Masimo

Rad-87

Report No. MASI0009.1 Rev 01

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2008Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Testing: September 18, 2008
Masimo
Model: Rad-87

Emissions					
Test Description	Specification	Test Method	Pass/Fail		
Radiated Spurious Emissions	FCC 15.407:2007	ANSI C63.4:2003 DA 02-2138:2002	Pass		
Peak Transmit Power	FCC 15.407:2007	ANSI C63.4:2003 DA 02-2138:2002	Pass		
Peak Power Spectral Denisty	FCC 15.407:2007	ANSI C63.4:2003 DA 02-2138:2002	Pass		
Frequency Stability	FCC 15.407:2007	ANSI C63.4:2003 DA 02-2138:2002	Pass		
AC Powerline Conducted Emissions	FCC 15.407:2007	ANSI C63.4:2003 DA 02-2138:2002	Pass		
Emissions Bandwidth	FCC 15.407:2007	ANSI C63.4:2003 DA 02-2138:2002	Pass		
Peak Excursion of the Modulation Envelope	FCC 15.407:2007	ANSI C63.4:2003 DA 02-2138:2002	Pass		

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 41 Tesla Ave. Irvine, CA 92618

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada(Site filing #2834B-2).

Approved By:

Don Facteau, IS Manager

NVLAP

NVLAP Lab Code: 200676-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Number	Description	Date	Page Number
01	Corrected cable information	9/24/08	12

Accreditations and Authorizations

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2)

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0604C.

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

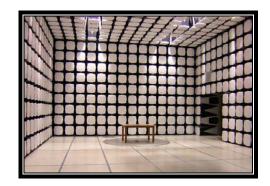
NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification


MIC: Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Party Requesting the Test

Company Name:	Masimo
Address:	40 Parker
City, State, Zip:	Irvine, CA 92618
Test Requested By:	Paul Lewandowski
Model:	Rad-87
First Date of Test:	September 3, 2008
Last Date of Test:	September 18, 2009
Receipt Date of Samples:	September 2, 2008
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

One 802.11a/b/g radio module installed in a Pulse Oximeter that will be connected to hospital wireless network.

Testing Objective:

Seeking to demonstrate compliance under FCC 15E for operation in the 5.2 band.

EUT Photo



Revision 9/21/05

CONFIGURATION 1 MASI0009

Software/Firmware Running during test	
Description	Version
RadioCfg SX-560	1.0.0.1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Pulse CO-Oximeter	Masimo Corporation	RAD-87	J00073

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
AC Cable	Yes	4.0m	No	Pulse CO-Oximeter	AC Mains	
MX-1 Compatible cable	No	2.0m	No	Pulse CO-Oximeter	Unterminated	
Serial Cable	Yes	1.8m	No	Pulse CO-Oximeter	Laptop	
Ground Cable	Yes	2.0m	No	Pulse CO-Oximeter	Ground	
Nurse Call Cable	Yes	4.6m	No	Pulse CO-Oximeter	Unterminated	
PA = Cable is permanent	ly attached	to the device. Shi	elding and/c	or presence of ferrite may be	unknown.	

CONFIGURATION 2 MASI0009

Software/Firmware Running during test	
Description	Version
RadioCfg SX-560	1.0.0.1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Pulse CO-Oximeter	Masimo Corporation	RAD-87	J00073

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Laptop	IBM	ThinkPAD 2647	78-NZZ08		

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
AC Cable	Yes	4.0m	No	Pulse CO-Oximeter	AC Mains	
Serial Cable	Yes	1.8m	No	Pulse CO-Oximeter	Laptop	
PA = Cable	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Revision 4/28/03

	Equipment modifications					
Item	Date	Test	Modification	Note	Disposition of EUT	
1	9/3/2008	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
2	9/3/2008	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
3	9/8/2008	Emissions Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
4	9/9/2008	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
5	9/17/2008	Peak Transmit Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
6	9/18/2008	Peak Excursion of the Modulation Envelope	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
7	9/18/2008	Peak Power Spectral Denisty	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was complete.	

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting 802.11(a), 6, 36, 54 Mbps

CHANNELS TESTED

Channel 36

Channel 48

POWER SETTINGS INVESTIGATED

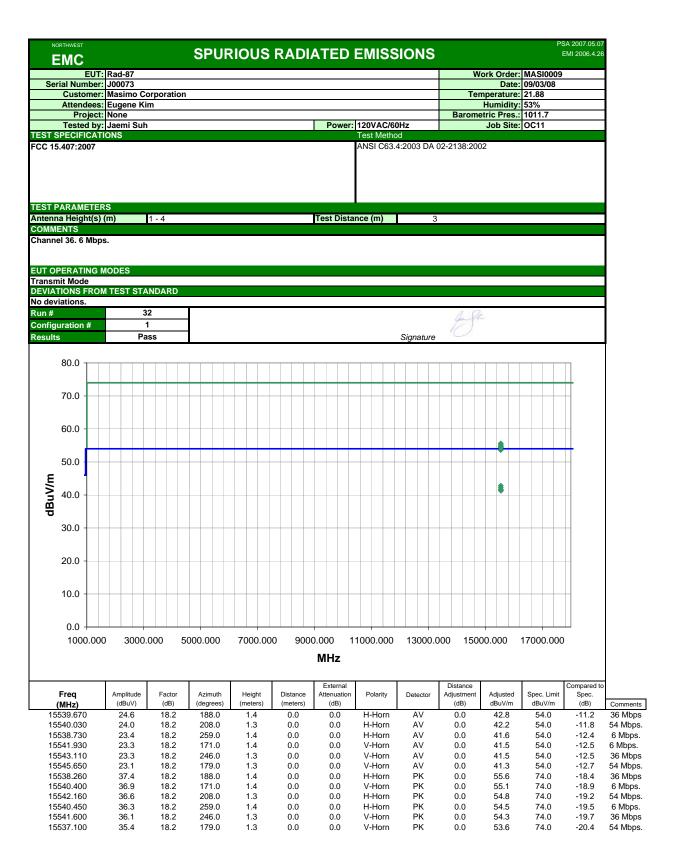
120VAC/60Hz

FREQUENCY RANGE INVESTIGATED Start Frequency 30 MHz Stop Frequency 40 GHz

SAMPLE CALCULATIONS

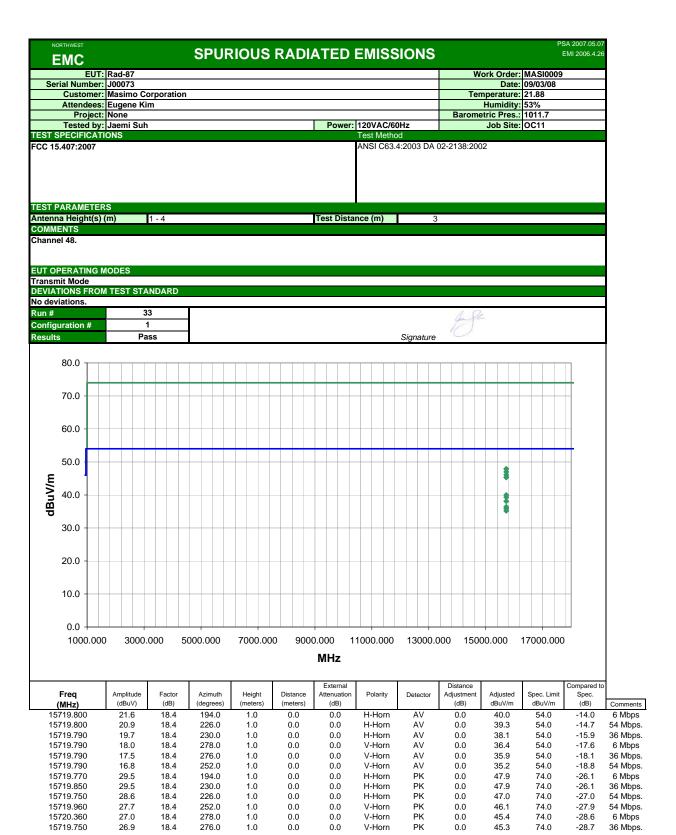
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Pre-Amplifier	Miteq	JS4-26004000-50-5A	AON	7/14/2008	13
Antenna, Horn	EMCO	3160-10	AHI	NCR	0
EV01 Cables		26-40GHz Standard Gain Horn Cable	EVE	7/14/2008	13
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AOI	3/3/2008	13
Antenna, Horn	EMCO	3160-09	AHN	NCR	0
OC10 SMA cable for 18026 GHz			OCK	3/3/2008	13
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APC	2/8/2008	13
Antenna, Horn	EMCO	3160-08	AHK	NCR	0
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVL	2/8/2008	13
Antenna, Horn	ETS	3160-07	AHX	10/25/2007	12
OC11 8-18 GHz Cables a-b-c-e			ocs	2/7/2008	13
Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVJ	4/25/2008	13
Antenna, Horn	EMCO	3115	AHB	8/31/2007	24
OC11 1-8 GHz Cables a-b-c-d			OCR	2/7/2008	13
Spectrum Analyzer	Agilent	E4440A	AAX	10/1/2007	12


MEASUREMEN	T BANDWIDTHS			
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0
	Measurements were made u	sing the bandwidths and dete	ctors specified. No video filte	r was used.

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION

The only antenna to be used with the EUT were tested. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. Measurements were made to satisfy the three requirements of 47 CFR 15.407: Field strength under 1GHz, Restricted Bands of 47 CFR 15.205, and EIRP of 47 CFR 15.407. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.4:2003). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

NORTHWEST EMC		SPUR	RIOUS	RAD	IAI	EC	E	MIS	SS	ION	S							SA 2007.0 EMI 2006.
EUT: Rad	d-87												W	ork (Order	MAS	SI0009	
Serial Number: J00	073															09/0		
	simo Corporatio	n											Ter	nper	ature	21.8	8	
Attendees: Eu															nidity			
Project: No						D	14.	001/4/	0/00			Ва	rome		Pres.			
Tested by: Jac ST SPECIFICATION						Powe		20VA0 est Me						Joi	Site	: OC1	1	
C 15.407:2007	3									u I:2003 [)A ()2	2-213	8.200	12				
ST PARAMETERS					1	- (D)	1	(22)										
tenna Height(s) (m)	1 - 4				Те	st Dis	tanc	e (m)			1							
annel 36. 6 Mbps IT OPERATING MOD ansmit Mode. IVIATIONS FROM TE deviations.																		
ın#	30											1	10	,				
onfiguration #	1	-										4	aft					
sults	Pass									Signatu	ıre	10						
										- J								
0.0																		
0.0																		
-10.0																		
- 10.0																		
-20.0																		
20.0																		
																	\perp	
-30.0							-		+					-			+	_
-40.0 ZHW/wB p																		
€ -40.0			•				+		+			-		+			++	-
۳																		
ਰ																		
-50.0							+		+					+			++	-
			•															
-60.0							+		+					+			++	\dashv
70.0																		
-70.0																		
-80.0														\perp				
	10000 000	00000			000	20.0-	^	000	00	200	0	00.5	00	-	000	200		
18000.000	19000.000	20000.000	21000	0.000		00.00 I Hz	0	230	00.0	000	240	00.0	00	25	000.0	000	260	000.000
1		1			1											1		Compare
Freq		Azimuth	Height					Polarit	y	Detecto		EIR			IRP		c. Limit	Spec
(MHz)		(degrees)	(meters)										/MHz)		n/MHz)		m/MHz)	(dB)
20720.000		259.0	1.0					High F		PK		8.85E			30.5		27.0	-3.5
		273.0	1.0				V-	High F	Horr	PK		7 201	≣-08	-4	11.0	-2	27.0	-14.0
20720.000 20720.000		273.0	1.0					High F		AV		3.07E			55.1		27.0	-28.

NORTHWEST EMC		SPUR	RIOUS	RAD	IAI	ED	E	MIS:	1012	NS							SA 2007.0 EMI 2006.
EUT: Rac	I-87											W	ork (Order:	MAS	10009	
Serial Number: J00															09/0		
	simo Corporatio	n										Ten	nper	ature:	21.8	В	
Attendees: Eug														nidity:			
Project: Nor						D	. 400	N/A 0/0	011-		Ва	rome		Pres.:			
Tested by: Jae ST SPECIFICATIONS						Powe		VAC/6 st Meth					Jor	Site:	001	1	
C 15.407:2007									.4:2003	DA (02-213	88:200)2				
ST PARAMETERS						u Di-		()									
tenna Height(s) (m) MMENTS	1 - 4				Tes	st Dis	tance	(m)		1							
annel 48 6 Mbps. T OPERATING MOD ansmit Mode VIATIONS FROM TE deviations.																	
n #	31										1	0					
nfiguration #	1										1	Ja					
sults	Pass								Signa	ture	1						
-10.0																	
-20.0																	-
-30.0 +			•														
-40.0 - VHW/EB			•														
-50.0			•														
-60.0																	
-70.0																	
-80.0 18000.000	19000.000	20000.000	21000	.000		00.000	0 :	23000	.000	24	000.0	00	25	000.0	000	260	 00.000
Freq (MHz) 20960.000		Azimuth (degrees)	Height (meters)					Polarity	Dete		EIR (Watts/	/MHz)	(dBn	IRP n/MHz)	(dBm	c. Limit n/MHz)	Compare Spec (dB)
20960.000 20960.000 20960.000		262.0 273.0 273.0	1.0 1.0 1.0				V-H	igh Hoi igh Hoi igh Hoi	r Pł	<	7.54E 2.80E 3.00E	E-08	-4	31.2 15.5 55.2	-2	7.0 7.0 7.0	-4.2 -18.9 -28.2

Spurious Radiated Emission

Spurious Radiated Emission

AC POWERLINE CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting, Channel 36, 6 Mbps Transmitting, Channel 48, 6 Mbps

POWER SETTINGS INVESTIGATED

120V/60Hz

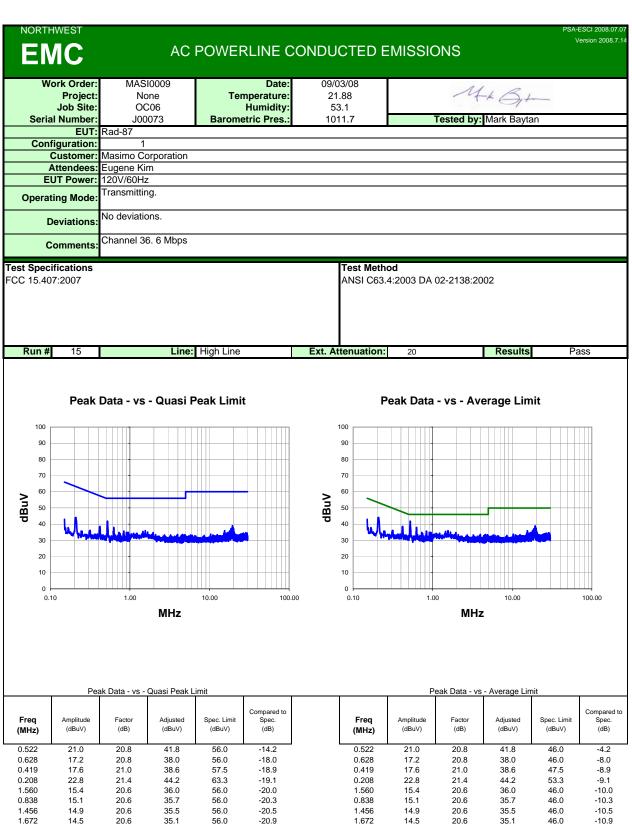
CONFIGURATIONS INVESTIGATED

1

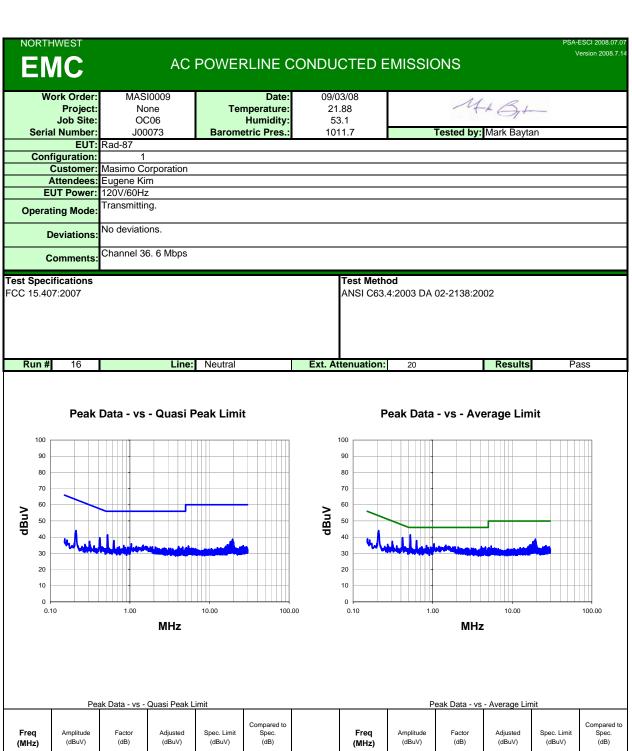
SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

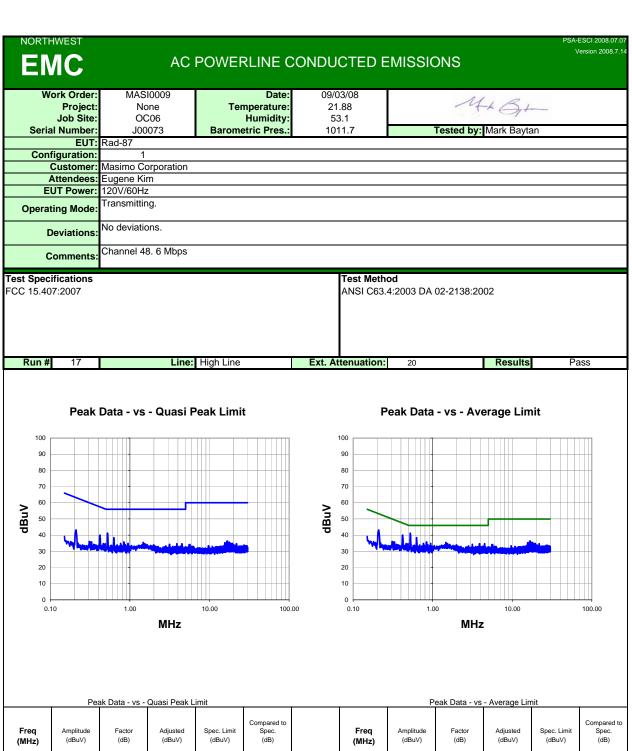
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
LISN	Solar	9252-50-R-24-BNC	LIC	2/6/2008	13 mo
OC06 Cables B and C			OCM	1/10/2008	13 mo
Receiver	Rohde & Schwarz	ESCI	ARF	12/14/2007	13 mo

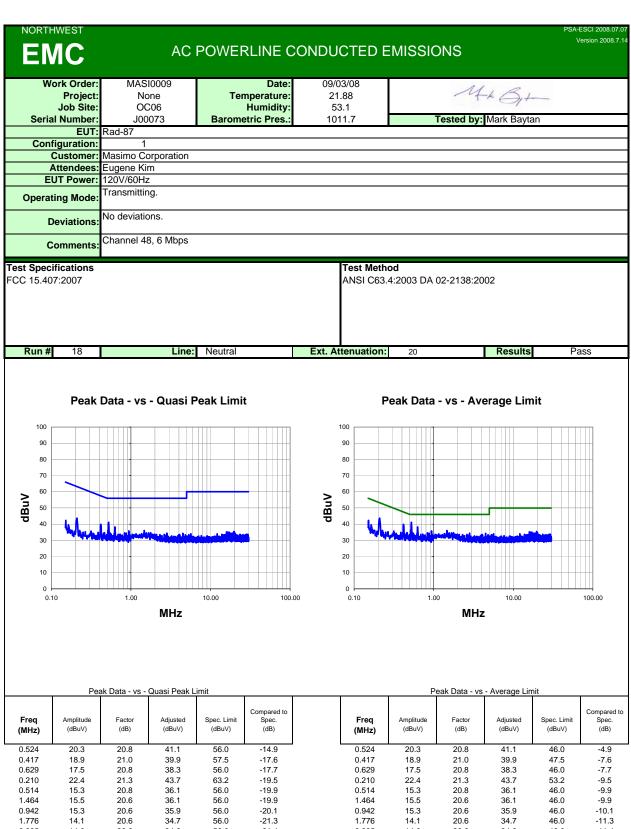

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were made usi	ng the bandwidths and de	tectors specified. No video filter	r was used.

MEASUREMENT UNCERTAINTY


Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION


Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm.


Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
` '						` ′					
0.522	21.0	20.8	41.8	56.0	-14.2	0.522	21.0	20.8	41.8	46.0	-4.2
0.628	17.2	20.8	38.0	56.0	-18.0	0.628	17.2	20.8	38.0	46.0	-8.0
0.419	17.6	21.0	38.6	57.5	-18.9	0.419	17.6	21.0	38.6	47.5	-8.9
0.208	22.8	21.4	44.2	63.3	-19.1	0.208	22.8	21.4	44.2	53.3	-9.1
1.560	15.4	20.6	36.0	56.0	-20.0	1.560	15.4	20.6	36.0	46.0	-10.0
0.838	15.1	20.6	35.7	56.0	-20.3	0.838	15.1	20.6	35.7	46.0	-10.3
1.456	14.9	20.6	35.5	56.0	-20.5	1.456	14.9	20.6	35.5	46.0	-10.5
1.672	14.5	20.6	35.1	56.0	-20.9	1.672	14.5	20.6	35.1	46.0	-10.9
0.944	14.4	20.5	34.9	56.0	-21.1	0.944	14.4	20.5	34.9	46.0	-11.1
0.730	14.2	20.7	34.9	56.0	-21.1	0.730	14.2	20.7	34.9	46.0	-11.1
0.905	14.3	20.6	34.9	56.0	-21.1	0.905	14.3	20.6	34.9	46.0	-11.1
19.440	17.7	21.2	38.9	60.0	-21.1	19.440	17.7	21.2	38.9	50.0	-11.1
0.954	14.3	20.5	34.8	56.0	-21.2	0.954	14.3	20.5	34.8	46.0	-11.2
1.952	14.2	20.6	34.8	56.0	-21.2	1.952	14.2	20.6	34.8	46.0	-11.2
1.224	13.9	20.5	34.4	56.0	-21.6	1.224	13.9	20.5	34.4	46.0	-11.6
1.104	13.8	20.5	34.3	56.0	-21.7	1.104	13.8	20.5	34.3	46.0	-11.7
19.340	17.1	21.2	38.3	60.0	-21.7	19.340	17.1	21.2	38.3	50.0	-11.7
0.748	13.5	20.7	34.2	56.0	-21.8	0.748	13.5	20.7	34.2	46.0	-11.8
19.570	16.9	21.2	38.1	60.0	-21.9	19.570	16.9	21.2	38.1	50.0	-11.9
19.770	16.5	21.2	37.7	60.0	-22.3	19.770	16.5	21.2	37.7	50.0	-12.3

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.522	20.6	20.8	41.4	56.0	-14.6	-	0.522	20.6	20.8	41.4	46.0	-4.6
0.419	18.7	21.0	39.7	57.5	-17.8		0.419	18.7	21.0	39.7	47.5	-7.8
0.628	17.1	20.8	37.9	56.0	-18.1		0.628	17.1	20.8	37.9	46.0	-8.1
0.210	22.8	21.3	44.1	63.2	-19.1		0.210	22.8	21.3	44.1	53.2	-9.1
1.040	15.4	20.5	35.9	56.0	-20.1		1.040	15.4	20.5	35.9	46.0	-10.1
1.464	14.4	20.6	35.0	56.0	-21.0		1.464	14.4	20.6	35.0	46.0	-11.0
0.837	14.2	20.6	34.8	56.0	-21.2		0.837	14.2	20.6	34.8	46.0	-11.2
19.470	17.6	21.2	38.8	60.0	-21.2		19.470	17.6	21.2	38.8	50.0	-11.2
1.200	13.8	20.5	34.3	56.0	-21.7		1.200	13.8	20.5	34.3	46.0	-11.7
4.080	13.4	20.7	34.1	56.0	-21.9		4.080	13.4	20.7	34.1	46.0	-11.9
0.731	13.3	20.7	34.0	56.0	-22.0		0.731	13.3	20.7	34.0	46.0	-12.0
1.912	13.4	20.6	34.0	56.0	-22.0		1.912	13.4	20.6	34.0	46.0	-12.0
19.370	16.8	21.2	38.0	60.0	-22.0		19.370	16.8	21.2	38.0	50.0	-12.0
4.608	13.2	20.7	33.9	56.0	-22.1		4.608	13.2	20.7	33.9	46.0	-12.1
2.088	13.2	20.6	33.8	56.0	-22.2		2.088	13.2	20.6	33.8	46.0	-12.2
0.942	13.2	20.6	33.8	56.0	-22.2		0.942	13.2	20.6	33.8	46.0	-12.2
19.690	16.5	21.2	37.7	60.0	-22.3		19.690	16.5	21.2	37.7	50.0	-12.3
19.170	16.5	21.2	37.7	60.0	-22.3		19.170	16.5	21.2	37.7	50.0	-12.3
0.878	12.9	20.6	33.5	56.0	-22.5		0.878	12.9	20.6	33.5	46.0	-12.5
0.312	16.3	21.1	37.4	59.9	-22.5		0.312	16.3	21.1	37.4	49.9	-12.5

Freq (MHz		Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.522	2 20.4	20.8	41.2	56.0	-14.8	_	0.522	20.4	20.8	41.2	46.0	-4.8
0.420	19.1	21.0	40.1	57.4	-17.3		0.420	19.1	21.0	40.1	47.4	-7.3
0.628	3 17.7	20.8	38.5	56.0	-17.5		0.628	17.7	20.8	38.5	46.0	-7.5
0.210	21.9	21.3	43.2	63.2	-20.0		0.210	21.9	21.3	43.2	53.2	-10.0
0.837	7 15.2	20.6	35.8	56.0	-20.2		0.837	15.2	20.6	35.8	46.0	-10.2
1.464	4 14.9	20.6	35.5	56.0	-20.5		1.464	14.9	20.6	35.5	46.0	-10.5
0.944	1 14.4	20.5	34.9	56.0	-21.1		0.944	14.4	20.5	34.9	46.0	-11.1
0.764	4 14.2	20.7	34.9	56.0	-21.1		0.764	14.2	20.7	34.9	46.0	-11.1
1.536	5 14.2	20.6	34.8	56.0	-21.2		1.536	14.2	20.6	34.8	46.0	-11.2
3.880	14.0	20.7	34.7	56.0	-21.3		3.880	14.0	20.7	34.7	46.0	-11.3
4.496	3 13.9	20.7	34.6	56.0	-21.4		4.496	13.9	20.7	34.6	46.0	-11.4
0.488	3 13.8	20.9	34.7	56.2	-21.5		0.488	13.8	20.9	34.7	46.2	-11.5
3.14	1 13.7	20.6	34.3	56.0	-21.7		3.144	13.7	20.6	34.3	46.0	-11.7
0.463	3 13.8	21.0	34.8	56.6	-21.9		0.463	13.8	21.0	34.8	46.6	-11.9
0.869	9 13.5	20.6	34.1	56.0	-21.9		0.869	13.5	20.6	34.1	46.0	-11.9
0.689	9 13.2	20.8	34.0	56.0	-22.0		0.689	13.2	20.8	34.0	46.0	-12.0
1.992	2 13.3	20.6	33.9	56.0	-22.1		1.992	13.3	20.6	33.9	46.0	-12.1
0.589	9 12.9	20.9	33.8	56.0	-22.2		0.589	12.9	20.9	33.8	46.0	-12.2
0.789	9 13.0	20.7	33.7	56.0	-22.3		0.789	13.0	20.7	33.7	46.0	-12.3
0.568	3 12.7	20.9	33.6	56.0	-22.4		0.568	12.7	20.9	33.6	46.0	-12.4

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.524	20.3	20.8	41.1	56.0	-14.9	0.524	20.3	20.8	41.1	46.0	-4.9
0.417	18.9	21.0	39.9	57.5	-17.6	0.417	18.9	21.0	39.9	47.5	-7.6
0.629	17.5	20.8	38.3	56.0	-17.7	0.629	17.5	20.8	38.3	46.0	-7.7
0.210	22.4	21.3	43.7	63.2	-19.5	0.210	22.4	21.3	43.7	53.2	-9.5
0.514	15.3	20.8	36.1	56.0	-19.9	0.514	15.3	20.8	36.1	46.0	-9.9
1.464	15.5	20.6	36.1	56.0	-19.9	1.464	15.5	20.6	36.1	46.0	-9.9
0.942	15.3	20.6	35.9	56.0	-20.1	0.942	15.3	20.6	35.9	46.0	-10.1
1.776	14.1	20.6	34.7	56.0	-21.3	1.776	14.1	20.6	34.7	46.0	-11.3
0.835	14.0	20.6	34.6	56.0	-21.4	0.835	14.0	20.6	34.6	46.0	-11.4
1.672	14.0	20.6	34.6	56.0	-21.4	1.672	14.0	20.6	34.6	46.0	-11.4
1.568	14.0	20.6	34.6	56.0	-21.4	1.568	14.0	20.6	34.6	46.0	-11.4
0.550	13.7	20.9	34.6	56.0	-21.4	0.550	13.7	20.9	34.6	46.0	-11.4
0.874	13.8	20.6	34.4	56.0	-21.6	0.874	13.8	20.6	34.4	46.0	-11.6
2.832	13.8	20.6	34.4	56.0	-21.6	2.832	13.8	20.6	34.4	46.0	-11.6
4.504	13.6	20.7	34.3	56.0	-21.7	4.504	13.6	20.7	34.3	46.0	-11.7
0.459	13.7	21.0	34.7	56.7	-22.0	0.459	13.7	21.0	34.7	46.7	-12.0
0.563	13.0	20.9	33.9	56.0	-22.1	0.563	13.0	20.9	33.9	46.0	-12.1
0.539	13.0	20.8	33.8	56.0	-22.2	0.539	13.0	20.8	33.8	46.0	-12.2
0.728	13.1	20.7	33.8	56.0	-22.2	0.728	13.1	20.7	33.8	46.0	-12.2
0.691	12.9	20.8	33.7	56.0	-22.3	0.691	12.9	20.8	33.7	46.0	-12.3

AC Powerline Conducted Emissions

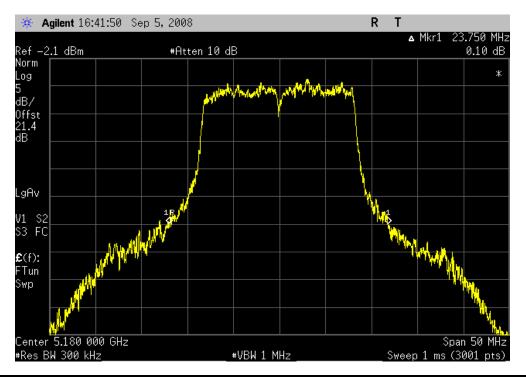
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AAX	10/1/2007	12

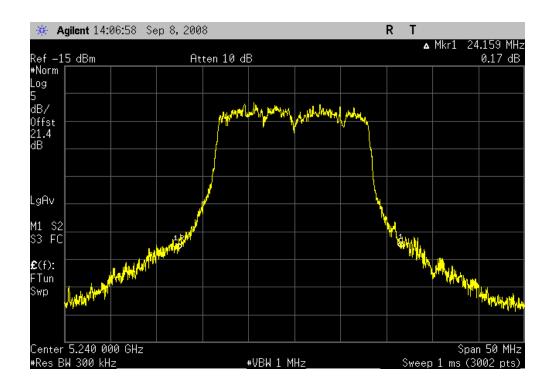
MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION


FCC Public Notice DA 02-2138 was followed. The transmit frequency was set to the lowest, a medium, and the highest channels in each band. The transmit power was set to its default maximum. The EUT's only data rate was measured. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

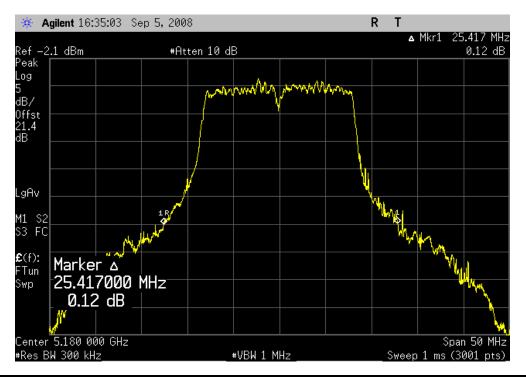
The spectrum analyzer settings were as follows:


- > Span = approximately 1.5 to 2 times the emission bandwidth, centered on the transmit channel.
- > RBW = Approx. 1% of the emission bandwidth (B). This was an iterative process where an exact match of 1% may not be achieved. The largest value of RBW that came close to 1% of the emission bandwidth was used.
- A peak detector was used.
- > The marker-delta function was then used to measure 26 dB emission bandwidth.

NORTHWEST						XMit 2007.06.13
EMC		Emission E	Bandwidth			
	Rad-87				Work Order: MASI000	19
Serial Number:				'	Date: 09/08/08	
	Masimo Corporation			T	emperature: 21.88°C	
	Eugene Kim			-	Humidity: 53%	
Project:				Baron	netric Pres.: 1011.7	
	Jaemi Suh		Power: 120V/60Hz		Job Site: OC11	
TEST SPECIFICATI			Test Method			
FCC 15.407:2007			ANSI C63.4:2003 DA	02-2138:2002		
COMMENTS			<u> </u>			
None						
DEVIATIONS FROM	I TEST STANDARD					
No Deviations						
		10				
Configuration #	2	general				
		Signature				
				Value	Limit	Results
Channel 36, 5180 M						
	6 Mbps		2	4.471 MHz	N/A	N/A
	36 Mbps			3.767 MHz	N/A	N/A
	54 Mbps		2	3.750 MHz	N/A	N/A
Channel 48, 5240 M	lHz					
	6 Mbps		2	4.159 MHz	N/A	N/A
	36 Mbps		2	4.042 MHz	N/A	N/A
	54 Mbps		2	4.558 MHz	N/A	N/A

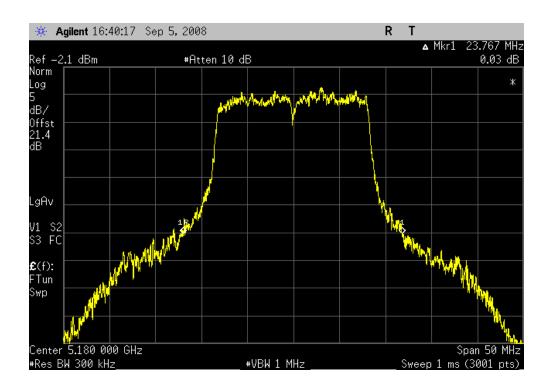
Channel 36, 5180 MHz, 54 Mbps **Result:** N/A **Value:** 23.750 MHz **Limit:** N/A

Channel 48, 5240 MHz, 6 Mbps **Result:** N/A **Value:** 24.159 MHz **Limit:** N/A



Channel 36, 5180 MHz, 6 Mbps

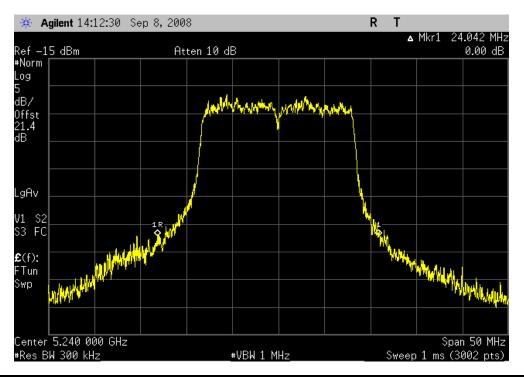
Result: N/A


Value: 24.471 MHz

Limit: N/A

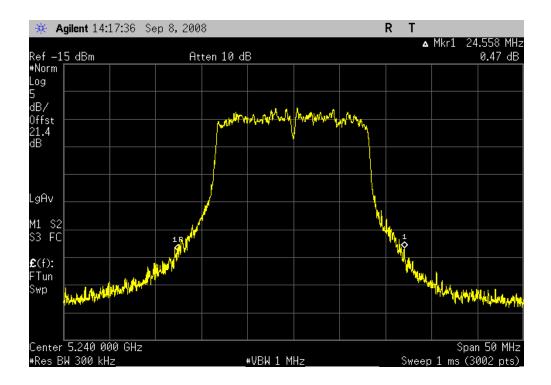
 Channel 36, 5180 MHz, 36 Mbps

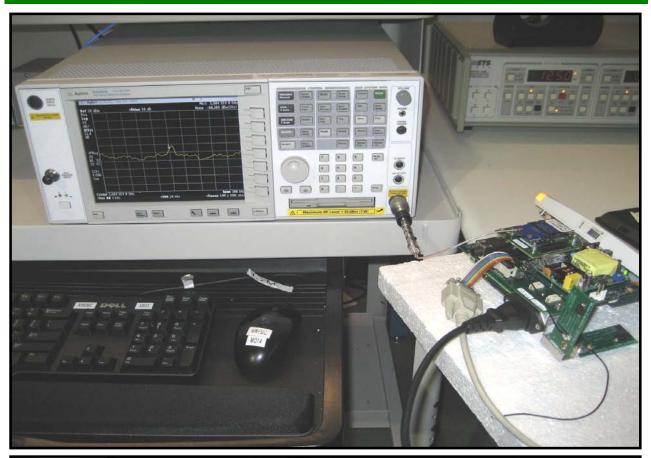
 Result:
 N/A
 Value:
 23.767 MHz
 Limit:
 N/A

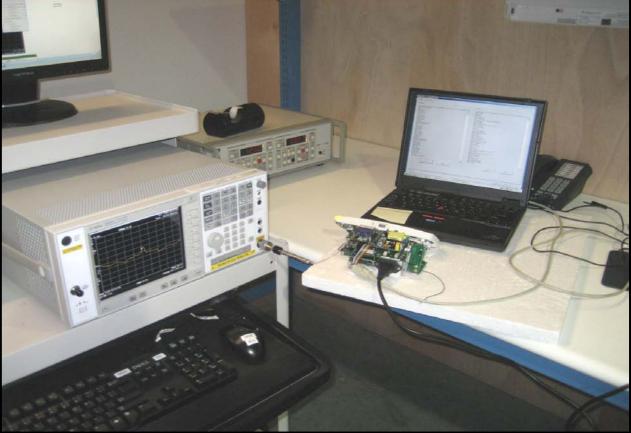


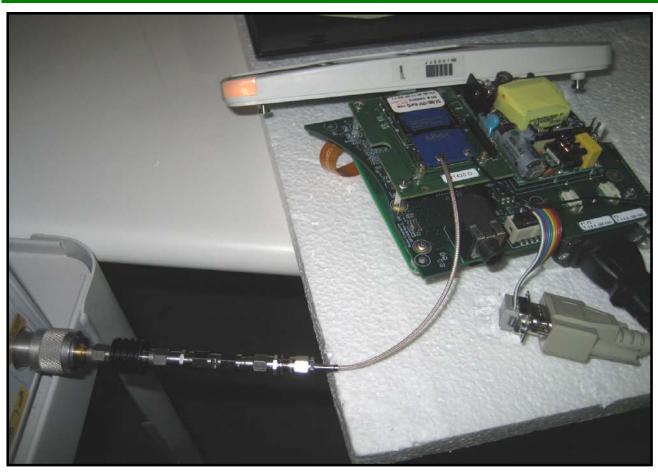
Channel 48, 5240 MHz, 36 Mbps

Result: N/A


Value: 24.042 MHz


Limit: N/A




 Channel 48, 5240 MHz, 54 Mbps

 Result: N/A
 Value: 24.558 MHz
 Limit: N/A

Peak Power Spectral Density

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AAX	10/1/2007	12

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

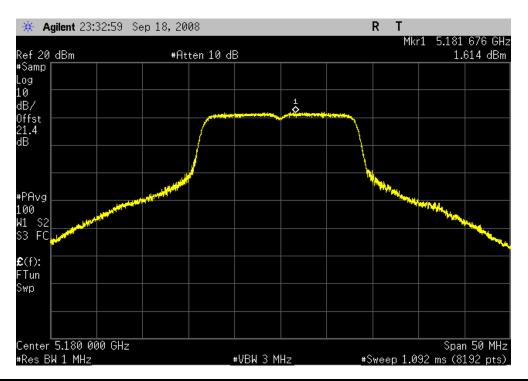
FCC Public Notice DA 02-2138 was followed. The transmit frequency was set to the lowest, a medium, and the highest channels in each band. The transmit power was set to its default maximum. The EUT's only data rate was measured. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input. The amplitude accuracy of the spectrum analyzer was further enhanced by calibrating the setup using the power meter and synthesized signal generator.

Prior to measuring peak power spectral density, the emission bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring peak power spectral density. The method of measuring the emission bandwidth and the associated data are found elsewhere in this test report. The transmission pulse duration (T) was measured across a constant amplitude pulse using an RF detector diode and an oscilloscope. The scope photos are found with the peak power measurement data elsewhere in this report.

Method #2 found in FCC Public Notice DA02-2138 was used because the analyzer sweep time was less than or equal to T.

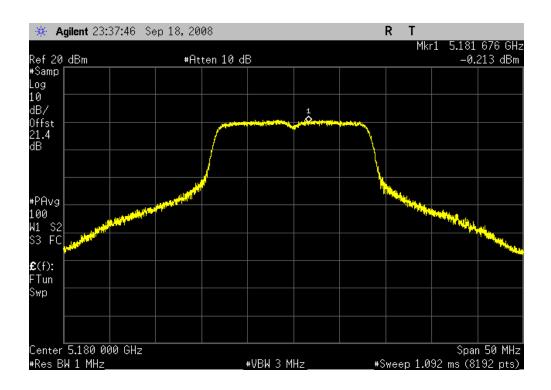
The spectrum analyzer settings were as follows:

- > The span was set to encompass entire emission bandwidth (B), centered on the transmit channel.
- > RBW = 1 MHz, VBW >= 3 MHz because the emission bandwidth (B) is greater than 1 MHz
- > Sample detector mode because the bin width (span / number of spectral points) < 0.5 RBW.
- > Trace average 100 traces in power averaging mode (not video averaging).

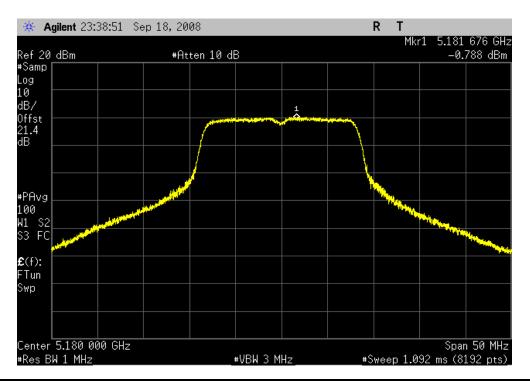

The peak power spectral density (PPSD) was determined to be the highest level found across the emission in any 1 MHz band after 100 sweeps of power averaging (not video averaging).

NORTHWEST EMC		Peak Power Sr	Peak Power Spectral Density			XMit 2007.06.13
	: Rad-87			V	Vork Order: MASI0009	
Serial Number					Date: 09/18/08	
	: Masimo Corporation			Te	mperature: 21.88°C	
	: Eugene Kim				Humidity: 53%	
Project				Baron	etric Pres.: 1011.7mb	
	: Jaemi Suh		Power: 120V/60Hz		Job Site: OC11	
TEST SPECIFICAT	TIONS		Test Method			
FCC 15.407:2007			ANSI C63.4:2003 DA 02-2138:2002			
COMMENTS						
None						
DEVIATIONS FRO	M TEST STANDARD					
No Deviations.						
Configuration #	2	Signature				
				Value	Limit	Results
Channel 36, 5180 I						
	6 Mbps			.614 dBm	4 dBm	Pass
	36 Mbps			0.213 dBm	4 dBm	Pass
	54 Mbps		-1	0.788 dBm	4 dBm	Pass
Channel 48, 5240 MHz						
	6 Mbps		1	.607 dBm	4 dBm	Pass
	36 Mbps		1	.888 dBm	4 dBm	Pass
	54 Mbps		1	.888 dBm	4 dBm	Pass

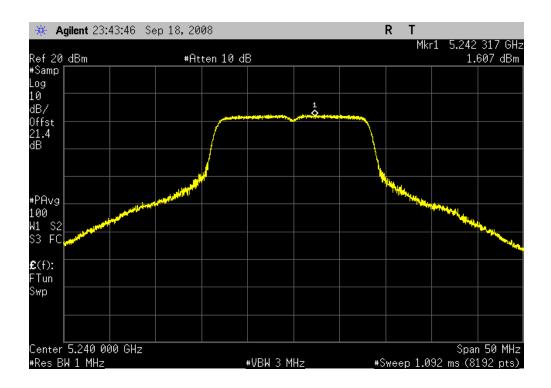
Peak Power Spectral Density


Channel 36, 5180 MHz, 6 Mbps

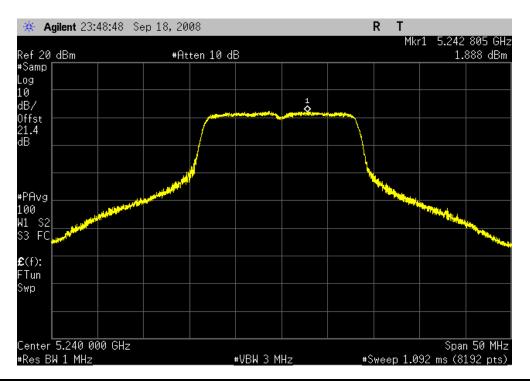
Result: Pass Value: -1.614 dBm Limit: 4 dBm


Channel 36, 5180 MHz, 36 Mbps

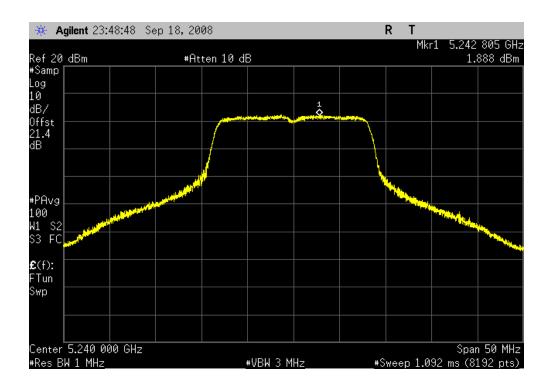
Result: Pass Value: -0.213 dBm Limit: 4 dBm

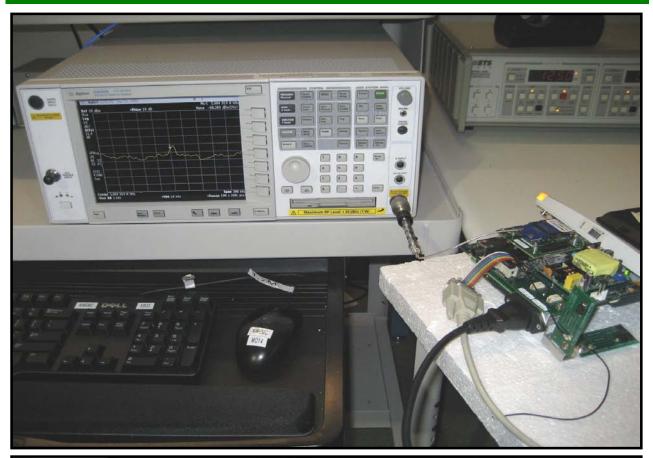

Channel 36, 5180 MHz, 54 Mbps

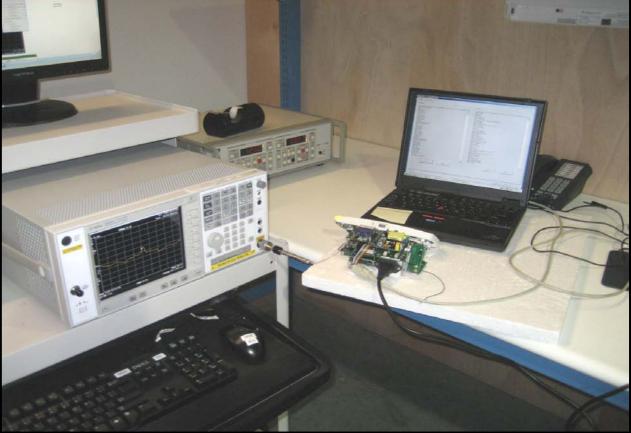
Result: Pass Value: -0.788 dBm Limit: 4 dBm

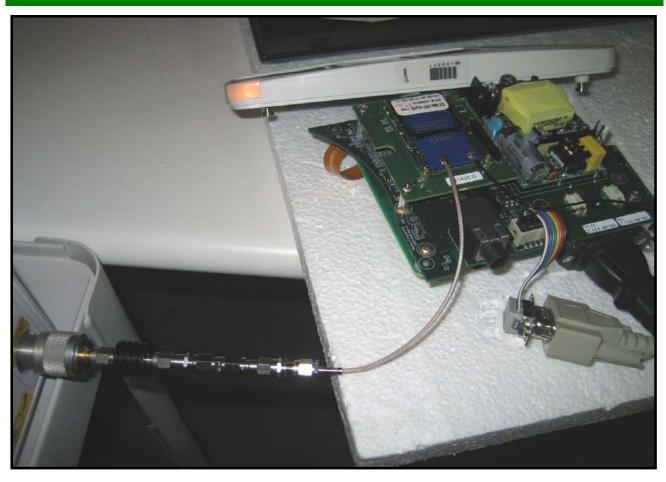

Channel 48, 5240 MHz, 6 Mbps

Result: Pass Value: 1.607 dBm Limit: 4 dBm


Channel 48, 5240 MHz, 36 Mbps


Result: Pass Value: 1.888 dBm Limit: 4 dBm




Channel 48, 5240 MHz, 54 Mbps

Result: Pass Value: 1.888 dBm Limit: 4 dBm

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

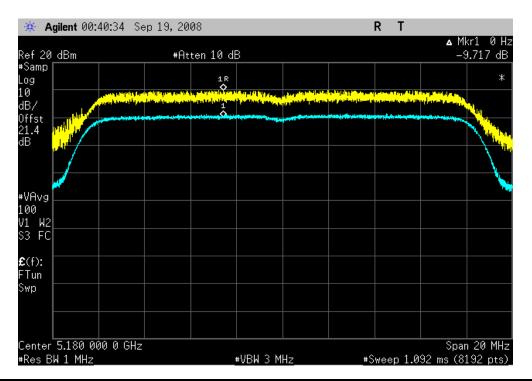
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AAX	10/1/2007	12

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

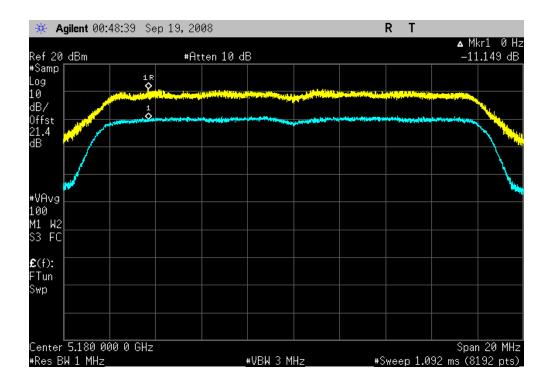
TEST DESCRIPTION

FCC Public Notice DA 02-2138 was followed. The transmit frequency was set to the lowest, a medium, and the highest channels in each band. The transmit power was set to its default maximum. The EUT's only data rate was measured. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

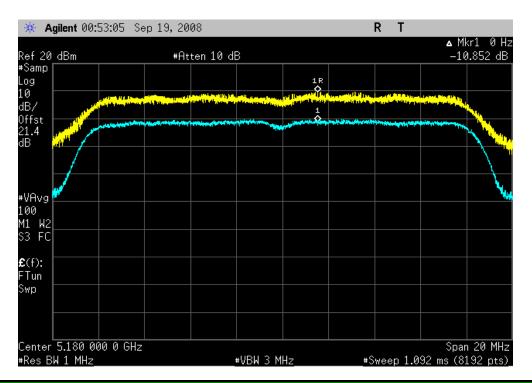

The spectrum analyzer settings were as follows:

- > Span set to encompass the entire emission bandwidth (B), centered on the transmit channel.
- Using the marker delta function, the largest difference between the following two traces was measured:
 - o 1st Trace: RBW = 1 MHz, VBW >= 3 MHz with peak detector and max-hold settings.
 - o 2nd Trace: Use same settings as were used for peak conducted transmit power.

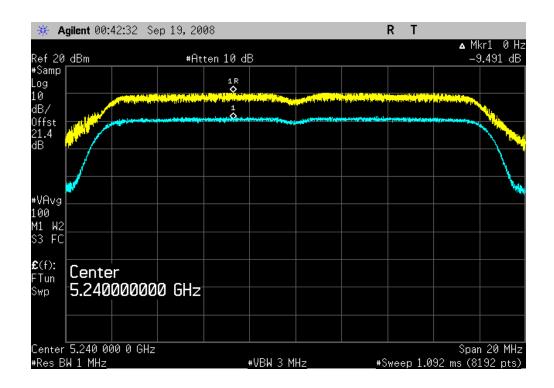
NORTHWEST					XMit 2007.06.13
EMC	Pe	ak Excursion of the	Modulation Envel	ope	
EUT:	Rad-87			Work Order:	MASI0009
Serial Number:	J00073			Date:	09/18/08
Customer:	Masimo Corporation			Temperature:	21.88°C
Attendees:	Eugene Kim			Humidity:	53%
Project:	None			Barometric Pres.:	1011.7mb
Tested by:	Jaemi Suh		Power: 120V/60Hz	Job Site:	OC11
TEST SPECIFICAT	IONS		Test Method		
FCC 15.407:2006			ANSI C63.4:2003 DA 02-	2138:2002	
COMMENTS					
None					
DEVIATIONS FROM	I TEST STANDARD				
No Deviations					
Cantinuvation #	2	Confl			
Configuration #	2	0: (
		Signature			
			Va	alue Li	mit Results
Channel 36, 5180 M					
	6 Mbps		9.7	2 dB ≤ 1:	3 dB Pass
	36 Mbps		11.	15 dB ≤ 13	3 dB Pass
	54 Mbps		10.8	35 dB ≤ 13	3 dB Pass
Channel 48, 5240 M	Hz				
	6 Mbps		9.4	9 dB ≤ 1:	3 dB Pass
	36 Mbps		11.3	24 dB ≤ 13	3 dB Pass
	54 Mbps		10.9	55 dB ≤ 13	3 dB Pass


 Channel 36, 5180 MHz, 6 Mbps

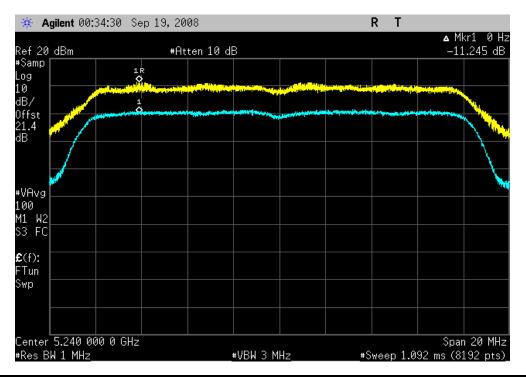
 Result: Pass
 Value: 9.72 dB
 Limit: ≤ 13 dB


 Channel 36, 5180 MHz, 36 Mbps

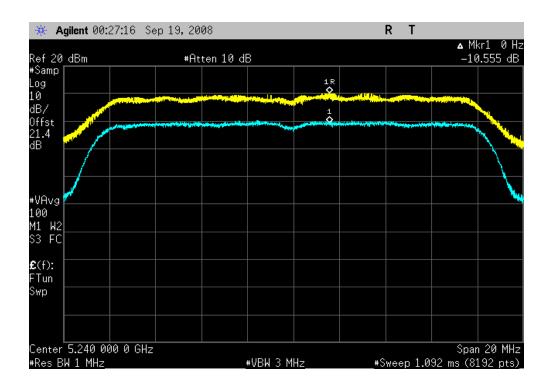
 Result:
 Pass
 Value:
 11.15 dB
 Limit:
 ≤ 13 dB

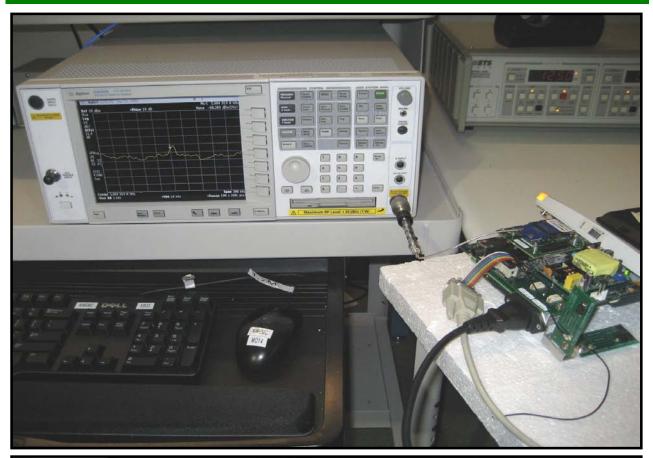

 Channel 36, 5180 MHz, 54 Mbps

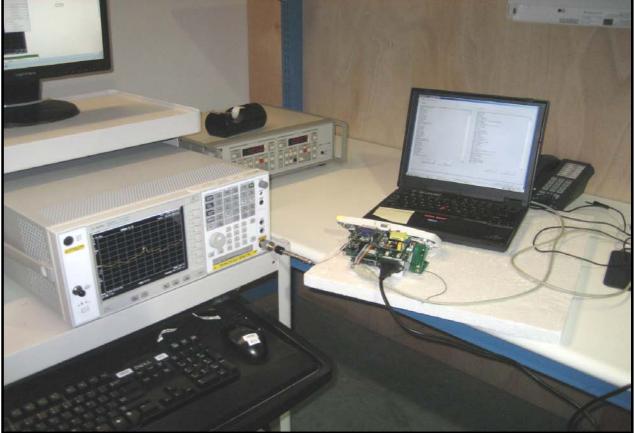
 Result: Pass
 Value: 10.85 dB
 Limit: ≤ 13 dB

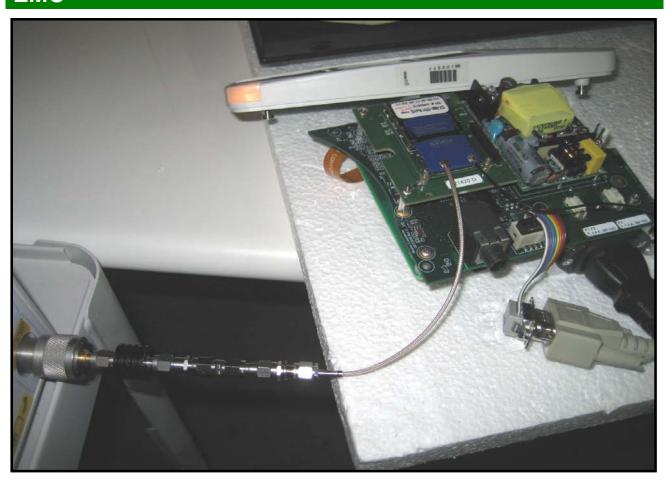

 Channel 48, 5240 MHz, 6 Mbps

 Result: Pass
 Value: 9.49 dB
 Limit: ≤ 13 dB


 Channel 48, 5240 MHz, 36 Mbps


 Result: Pass
 Value: 11.24 dB
 Limit: ≤ 13 dB




 Channel 48, 5240 MHz, 54 Mbps

 Result: Pass
 Value: 10.55 dB
 Limit: ≤ 13 dB

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AAX	10/1/2007	12

MEASUREMENT UNCERTAINTY

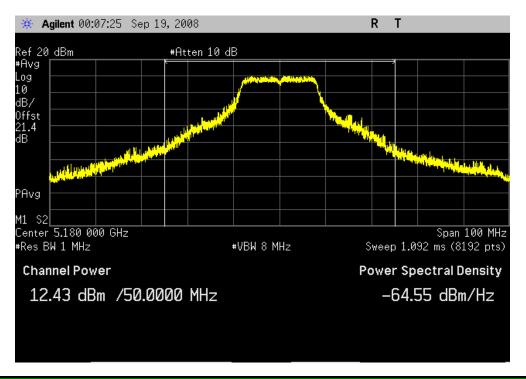
Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

FCC Public Notice DA 02-2138 was followed. The transmit frequency was set to the lowest, a medium, and the highest channels in each band. The transmit power was set to its default maximum. The EUT's only data rate was measured. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input. The amplitude accuracy of the spectrum analyzer was further enhanced by calibrating the setup using the power meter and synthesized signal generator.

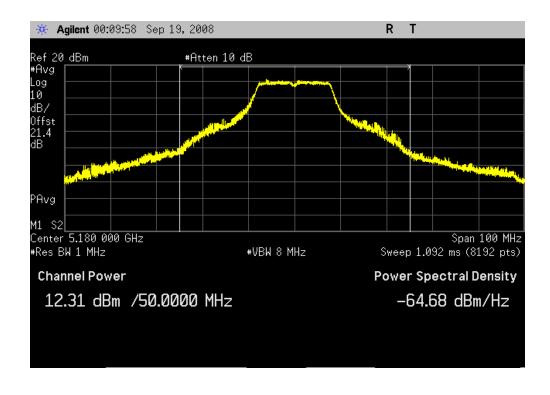
Prior to measuring peak transmit power; the emission bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Peak Transmit Power. The method of measuring the emission bandwidth and the associated data are found elsewhere in this test report.

Method #1 found in FCC Public Notice DA02-2138 was used because the analyzer sweep time was less than or equal to T.

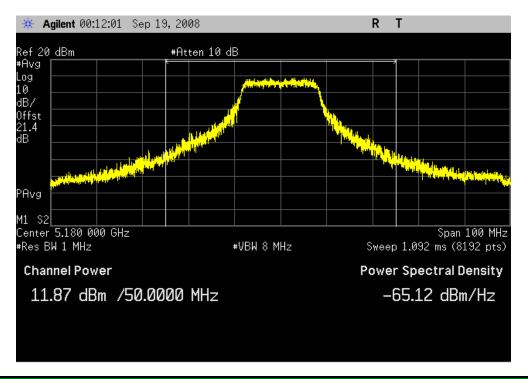

The spectrum analyzer settings were as follows:

- > The span was set to encompass entire emission bandwidth (B), centered on the transmit channel.
- ➤ The RBW = 1 MHz, VBW >= 3 MHz
- > Sample detector mode because the bin width (span / number of spectral points) < 0.5 RBW.
- > Trace average 100 traces in power averaging mode (not video averaging).
- > Power was integrated across "B", by using the channel power function of the analyzer.

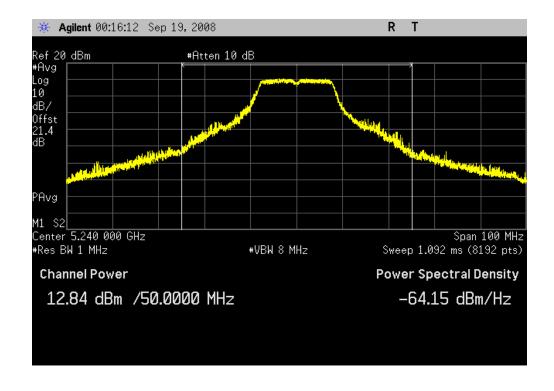
NORTHWEST EMC		Peak Trans	smit Power		XMit 2007.06.13
	Rad-87			Work Order:	
Serial Number:					09/17/08
	Masimo Corporation			Temperature:	
	Eugene Kim			Humidity:	
Project:				Barometric Pres.:	
	Jaemi Suh		Power: 120V/60Hz	Job Site:	OC11
TEST SPECIFICAT	IONS		Test Method		
FCC 15.407:2007			ANSI C63.4:2003 DA 02-2	2138:2002	
COMMENTS					
DEVIATIONS FROM	M TEST STANDARD				
Configuration #	2	Signature			
			Va	lue Li	mit Results
Channel 36, 5180 M					
	6 Mbps				dBm Pass
	36 Mbps		·-·-		dBm Pass
	54 Mbps		11.87	dBm 17	dBm Pass
Channel 48, 5240 M					
	6 Mbps				dBm Pass
	36 Mbps		12.75		dBm Pass
	54 Mbps		12.08	3 dBm 17	dBm Pass


Channel 36, 5180 MHz, 6 Mbps

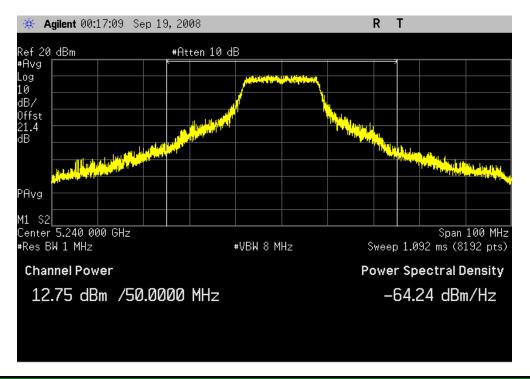
Result: Pass Value: 12.43 dBm Limit: 17 dBm


Channel 36, 5180 MHz, 36 Mbps

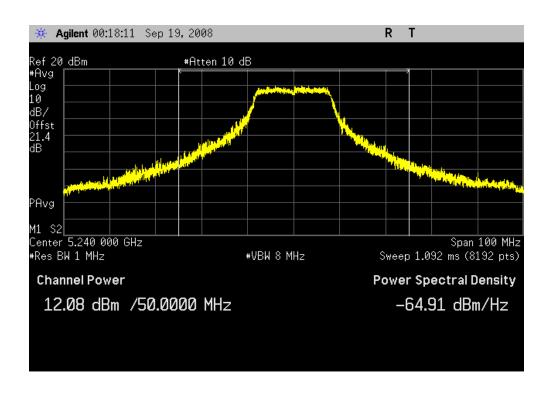
Result: Pass Value: 12.31 dBm Limit: 17 dBm

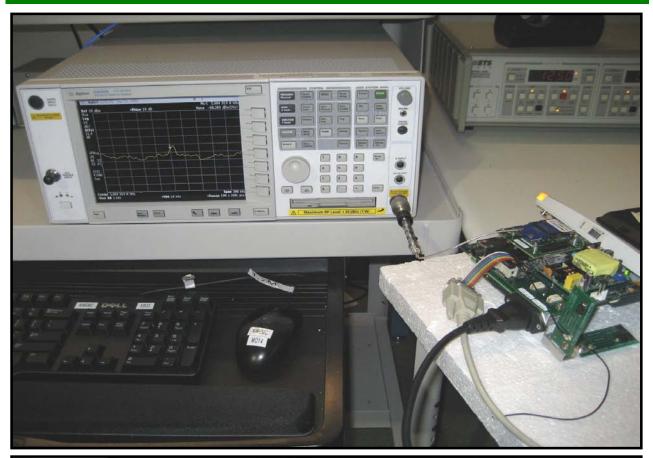

Channel 36, 5180 MHz, 54 Mbps

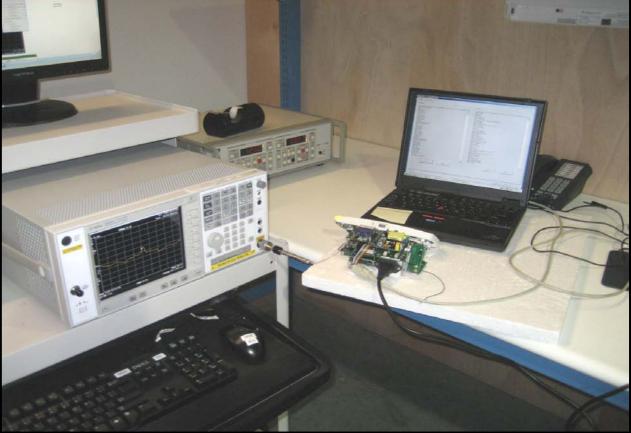
Result: Pass Value: 11.87 dBm Limit: 17 dBm


Channel 48, 5240 MHz, 6 Mbps

Result: Pass Value: 12.84 dBm Limit: 17 dBm


 Channel 48, 5240 MHz, 36 Mbps


 Result:
 Pass
 Value:
 12.75 dBm
 Limit:
 17 dBm




Channel 48, 5240 MHz, 54 Mbps

Result: Pass Value: 12.08 dBm Limit: 17 dBm

Frequency Stability

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Chamber, Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPHS-32-3.5-SCT/AC	TBE	5/22/2008	13
Spectrum Analyzer	Hewlett Packard	8593E	AAP	12/14/2007	13

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Variation of Supply Voltage

The primary supply voltage was varied over the range specified by the client. Per the client, the chip only works over this voltage range; it will shut off if the voltage is outside the specified range.

Variation of Ambient Temperature

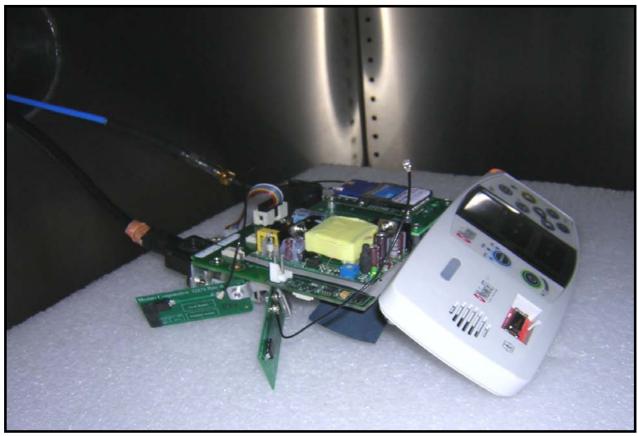
Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-30 ° to +50° C) and at 10°C intervals.

A direct connect measurement was made between the EUT's antenna cable and a spectrum analyzer. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT. Measurements were made at the mid channel of each band to determine frequency stability. If the frequency variation is less than 100 ppm, the EUT will meet the requirement of 15.407(g), that the emissions are maintained within the band of operation.

NORTHWEST EMC	Frequen	cy Stab	ility	XMit 2007.06.13
EUT: Rad-87				Work Order: MASI0002
Serial Number: J00073				Date: 09/09/08
Customer: Masimo Corporation				Temperature: 21.88°C
Attendees: Eugene Kim				Humidity: 53%
Project: None				Barometric Pres.: 1011.7
Tested by: Mark Baytan			120 V/60Hz	Job Site: OC11
TEST SPECIFICATIONS			Test Method	
FCC 15.407:2007			ANSI C63.4:2003 DA	02-2138:2002
COMMENTS				
None				
DEVIATIONS FROM TEST STANDARD				
No Deviations				
Configuration # 2	Signature	46+	-	

Normal Test Conditions

Temp	Power	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(Vdc)	(MHz)	(MHz)	(ppm)	(ppm)
24	120.0	5200.000000	5200.000249	0.05	100


Extreme power source conditions

Power (Vdc)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (ppm)	Specification (ppm)
102.0	5200.000000	5200.000500	0.10	100
Power	Assigned Frequency	Measured Frequency	Tolerance	Specification
(Vdc)	(MHz)	(MHz)	(ppm)	(ppm)

Extreme temperature conditions

Temp	Assigned Frequency	Measured Frequency	Tolerance	Limit
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
-30	5200.000000	5199.999146	0.16	100
T	A - day - d Farmers	Manager of Francisco	Tolerance	Limit
Temp (°C)	Assigned Frequency	Measured Frequency		
` '	(MHz)	(MHz)	(ppm)	(ppm)
-20	5200.000000	5200.001400	0.27	100
Temp	Assigned Frequency	Measured Frequency	Tolerance	Limit
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
-10	5200.000000	5200.000887	0.17	100

Temp	Assigned Frequency	Measured Frequency	Tolerance	Limit
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
0	5200.000000	5199.998038	0.38	100
Temp	Assigned Frequency	Measured Frequency	Tolerance	Limit
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
10	5200.000000	5199.998350	0.32	100
Temp	Assigned Frequency	Measured Frequency	Tolerance	Limit
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
20	5200.000000	5199.999725	0.05	100
T T	A I	M	Tolerance	Limit
Temp	Assigned Frequency	Measured Frequency		
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
30	5200.000000	5200.000470	0.09	100
Temp	Assigned Frequency	Measured Frequency	Tolerance	Limit
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
40	5200.000000	5199.999990	0.00	100
	5250.050000	0.00.00000	5.50	100
Temp	Assigned Frequency	Measured Frequency	Tolerance	Limit
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	5200.000000	5199.999913	0.02	100

