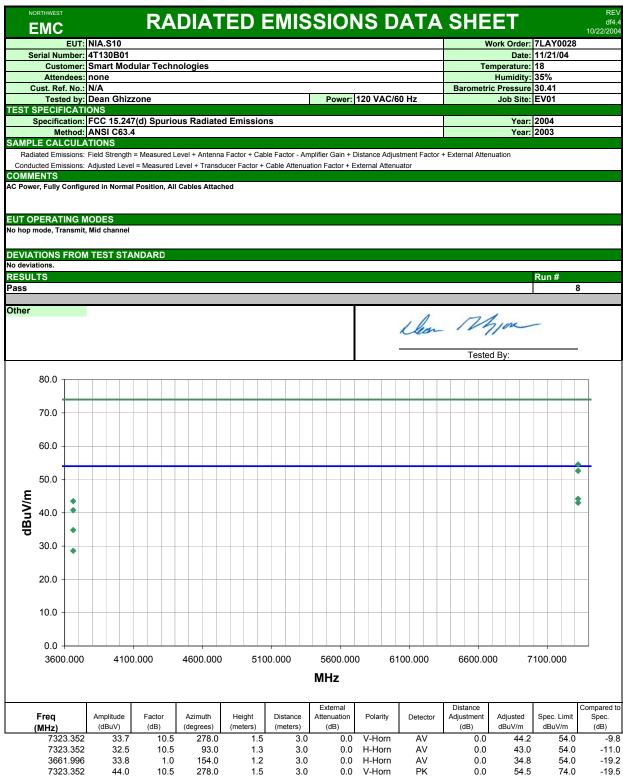
74.0

3720.453

3720.453

3720.453

3720.453


41.0

1.2

180.0

1.4

3.0

7323.352

3661.996

3661.996

3661.996

42.1

27.6

42.5

39.8

10.5

1.0

1.0

1.0

93.0

226.0

154.0

226.0

1.3

1.2

1.2

1.2

3.0

3.0

3.0

0.0

0.0

0.0

V-Horn

H-Horn

V-Horn

V-Horn 0.0 ΡK 0.0 3.0 0.0 H-Horn ΡK 0.0

AV

ΡK

ΡK

52.6

28.6

43.5

40.8

0.0

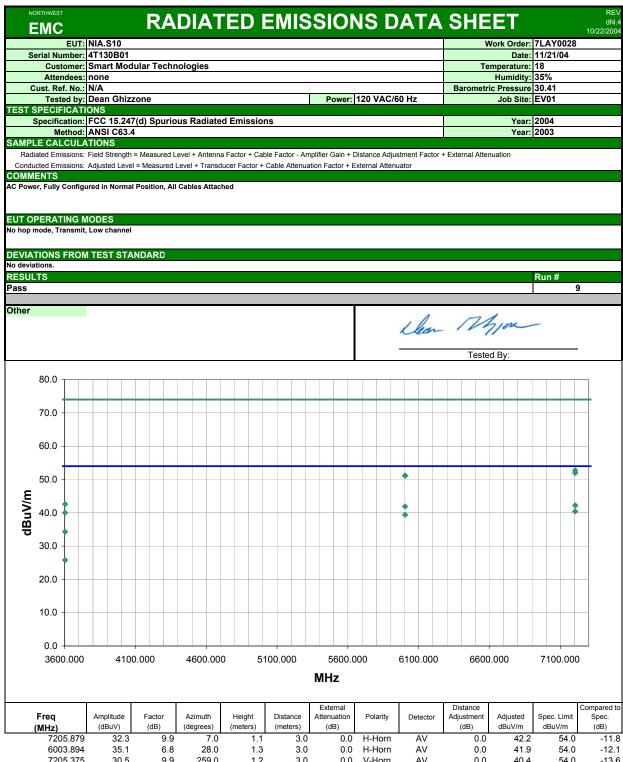
0.0

0.0

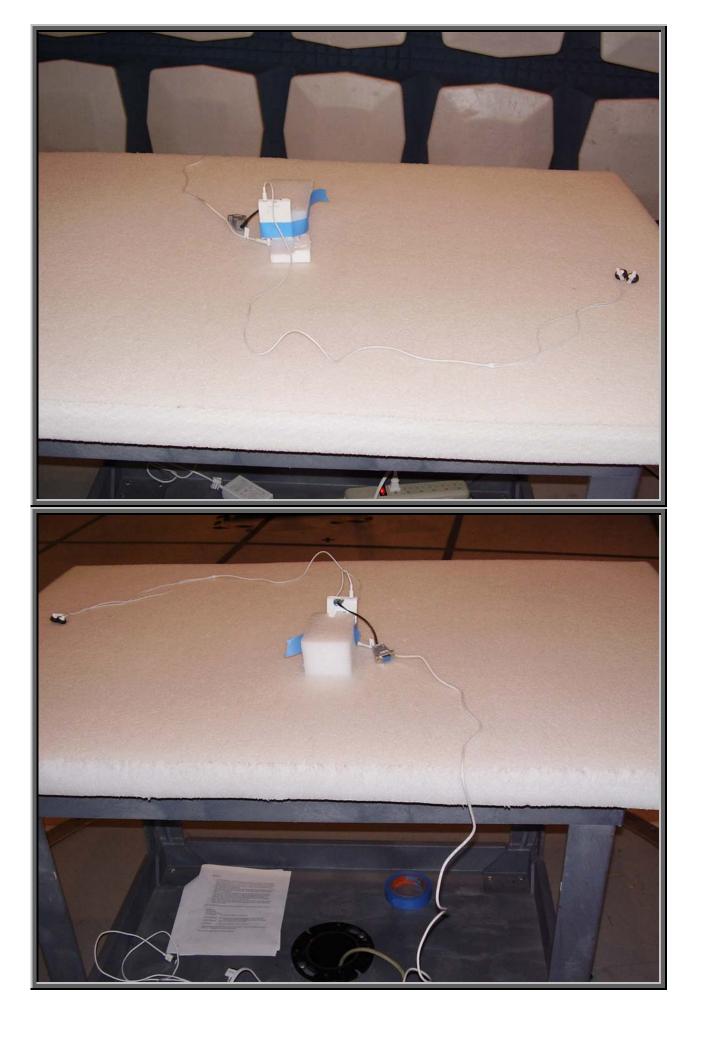
74.0

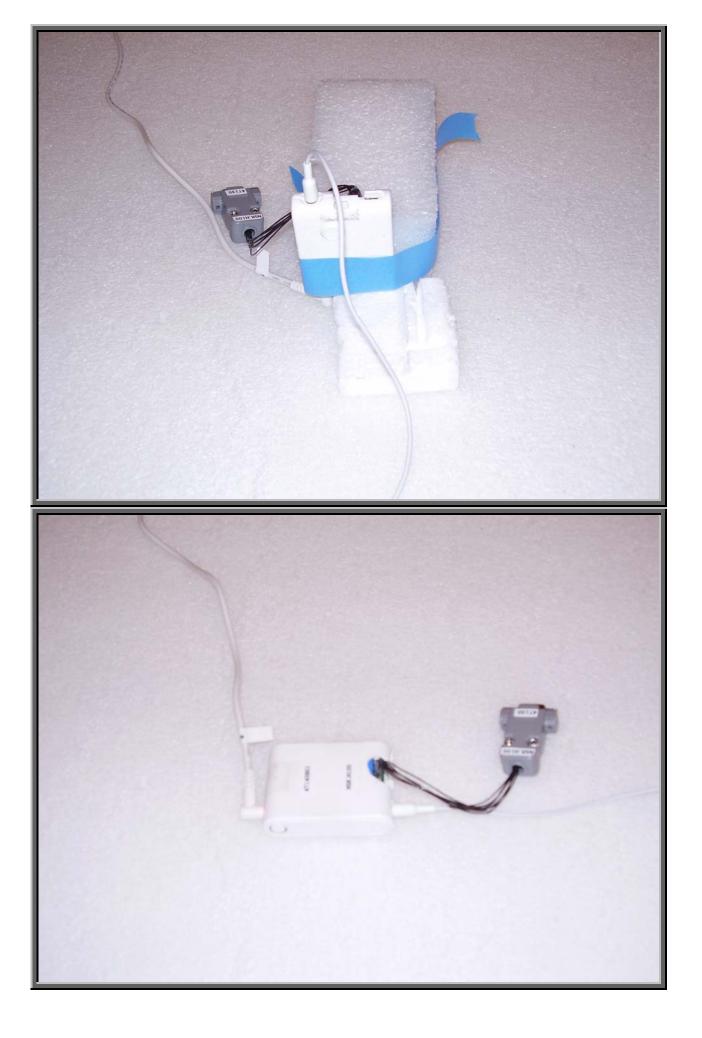
54.0

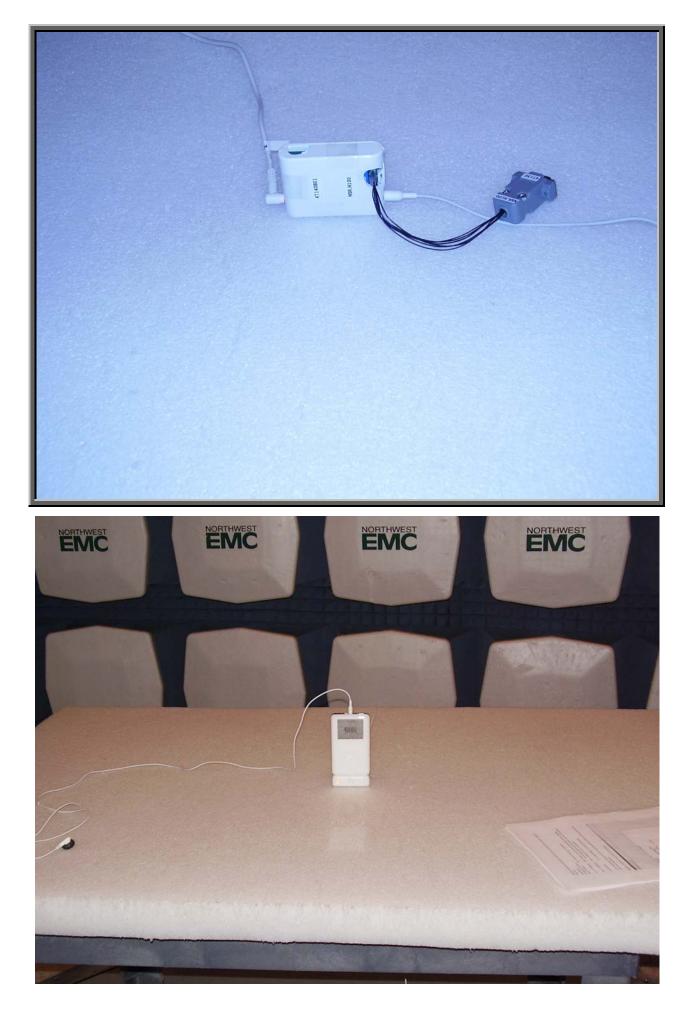
74.0


74.0

-21.4


-25.4


-30.5


-33.2

7205.879	32.3	9.9	7.0	1.1	3.0	0.0	H-Horn	AV	0.0	42.2	54.0	-11.8
6003.894	35.1	6.8	28.0	1.3	3.0	0.0	H-Horn	AV	0.0	41.9	54.0	-12.1
7205.375	30.5	9.9	259.0	1.2	3.0	0.0	V-Horn	AV	0.0	40.4	54.0	-13.6
6003.894	32.6	6.8	239.0	1.5	3.0	0.0	V-Horn	AV	0.0	39.4	54.0	-14.6
3603.490	33.6	0.7	156.0	1.2	3.0	0.0	H-Horn	AV	0.0	34.3	54.0	-19.7
7205.375	42.8	9.9	259.0	1.2	3.0	0.0	V-Horn	PK	0.0	52.7	74.0	-21.3
7205.375	42.1	9.9	7.0	1.1	3.0	0.0	H-Horn	PK	0.0	52.0	74.0	-22.0
6003.894	44.4	6.8	239.0	1.5	3.0	0.0	V-Horn	PK	0.0	51.2	74.0	-22.8
6003.894	44.3	6.8	28.0	1.3	3.0	0.0	H-Horn	PK	0.0	51.1	74.0	-22.9
3603.490	25.1	0.7	103.0	2.8	3.0	0.0	V-Horn	AV	0.0	25.8	54.0	-28.2
3603.490	41.9	0.7	156.0	1.2	3.0	0.0	H-Horn	PK	0.0	42.6	74.0	-31.4
3603.490	39.3	0.7	103.0	2.8	3.0	0.0	V-Horn	PK	0.0	40.0	74.0	-34.0

