

Electromagnetic Compatibility Test Report

Tests Performed on a Herman Miller, Incorporated

Transceiver Module for Wireless Sensor Communication Model 1B5XR5

Radiometrics Document RP-6643B

Product Detail:

FCC ID: XWM-HMIRADIO IC: 6108A-HMIRADIO

Equipment type: 900 MHz Transceiver

Test Standards:

US CFR Title 47, Chapter I, FCC Part 15 Subpart C

FCC Part 15 CFR Title 47: 2008

Industry Canada RSS-210, Issue 7: 2007 as required for Category I Equipment

This report concerns: Original Grant for Certification

FCC Part 15.249

Tests Performed For: Test Facility:

Herman Miller, Incorporated Radiometrics Midwest Corporation

855 East Main Av., P.O. Box 302

Zeeland, MI 49464-0302

12 East Devonwood

Romeoville, IL 60446

Test Date(s): (Month-Day-Year)

September 9 thru December 4, 2009

Document RP-6643B Revisions:

Rev.	Issue Date	Affected Pages	Revised By
0	February 5, 2010		
1	February 9, 2010 7-19		Joseph Strzelecki

Testing of the Herman Miller, Incorporated, Model 1B5XR5, Transceiver Module (Base)

Table of Contents

1 ADMINISTRATIVE DATA	3
2 TEST SUMMARY AND RESULTS	
2.1 RF Exposure Compliance Requirements	3
3 EQUIPMENT UNDER TEST (EUT) DETAILS	3
3.1 EUT Description	3
3.1.1 FCC Section 15.203 & RSS-GEN Antenna Requirements	
3.2 Related Submittals	
4 TESTED SYSTEM DETAILS	4
4.1 Tested System Configuration	4
4.2 Special Accessories	4
4.3 Equipment Modifications	4
5 TEST SPECIFICATIONS AND RELATED DOCUMENTS	5
6 RADIOMETRICS' TEST FACILITIES	
7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS	6
8 CERTIFICATION	
9 TEST EQUIPMENT TABLE	
10 TEST SECTIONS	
10.1 Time of Occupancy (Dwell Time)	10
10.2 Occupied Bandwidth (20 dB)	
10.3 Band-edge Compliance of RF Emissions	
10.4 Radiated Emissions	
10.4.1 Radiated Emissions Field Strength Sample Calculation	
10.4.2 Radiated Emissions Test Results	16
10.4.3 Receive Mode Radiated Emissions	19

Notice: This report must not be reproduced (except in full) without the written approval of Radiometrics Midwest Corporation.

RP-6643B Rev. 1 Page 2 of 19

Testing of the Herman Miller, Incorporated, Model 1B5XR5, Transceiver Module (Base)

1 ADMINISTRATIVE DATA

Equipment Under Test: A Herman Miller, Incorporated, Base Transceiver Module Model: 1B5XR5 Serial Number: None This will be referred to as the EUT in this Report Date EUT Received at Radiometrics: (Month-Day-Year) Test Date(s): (Month-Day-Year) September 9, 2009 September 9 thru December 4, 2009 Test Report Written By: Test Witnessed By: Joseph Strzelecki The tests were not witnessed by Herman Miller, Senior EMC Engineer Incorporated Radiometrics' Personnel Responsible for Test: Test Report Approved By 1. Carlion 02/09/2010 Joseph Strzelecki Chris W. Carlson Director of Engineering Senior EMC Engineer NARTE EMC-000877-NE NARTE EMC-000921-NE

2 TEST SUMMARY AND RESULTS

The EUT (Equipment Under Test) is a Base Transceiver Module, Model 1B5XR5, manufactured by Herman Miller, Incorporated. The detailed test results are presented in a separate section. The following is a summary of the test results.

Emissions Tests Results

Environmental Phenomena	Frequency Range	FCC Section	RSS-210 Section	Test Result
20 dB Bandwidth Test	902-928 MHz	15.249	A2.9	Pass
Radiated Emissions	30 MHz to 25 GHz	15.249	A2.9	Pass
AC Conducted Emissions Test	0.15-30 MHz	15.207	RSS-Gen-e 7.2.2	Pass

2.1 RF Exposure Compliance Requirements

Since the power output is less than 1 mW, the EUT meets the FCC requirement for RF exposure. Since the EUT is less than 200 mW, it is exempt from RSS-102. There are no power level adjustments. The detailed calculations for RF Exposure are presented in a separate document.

3 EQUIPMENT UNDER TEST (EUT) DETAILS

3.1 EUT Description

The EUT is a Base Transceiver Module for Wireless Sensor Communication, Model 1B5XR5, manufactured by Herman Miller, Incorporated. The EUT was in good working condition during the tests, with no known defects.

RP-6643B Rev. 1 Page 3 of 19

Testing of the Herman Miller, Incorporated, Model 1B5XR5, Transceiver Module (Base)

3.1.1 FCC Section 15.203 & RSS-GEN Antenna Requirements

The antenna is a half wave monopole. The antenna has a reverse polarity connector type that is not readily available to the general public. Therefore, it meets the 15.203 Requirements.

3.2 Related Submittals

The associated Sensor Transceiver is operated under. It is subject to the FCC requirements pursuant to the Certification equipment authorization under Part 15 Subpart C, and is being submitted as FCC ID: XWM-HMIMOTE.

The associated receiver is subject to the IC requirements pursuant to the Certification equipment authorization under RSS-210. The associated receiver is subject to the IC requirements pursuant to the Certification equipment authorization under RSS-210.

4 TESTED SYSTEM DETAILS

4.1 Tested System Configuration

The system was configured for testing in a typical fashion. The EUT was placed on an 80-cm high, nonconductive test stand. The testing was performed in conditions as close as possible to installed conditions. Wiring was consistent with manufacturer's recommendations.

Since the EUT can be wall mounted or table mounted, it was placed in an upright configuration during the tests and also Flat on a table. The EUT was tested as a stand-alone device. Power was supplied at 115 VAC, 60 Hz single-phase to its external power supply.

The identification for all equipment, plus descriptions of all cables used in the tested system, are:

Tested System Configuration List

ľ	tem	Description Ty	pe*	Manufacturer	Model Number	Serial Number
	1	Base Transceiver for Wireless Sensor	Ε	Herman Miller, Incorporated	1B5XR5	None
	2	AC/DC Adaptor 6W 9VDC	Ε	Not Available	DU350900300	None

^{*} Type: E = EUT, P = Peripheral, S = Support Equipment; H = Host Computer

List of System Cables

QTY	Length (m)	Cable Description	Connected to (Item #)	Shielded?
1	1.8	AC Cord	#1 Power input	No

4.2 Special Accessories

No special accessories were used during the tests in order to achieve compliance.

4.3 Equipment Modifications

No modifications were made to the EUT at Radiometrics' test facility in order to comply with the standards listed in this report.

RP-6643B Rev. 1 Page 4 of 19

Testing of the Herman Miller, Incorporated, Model 1B5XR5, Transceiver Module (Base)

5 TEST SPECIFICATIONS AND RELATED DOCUMENTS

Document	Date	Title
FCC CFR Title 47	2008	Code of Federal Regulations Title 47, Chapter 1, Federal Communications Commission, Part 15 - Radio Frequency Devices
ANSI C63.4-2003	2003	Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
IC RSS-210 Issue 7	2007	Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands) Category I Equipment
IC RSS-Gen Issue 2	2007	General Requirements and Information for the Certification of Radiocommunication Equipment (RSS-Gen)

The test procedures used are in accordance with the FCC DA 00-705, <or> FCC 558074, Industry Canada RSS-212 and ANSI document C63.4-2003, "Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The specific procedures are described herein. Radiated testing was performed at an antenna to EUT distance of 3 meters. The antenna was raised and lowered from 1 to 4 meters.

6 RADIOMETRICS' TEST FACILITIES

The results of these tests were obtained at Radiometrics Midwest Corp. in Romeoville, Illinois, USA. Radiometrics is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025: 2005 "General Requirements for the Competence of Calibration and Testing Laboratories". Radiometrics' Lab Code is 121191 and Certification Number is 1495.01. Radiometrics' scope of accreditation includes all of the test methods listed herein. A copy of the accreditation can be accessed on our web site (www.radiomet.com). Radiometrics accreditation status can be verified at A2LA's web site (www.a2la2.org).

The following is a list of shielded enclosures located in Romeoville, Illinois used during the tests:

- Chamber A: Is an anechoic chamber that measures 24' L X 12' W X 12' H. The walls and ceiling are fully lined with ferrite absorber tiles. The floor has a 10' x 10' section of ferrite absorber tiles located in the center. Panashield of Rowayton, Connecticut manufactured the chamber. The enclosure is NAMAS certified.
- Chamber E: Is a custom made anechoic chamber that measures 52' L X 30' W X 18' H. The walls and ceiling are fully lined with RF absorber. Pro-shield of Collinsville, Oklahoma manufactured the chamber.
- Test Station F: Is an area that measures 10' D X 12' W X 10' H. The floor and back wall are metal shielded. This area is used for conducted emissions measurements.

A separate ten-foot long, brass plated, steel ground rod attached via a 6 inch copper braid grounds each of the above chambers. Each enclosure is also equipped with low-pass power line filters.

The FCC has accepted these sites as test site number US1065. The FCC test site Registration Number is 732175. Details of the site characteristics are on file with the Industry Canada as site number IC3124A-1.

RP-6643B Rev. 1 Page 5 of 19

Testing of the Herman Miller, Incorporated, Model 1B5XR5, Transceiver Module (Base)

A complete list of the test equipment is provided herein. The calibration due dates are indicated on the equipment list. The equipment is calibrated in accordance to ANSI/NCSL Z540-1 with traceability to the National Institute of Standards and Technology (NIST).

7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS

There were no deviations or exclusions from the test specifications.

8 CERTIFICATION

Radiometrics Midwest Corporation certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specification. The results relate only to the EUT listed herein. Any modifications made to the EUT subsequent to the indicated test date will invalidate the data and void this certification.

9 TEST EQUIPMENT TABLE

					Frequency	Cal	Cal
RMC ID	Manufacturer	Description	Model No.	Serial No.	Range	Period	Date
AMP-05	RMC/Celeritek	Pre-amplifier	MW110G	1001	1.0-12GHz	12 Mo.	02/01/09
AMP-22	Anritsu	Pre-amplifier	MH648A	M23969	0.1-1200MHz	12 Mo.	02/03/09
ANT-13	EMCO	Horn Antenna	3115	2502	1.0-18GHz	24 Mo.	10/22/08
ANT-44	Impossible	Super Log Antenna	SL-20M2G	1002	20-2000MHz	24 Mo.	11/25/09
	Machine						
ANT-53	EMCO	Loop Antenna	6507	1453	1 kHz-30 MHz	12 Mo	11/04/09
HPF-01	Solar	High Pass Filter	7930-100	HPF-1	0.15-30MHz	24 Mo.	10/27/09
LSN-01	Electrometrics	50 uH LISN	FCC/VDE 50/2	1001	0.01-30MHz	24 Mo.	06/01/09
REC-01	Hewlett	Spectrum Analyzer	8566A	2106A02115,	30Hz-22GHz	24 Mo.	10/23/08
	Packard			2209A01349			
REC-03	Anritsu	Spectrum Analyzer	MS2601B	MT94589	0.01-2200MHz	12 Mo.	03/09/09
REC-07	Anritsu	Spectrum Analyzer	MS2601A	MT53067	0.01-2200MHz	12 Mo.	03/09/09
THM-01	Extech Inst.	Temp/Humid Meter	4465CF	001106557	N/A	24 Mo.	01/18/08

Note: All calibrated equipment is subject to periodic checks.

10 TEST SECTIONS

10.1 AC Conducted Emissions

The tests and limits are in accordance with FCC section 15.207 and RSS Gen section 7.2.2.

A computer-controlled analyzer was used to perform the conducted emissions measurements. The frequency range was divided into 500 subranges equally spaced on a logarithmic scale. The computer recorded the peak of each subrange. This data was then plotted on semi-log graph paper generated by the computer and plotter. Adjusting the positions of the cables and orientation of the test system then maximizes the highest emissions.

Mains Conducted emission measurements were performed using a 50 Ohm/50 uH Line Impedance Stabilization Network (LISN) as the pick-up device. Measurements were repeated on both leads within the power cord. If the EUT power cord exceeded 80 cm in length, the excess length of the power cord was made into a 30 to 40 cm bundle near the center of the cord. The LISN was placed on the floor at the base of the test platform and electrically bonded to the ground plane.

RP-6643B Rev. 1 Page 6 of 19

Testing of the Herman Miller, Incorporated, Model 1B5XR5, Transceiver Module (Base)

Broadband conducted emissions may exceed the following limits by no more than 13 dB. An emission is defined as broadband if the average detector amplitude is 6 dB or more under the quasi-peak detector amplitude.

FCC Limits of Conducted Emissions at the AC Mains Ports

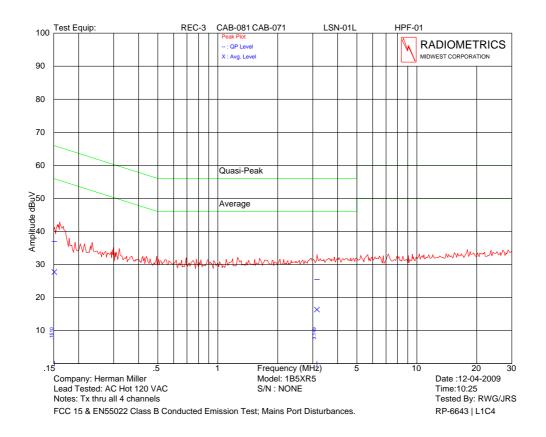
Frequency Range	Class B Limits (dBuV)							
(MHz)	Quasi-Peak	Average						
0.150 - 0.50*	66 - 56	56 - 46						
0.5 - 5.0	56	46						
5.0 - 30	60	50						
* The limit decreases	* The limit decreases linearly with the logarithm of the frequency in this range.							

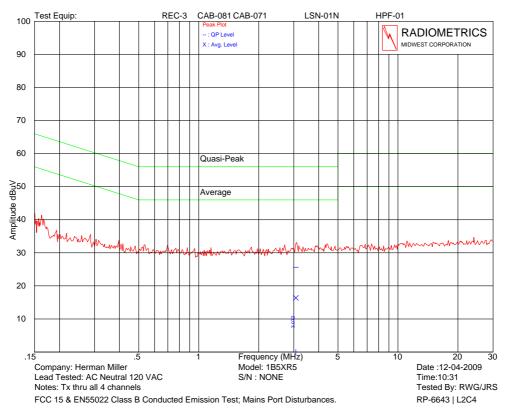
The initial step in collecting conducted data is a peak detector scan and the plotting of the measurement range. Significant peaks are then marked as shown on the following table, and these signals are then measured with the quasi-peak detector. The following represents the worst case emissions from the host computer (with the EUT connected) power cord, after testing all modes of operation.

Test Date : December 4, 2009

The Amplitude is the final corrected value with cable and LISN Loss.

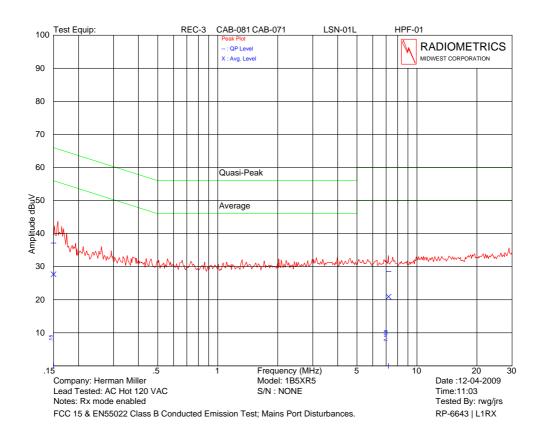
Lead Tested	Frequency MHz	QP Amplitude	QP Limit	Average Amplitude	Average Limit
AC Neutral	3.072	25.6	56.0	16.4	46.0
AC Hot	0.151	37.0	65.9	27.7	55.9
AC Hot	3.150	25.5	56.0	16.4	46.0

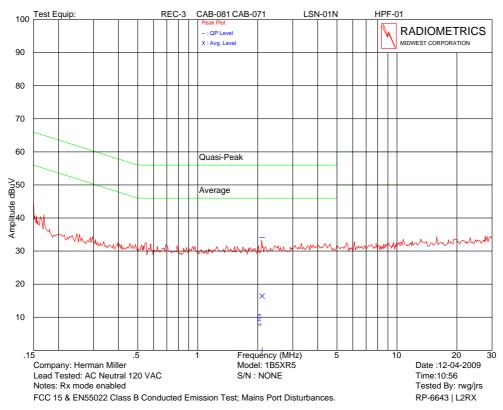

The above are the worst case results with three frequencies test for each EUT


Judgment: Passed by at least 10 dB

RP-6643B Rev. 1 Page 7 of 19

^{*} QP readings are quasi-peak with a 9 kHz bandwidth and no video filter.


Testing of the Herman Miller, Incorporated, Model 1B5XR5, Transceiver Module (Base)



RP-6643B Rev. 1 Page 8 of 19

Testing of the Herman Miller, Incorporated, Model 1B5XR5, Transceiver Module (Base)

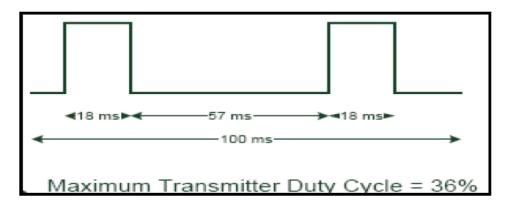
RP-6643B Rev. 1 Page 9 of 19

Testing of the Herman Miller, Incorporated, Model 1B5XR5, Transceiver Module (Base)

Notes:

• LISN's at least 80 cm from EUT chassis
• Vertical conductive plane 40 cm from rear of table top
• EUT power cord bundled

Figure 1. Conducted Emissions Test Setup

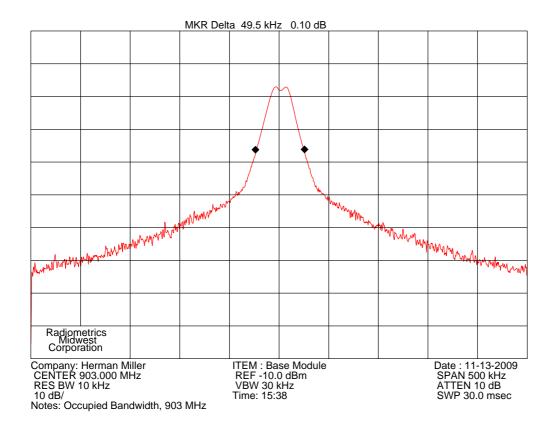

10.2 Time of Occupancy (Dwell Time)

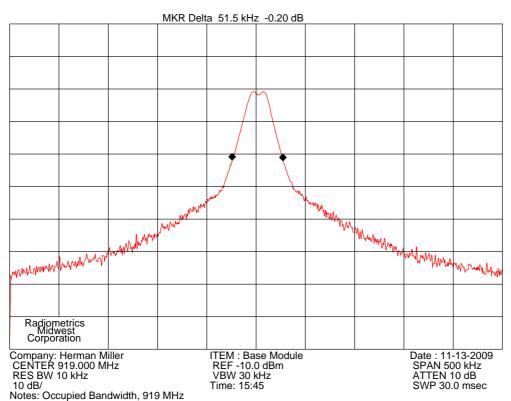
The maximum On-Time for any 100mSec period is 36 mSeconds. Therefore, the peak to average factor is 20*Log(36/100) = -8.9 dB

RP-6643B Rev. 1 Page 10 of 19

Testing of the Herman Miller, Incorporated, Model 1B5XR5, Transceiver Module (Base)

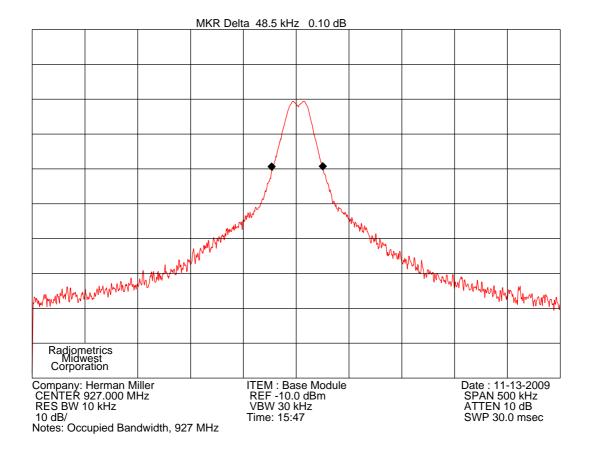
Figure 2. Duty cycle plots


10.3 Occupied Bandwidth (20 dB)


The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation. The EUT was transmitting at its maximum data rate. The trace was allowed to stabilize.

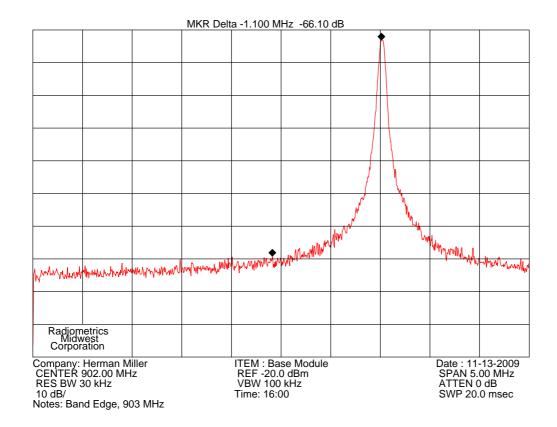
The marker-to-peak function was set to the peak of the emission. Then the marker-delta function was used to measure 20 dB down one side of the emission. The marker-delta function was reset and then moved to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

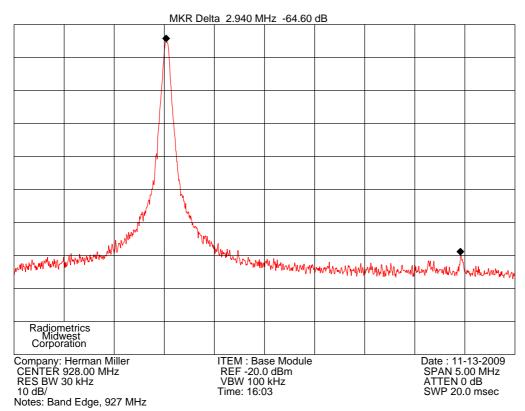
RP-6643B Rev. 1 Page 11 of 19


Testing of the Herman Miller, Incorporated, Model 1B5XR5, Transceiver Module (Base)

RP-6643B Rev. 1 Page 12 of 19

Testing of the Herman Miller, Incorporated, Model 1B5XR5, Transceiver Module (Base)




10.4 Band-edge Compliance of RF Emissions

The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation at the band-edge, with the EUT set to the lowest frequency. The trace was allowed to stabilize.

RP-6643B Rev. 1 Page 13 of 19

Testing of the Herman Miller, Incorporated, Model 1B5XR5, Transceiver Module (Base)

RP-6643B Rev. 1 Page 14 of 19

Testing of the Herman Miller, Incorporated, Model 1B5XR5, Transceiver Module (Base)

10.5 Radiated Emissions

Radiated emission measurements were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. The radiated emission measurements were performed with a spectrum analyzer. The bandwidth used from 150 kHz to 30 MHz is 9 or 10 kHz and the bandwidth from 30 MHz to 1000 MHz is 100 or 120 kHz. Above 1 GHz, a 1 MHz bandwidth is used. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists.

From 30 to 1000 MHz, an Anritsu spectrum analyzer was used. For tests from 1 to 25 GHz, an HP 8566 spectrum analyzer was used. For tests from 1 to 10 GHz, a high pass filter was used to reduce the fundamental emission. A harmonic mixer was used from 18 to 25 GHz. Figure 4 herein lists the details of the test equipment used during radiated emissions tests.

In addition, a high pass filter was used to reduce the fundamental emission. The was device was rotated through three orthogonal axis as per 13.1.4.1 of ANSI C63.4 during the prescans and during final radiated tests.

Final radiated emissions measurements were performed inside of an anechoic chamber at a test distance of 3 meters. The anechoic chamber is designated as Chamber E. This Chamber meets the Site Attenuation requirements of ANSI C63.4 and CISPR 16-1. Chamber E is located at 12 East Devonwood Ave. Romeoville, Illinois EMI test lab.

The entire frequency range from 30 to 9300 MHz was slowly scanned with particular attention paid to those frequency ranges which appeared high. Measurements were performed using two antenna polarizations, (vertical and horizontal). The worst case emissions were recorded. All measurements may be performed using either the peak, average or quasi-peak detector functions. If the peak detector data exceeds or is marginally close to the limits, the measurements are repeated using a quasi-peak detector or average function as required by the specification for final determination of compliance.

The detected emission levels were maximized by rotating the EUT, adjusting the positions of all cables, and by scanning the measurement antenna from 1 to 4 meters above the ground.

10.5.1 Radiated Emissions Field Strength Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and by subtracting the Amplifier Gain from the measured reading. The basic equation is as follows:

FS = RA + AF + CF - AG

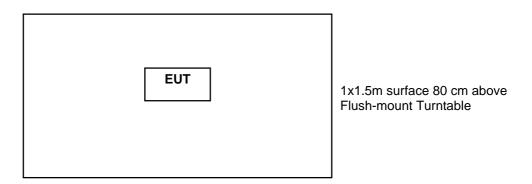
Where: FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

HPF = High pass Filter Loss


PKA = Peak to Average Factor (This is zero for non-average measurements)

The Peak to average factor is used when average measurements are required. It is calculated by the highest duty cycle in percent over any 100mS transmission. The factor in dB is 20 * Log(Duty cycle/100).

RP-6643B Rev. 1 Page 15 of 19

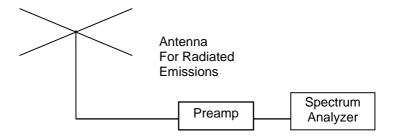

Testing of the Herman Miller, Incorporated, Model 1B5XR5, Transceiver Module (Base)

Figure 3. Drawing of Radiated Emissions Setup

Notes:

- AC outlet with low-pass filter at the base of the turntable
- Antenna height varied from 1 to 4 meters
- Distance from antenna to tested system is 3 meters
- Not to Scale

10.5.2 Radiated Emissions Test Results

The following spectrum analyzer settings were used.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW ≥ RBW; Sweep = auto

A Video Bandwidth of 10 Hz was used for Average measurements above 1 GHz.

RP-6643B Rev. 1 Page 16 of 19

Testing of the Herman Miller, Incorporated, Model 1B5XR5, Transceiver Module (Base)

Transmitter emissions and Emissions above 1 GHz

	Spectrum Analyzer Readings								EUT	Peak	Ave	Peak	Ave	Margin
hrm	Tx	Peak		Ave	Peak		Ave	Corr.	Emission	Tot	. FS	Lim	nit	Under
			Polariza			tal Polariz	ation		Freq					
#	Freq	Χ	Υ	Max	Χ	Υ	Max	Fact.	MHz	dBu	V/m	dBu∖	//m	Limit
1	903	67.6	55.8	58.7	58.7	57.0	49.8	25.0	903	92.6	83.7	94	94	1.4
2	903	37.0	32.6	28.1	38.7	43.3	34.4	1.8	1806	45.1	36.2	74	54	17.8
3	903	39.5	38.7	30.6	36.4	40.5	31.6	4.9	2709	45.4	36.5	74	54	17.5
4	903	35.9	35.8	27.0	32.3	36.9	28.0	9.0	3612	45.9	37.0	74	54	17.0
5	903	41.5	42.9	34.0	35.4	41.9	33.0	11.5	4515	54.4	45.5	74	54	8.5
6	903	37.6	37.0	28.7	36.0	40.5	31.6	12.9	5418	53.4	44.5	74	54	9.5
7	903	37.2	35.3	28.3	33.2	39.1	30.2	14.0	6321	53.1	44.2	74	54	9.8
1	919	68.0	57.0	59.1	60.0	56.8	51.1	25.0	919	93.0	84.1	94	94	1.0
2	919	39.5	36.5	30.6	40.0	44.2	35.3	2.0	1838	46.2	37.3	74	54	16.7
3	919	43.0	41.0	34.1	38.9	47.2	38.3	5.0	2757	52.2	43.3	74	54	10.7
4	919	36.4	36.9	28.0	32.5	39.7	30.8	9.3	3676	49.0	40.1	74	54	13.9
5	919	48.4	38.8	39.5	38.5	39.7	30.8	11.7	4595	60.1	51.2	74	54	2.8
6	919	42.5	42.4	33.6	38.2	40.4	31.5	13.2	5514	55.7	46.8	74	54	7.2
7	919	42.4	39.6	33.5	36.1	39.5	30.6	13.7	6433	56.1	47.2	74	54	6.8
1	927	67.8	56.8	58.9	60.3	59.5	51.4	25.0	927	92.8	83.9	94	94	1.2
2	927	40.9	37.5	32.0	43.7	46.2	37.3	2.1	1854	48.3	39.4	74	54	14.6
3	927	43.1	41.1	34.2	39.3	48.2	39.3	5.0	2781	53.2	44.3	74	54	9.7
4	927	34.3	36.7	27.8	31.2	31.5	22.6	9.4	3708	46.1	37.2	74	54	16.8
5	927	45.4	42.5	36.5	39.5	47.0	38.1	11.7	4635	58.7	49.8	74	54	4.2
6	927	42.6	44.1	35.2	38.5	43.1	34.2	13.2	5562	57.3	48.4	74	54	5.6
7	927	40.1	39.4	31.2	34.6	36.2	27.3	13.8	6489	53.9	45.0	74	54	9.0
	Column numbers (see below for explanations)													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Judgment: Passed by 1.0 dB

No other emissions were detected from 900 MHz to 10 GHz. No Band edge emissions detected.

- Column #1. hrm = Harmonic; BE = Band Edge emissions
- Column #2. Frequency of Transmitter.
- Column #3. Uncorrected readings from the spectrum analyzer with EUT upright as in Wall Mounted.
- Column #4. Uncorrected readings from the spectrum analyzer with EUT Flat as in Table Mounted.
- Column #5. Average Reading based on peak reading reduced by the Duty cylce correction. This is based on the highest of the Two readings
- Column #6. Uncorrected readings from the spectrum analyzer with First Axis Rotation.
- Column #7. Uncorrected readings from the spectrum analyzer with Second Axis Rotation.
- Column #8. Average Reading based on peak reading reduced by the Duty cylce correction. This is based on the highest of the Two readings
- Column #9. Corr. Factors = Cable Loss Preamp Gain + Antenna Factor
- Column #10. Frequency of Tested Emission
- Column #11. Highest peak field strength at listed frequency.
- Column #12. Highest Average field strength at listed frequency.
- Column #13. Peak Limit.
- Column #14. Average Limit.
- Column #15. The margin (last column) is the worst case margin under the peak or average limits for that row.

RP-6643B Rev. 1 Page 17 of 19

Testing of the Herman Miller, Incorporated, Model 1B5XR5, Transceiver Module (Base)

Spurious Emissions Below 1 GHz Transmit Mode

	Meter			enna	Corr.		Strength IV/m	Margin
- N 41.1	Reading	Dect.	Factor	D.1/1D#	Factors			Under Limit
Freq. MHz	dBuV	Туре	dB	Pol/ ID#	dB	EUT	Limit	dB
54.0	30.6	Р	13.8	H/44	-27.5	16.9	40.0	23.1
67.6	30.8	Р	8.1	H/44	-27.3	11.6	40.0	28.4
79.6	32.0	Р	7.2	H/44	-27.1	12.0	40.0	28.0
96.0	32.0	Р	8.9	H/44	-26.9	14.0	43.5	29.5
162.8	35.0	Р	10.4	H/44	-26.3	19.1	43.5	24.4
200.8	33.6	Р	10.3	H/44	-26.0	17.8	43.5	25.7
227.2	32.5	Р	11.8	H/44	-25.9	18.4	46.0	27.6
296.2	33.5	Р	13.7	H/44	-25.5	21.7	46.0	24.3
315.2	31.6	Р	14.1	H/44	-25.4	20.4	46.0	25.6
412.1	29.9	Р	16.3	H/44	-24.7	21.5	46.0	24.5
538.0	29.4	Р	18.2	H/44	-24.2	23.4	46.0	22.6
786.0	29.0	Р	21.4	H/44	-22.2	28.2	46.0	17.8
48.4	39.4	Р	13.6	V/44	-27.6	25.4	40.0	14.6
95.2	39.5	Р	9.9	V/44	-26.9	22.4	43.5	21.1
114.4	34.2	Р	14.3	V/44	-26.8	21.7	43.5	21.8
133.2	33.8	Р	13.9	V/44	-26.6	21.1	43.5	22.4
158.8	37.5	Р	11.1	V/44	-26.4	22.2	43.5	21.3
199.6	37.6	Р	10.1	V/44	-26.0	21.7	43.5	21.8
218.4	34.8	Р	11.5	V/44	-25.9	20.3	46.0	25.7
229.0	33.5	Р	11.6	V/44	-25.9	19.2	46.0	26.8
283.3	43.1	Р	12.7	V/44	-25.6	30.2	46.0	15.8
393.6	30.5	Р	15.5	V/44	-25.0	21.1	46.0	24.9
439.0	29.9	Р	16.0	V/44	-24.7	21.2	46.0	24.8
529.0	29.7	Р	17.4	V/44	-24.2	22.8	46.0	23.2
724.0	28.7	Р	20.0	V/44	-22.9	25.8	46.0	20.2
870.0	31.9	Р	21.1	V/44	-21.4	31.6	46.0	14.4

RP-6643B Rev. 1 Page 18 of 19

Testing of the Herman Miller, Incorporated, Model 1B5XR5, Transceiver Module (Base)

10.5.3 Receive Mode Radiated Emissions

Manufacturer	Herman Miller, Incorporated	Specification	FCC Part 15 Subpart C & RSS-210					
Model	1B5XR5	Test Date	11/11/2009					
Serial Number	None	Test Distance	3 Meters					
Abbreviations	Pol = Antenna Polarization; V	' = Vertical; H = F	lorizontal; BC = Biconical (ANT-3);					
	LP = Log-Periodic (ANT-6); HN = Horn (ANT-13) P = peak; Q = QP							
Notes	Corr. Factors = Cable Loss - Preamp Gain							

	Meter		Antenna		Corr.	Field Strength dBuV/m		Margin
	Reading	Dect.	Factor		Factors			Under Limit
Freq. MHz	dBuV	Туре	dB	Pol/ ID#	dB	EUT	Limit	dB
34.4	31.3	Р	17.5	H/44	-27.8	21.0	40.0	19.0
140.0	30.9	Р	11.9	H/44	-26.5	16.3	43.5	27.2
162.4	31.6	Р	10.5	H/44	-26.3	15.8	43.5	27.7
201.6	37.1	Р	10.3	H/44	-26.0	21.4	43.5	22.1
239.6	29.1	Р	12.4	H/44	-25.7	15.8	46.0	30.2
296.2	33.6	Ρ	13.7	H/44	-25.5	21.8	46.0	24.2
454.6	29.2	Р	17.1	H/44	-24.7	21.6	46.0	24.4
576.0	28.0	Р	18.8	H/44	-23.5	23.3	46.0	22.7
669.0	28.8	Р	20.1	H/44	-23.1	25.8	46.0	20.2
796.0	28.3	Р	21.7	H/44	-22.0	28.0	46.0	18.0
861.0	29.1	Р	21.9	H/44	-21.5	29.5	46.0	16.5
937.0	28.9	Р	22.7	H/44	-20.6	31.0	46.0	15.0
1166.0	30.6	Р	24.1	H/44	-20.9	33.8	54.0	20.2
1207.0	31.2	Р	24.1	H/44	-20.7	34.6	54.0	19.4
1408.0	29.8	Р	25.3	H/44	-19.7	35.4	54.0	18.6
49.2	39.8	Р	13.5	V/44	-27.6	25.7	40.0	14.3
95.6	36.1	Р	10.0	V/44	-26.9	19.2	43.5	24.3
114.4	34.0	Р	14.3	V/44	-26.7	21.6	43.5	21.9
133.2	33.4	Р	13.9	V/44	-26.6	20.7	43.5	22.8
171.2	37.3	Р	9.9	V/44	-26.2	21.0	43.5	22.5
199.6	40.5	Р	10.1	V/44	-26.0	24.6	43.5	18.9
208.8	35.2	Р	10.8	V/44	-25.9	20.1	43.5	23.4
229.0	32.8	Р	11.6	V/44	-25.8	18.6	46.0	27.4
296.2	30.6	Р	13.2	V/44	-25.5	18.3	46.0	27.7
343.8	28.9	Р	14.6	V/44	-25.1	18.4	46.0	27.6
461.9	30.0	Р	16.5	V/44	-24.6	21.9	46.0	24.1
530.0	28.8	Р	17.4	V/44	-24.2	22.0	46.0	24.0
631.0	28.2	Р	18.7	V/44	-23.5	23.4	46.0	22.6
772.0	28.2	Р	20.0	V/44	-22.2	26.0	46.0	20.0
870.0	31.5	Р	21.1	V/44	-21.4	31.2	46.0	14.8
924.0	28.8	Р	21.7	V/44	-20.8	29.7	46.0	16.3

RP-6643B Rev. 1 Page 19 of 19