

ZOLL Medical Corporation Zoll CF Card Module FCC 15.407:2013 Report #: LGPD0094

Report Prepared By Northwest EMC Inc.

NORTHWEST EMC - (888) 364-2378 - www.nwemc.com

California – Minnesota – Oregon – New York – Washington

CERTIFICATE OF TEST

Last Date of Test: May 17, 2013 ZOLL Medical Corportion Model: Zoll CF Card Module

Emissions				
Test Description	Specification	Test Method	Pass/Fail	
Closing Time	FCC 15.407:2013	ANCI C63.10:2009	Pass	
Move Time	FCC 15.407:2013	ANCI C63.10:2009	Pass	
Non Occupancy Period	FCC 15.407:2013	ANCI C63.10:2009	Pass	

Deviations From Test Standards

None

Approved By:

Kyle Holgate, Operations Manager

NVLAP Lab Code: 200676-0

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 41 Tesla Ave. Irvine, CA 92618

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834B-1).

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number		Description	Date	Page Number
00	None			
	-		· · · · ·	

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC Guide 65 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

KCC / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Hong Kong

OFTA – Recognized by OFTA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

Russia

GOST – Accredited by Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC to perform EMC and Hygienic testing for Information Technology products to GOST standards.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/


LOCATIONS

Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796	Minnesota Labs MN01-08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281	Washington Labs NC01-05,SU02,SU07 19201 120 th Ave. NE Bothell, WA 98011 (425) 984-6600		
	VCCI					
A-0108	A-0029		A-0109	A-0110		
	Industry Canada					
2834D-1, 2834D-2	2834B-1, 2834B-2, 2834B-3		2834E-1	2834C-1		
NVLAP						
NVLAP Lab Code: 200630-0	NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200629-0		

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	ZOLL Medical Corporation
Address:	269 Mill Road
City, State, Zip:	Chelmsford, MA 01824
Test Requested By:	Curt McNamara – Logic Product Development
Model:	Z-RS-DC002
First Date of Test:	May 17, 2013
Last Date of Test:	May 17, 2013
Receipt Date of Samples:	April 29, 2013
Equipment Design Stage:	Preproduction
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

802.11abgn CF wireless card containing 1x1 SISO radio module operating in 20 MHz channel bandwidth that is normally installed in the ZOLL R Series[™] defibrillators.

Hardware, Firmware, and OS Versions:

Software: The SVN revision numbers for the various software images were:

- ESD: 133255
- Intentional: 131783
- Unintentional: 130323
- DFS 133168

These images all contain: BSP 2.2, Kernel 3.0, and WL12xx firmware = Rev 7.1.3.50.58

Hardware: The top level assembly: 2062-1023547, Rev. B-0 PCB: 2062-1023532, Rev B-2

The operating frequency band(s) of the equipment.

2400 - 2483.5 MHz	
5150 - 5250 MHz	
5250 - 5350 MHz (DFS Band)	
5470 - 5600 MHz (DFS Band)	
5650 - 5725 MHz (DFS Band)	
5725 - 5825 MHz	

The operating modes (Master and/or Client) of the U-NII device.

Client device with no Ad-Hoc function and no radar detection

List the highest and the lowest possible power level

The peak Transmit power of the EUT with the permanently attached cable ranges from 6.478 dBm to 10.655 dBm. The maximum antenna gain in the 5GHz range is 2.6 dBi.

PRODUCT DESCRIPTION

Test sequences or messages that should be used for communication between Master and Client Devices, which are used for loading the Channel.

- 1. Stream the test file from the Master Device to the Client Device for IP based systems or frame based systems which dynamically allocate the talk/listen ratio.
- 2. For frame based systems with fixed talk/listen ratio, set the ratio to 45%/55% and stream the test file from the Master to the Client.
- 3. For other system architectures, supply appropriate Channel loading methodology.

The specified NTIA MPEG file was used to exercise the channel; however, an alternate streaming method was proposed to the FCC and approved for testing since the device is not designed to play video/audio.

Transmit Power Control description.

This device does not exceed 27dBm EIRP, so no transmit power control is implemented.

System architectures, data rates, U-NII Channel bandwidths.

1. Indicate the type(s) of system architecture (e.g. IP based or Frame based) that the U-NII device employs. Each type of unique architecture must be tested.

The Client device (EUT) employs IP based system architecture.

The time required for the Master Device and/or Client Device to complete its power-on cycle.

The Master device used in the test system requires 1.44 minutes to complete its power-on cycle. The client device (EUT) does not have radar detection, so its power-on time is not applicable, but was measured to be 22 seconds

Manufacturer statement confirming that information regarding the parameters of the detected Radar Waveforms is not available to the end user.

The client device (EUT) does not have radar detection, so this requirement is not applicable.

Uniform Channel Spreading requirement for Master Devices. For Master Devices, indicate how the master provides, on aggregate, uniform Channel loading of the spectrum across all Channels.

The client device (EUT) does not have radar detection, so this requirement is not applicable.

PRODUCT DESCRIPTION

List all antenna assemblies and their corresponding gains.

- If radiated tests are to be performed, the U-NII Device should be tested with the lowest gain antenna assembly (regardless of antenna type). The report should indicate which antenna assembly was used for the tests. For devices with adjustable output power, list the output power range and the maximum EIRP for each antenna assembly.
- 2. If conducted tests are to be performed, indicate which antenna port/connection was used for the tests and the antenna assembly gain that was used to set the DFS Detection Threshold level during calibration of the test setup.
 - a. Indicate the calibrated conducted DFS Detection Threshold level.
 - b. For devices with adjustable output power, list the output power range and the maximum EIRP for each antenna assembly.
 - c. Indicate the antenna connector impedance. Ensure that the measurement instruments match (usually 50 Ohms) or use a minimum loss pad and take into account the conversion loss.
- 3. Antenna gain measurement verification for tested antenna.
 - a. Describe procedure
 - b. Describe the antenna configuration and how it is mounted
 - c. If an antenna cable is supplied with the device, cable loss needs to be taken into account. Indicate the maximum cable length and either measure the gain with this cable or adjust the measured gain accordingly. State the cable loss.

The Client device (EUT) has one 50 ohm antenna port used for the 5GHz band. A conducted DFS test was performed on one at 20 MHz channel bandwidths.

The client device does not have radar detection, so details on the cable loss and antenna gain are not applicable. For reference, the maximum antenna gain in the 5 GHz bands is 2.6 dBi.

Response to Inquiry to FCC

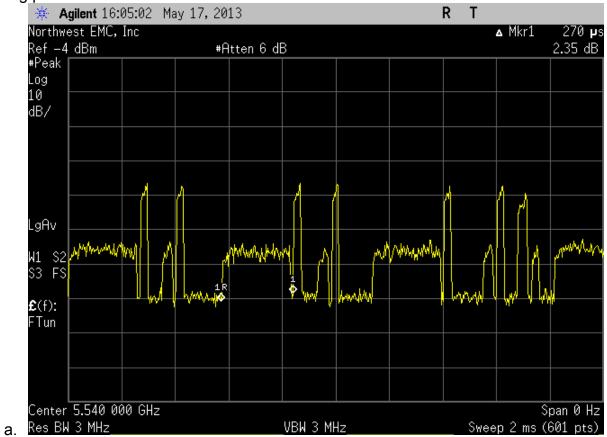
Inquiry on 05/22/2013 : Inquiry: Please approve attached alternative channel loading method for DFS testing.

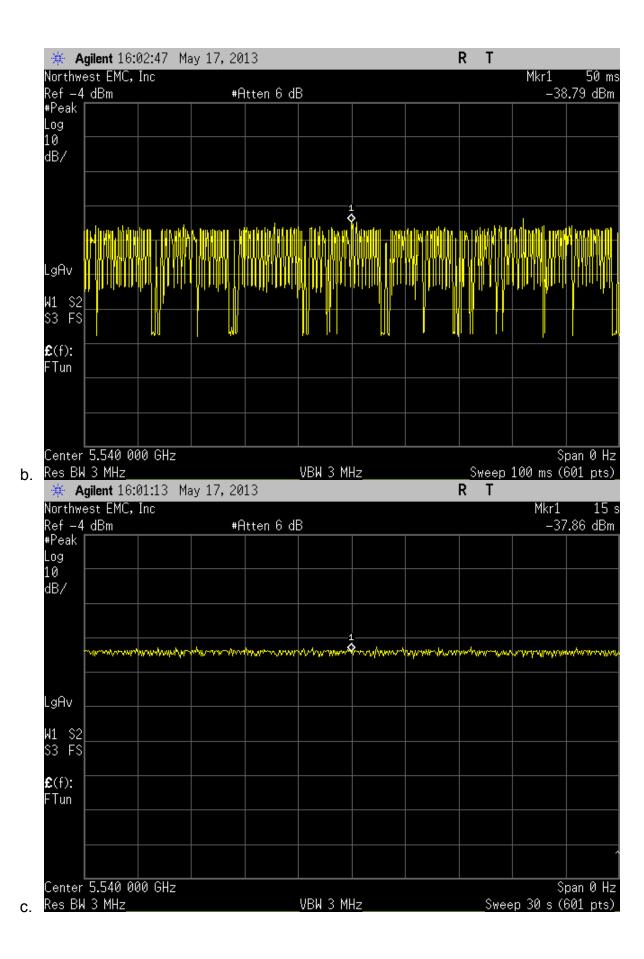
FCC response on 05/24/2013

Tour alternative streaming proposal for the client device has been approved.

Attachment Details: <u>Proposal for an Alternative Streaming Method</u> (see following pages for text)

Proposal for an Alternative Streaming Method


FCC ID: YKP1021149


Submitted by Northwest EMC, Inc.

- 1. A brief description of the device
 - a. The EUT is an UNII client device with no radar detection and no adhoc capability. The device is a CF wireless card module that is normally installed into a medical system running a closed operating system based on Linux and does not support the NTIA specified codec and video format (reference: http://ntiacsd.ntia.doc.gov/dfs/) because external devices cannot connect to the EUT and stream directly from system like a typical pc..
- 2. The reason you cannot stream the NTIA MPG or Wav File
 - a. The medical device's operating system does not support the NTIA specified V2.61 codec and is not meant for audio or video streaming. To use the media file specified by the NTIA would require a significant software effort to modify the EUT's system and since the device is typically used for logging medical data and transferring it to a host, this application would not be applicable in most cases.
- 3. A description on how you propose to do the data streaming
 - a. The Client (EUT) device's firmware was slightly altered to allow the direct file transfer of the NTIA mpeg file. To configure this special test mode, a wired serial connection was made between the EUT and an external Laptop which controlled the EUT (the Laptop is not part of EUT and is only used during testing and debug). On the Master side, the NTIA mpeg file was placed onto a Desktop PC. The Master Access Point was wired to the PC so the NTIA mpeg file could be accessed through the wireless connection. Once a wireless link was established between the Master Access Point and the Client (EUT), the NTIA mpeg file was transferred through HTTP protocol from the Desktop PC to the EUT's internal storage.
- 4. An estimate of the percentage of channel loading. Explain how you derived this estimate
 - a. Channel loading was measured with the use of a spectrum analyzer using a method outlined in ETSI 301 893 section 5.1.2.2. Data packets were measured over time at 2mS, 100mS, and 30seconds. This was done to show a consistent amount of data being transmitted and received. The width of each data packet in a 2mS windows is approximately .270mS. On average there are about 4 pulses in each 2mS window, which amounts to roughly

1.1mS of data packets total over 2mS. This transmission remains consistent across 100mS and 30 second windows, so the average channel loading is at least 50%

5. Timing plots

Please confirm that this channel loading method is acceptable. Your attention to this matter is greatly appreciated.

Best Regards,

Greg Kiemel, Director of Engineering Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97214 Main: 888-364-2378 Fax: 503-844-3826 <u>www.nwemc.com</u> email: gkiemel@nwemc.com

CONFIGURATIONS

Configuration LGPD0094-2

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Zoll CF Card Module	ZOLL Medical Corporation	Z-RS-DC002	0024	

Peripherals in test setup boundary				
Description	Manufacturer Model/Part Number Serial Number			
Laptop	Dell Technologies Inc.	PP18L	33583998997	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Serial Cable	No	1.8m	No	Laptop	Zoll CF Card Module
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
			Tested as	No EMI suppression	EUT remained at
1	5/17/2013	Closing Time	delivered to	devices were added or	Northwest EMC
			Test Station.	modified during this test.	following the test.
			Tested as	No EMI suppression	EUT remained at
2	5/17/2013	Move Time	delivered to	devices were added or	Northwest EMC
			Test Station.	modified during this test.	following the test.
		Non	Tested as	No EMI suppression	Scheduled testing
3	5/17/2013	Occupancy	delivered to	devices were added or	was completed.
		Period	Test Station.	modified during this test.	was completed.

INTRODUCTION

Applicability of DFS Requirements Prior to Use of a Channel

Requirement	Operational Mode			
	Master	Client (without DFS)	Client (with DFS)	
Non-Occupancy Period	Yes	Yes	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
Uniform Spreading	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Applicability of DFS requirements during normal operation

Requirement		Operational Mode		
	Master	Client (without DFS)	Client (with DFS)	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Closing Transmission Time	Yes	Yes	Yes	
Channel Move Time	Yes	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	Yes	

DFS Response Requirement Values

Parameter	Value
Non-occupancy	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds (See Note 1)
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. (See Notes 1 and 2).
	Minimum 80% of the UNII 99% transmission power bandwidth.
U-NII Detection Bandwidth	(See Note 3).

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

- For the Short Pulse Radar Test Signals this instant is the end of the Burst.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.
- For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

INTRODUCTION

DFS Detection Thresholds for Master or Client Devices Incorporating DFS

Maximum Transmit Power	Value (See Notes 1 and 2)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm
< 200 miniwali	-02 UDIII

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
1	1	1428	18	60%	30
2	1 - 5	150 - 230	23 - 29	60%	30
3	6 -10	200 - 500	16 – 18	60%	30
4	11 - 20	200 - 500	12 -16	60%	30
Aggregate (Radar	Types 1-4)			80%	120

Long Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50 - 100	5 - 20	1000 - 2000	1 - 3	8 - 20	80%	30

Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (μsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

EMC

Client Device DFS Conformance Test

For a Client Device without DFS, the Channel Move Time and Channel Closing Transmission Time requirements are verified with one Short Pulse Radar.

<u>Channel Closing Transmission Time</u>: The total duration of transmissions, consisting of data signals and the aggregate of control signals, by a U-NII device during the Channel Move Time.

<u>Channel Move Time</u>: The time to cease all transmissions on the current Channel upon detection of a Radar Waveform above the DFS Detection Threshold. A Client Device will not transmit before having received appropriate control signals from a Master Device.

A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device.

DFS Detection Thresholds for Master or Client Devices Incorporating DFS

Maximum Transmit Power	Value
	(See Notes 1 and 2)
\geq 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm
Note 1: This is the level at the input of the receiver assuming a	0 dBi receive antenna.
Note 2: Throughout these test procedures an additional 1 dB has	s been added to the amplitude of
the test transmission waveforms to account for variations in me	asurement equipment. This will
ensure that the test signal is at or above the detection threshold	level to trigger a DFS response.

DFS Response Requirement Value

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	aggregate of 60
	milliseconds over
	remaining 10 second
	period.
	See Notes 1 and 2.

Setting the Test Signal Level

The radar test signal level is set at the Master Device, or the Client Device with In-Service Monitoring, as appropriate for the particular test. This device is known as the Radar Detection Device (RDD).

- When a Client Device without In-Service Monitoring is the UUT, the Master Device is the RDD.
- When a Client Device with In-Service Monitoring is the UUT, and is tested for response to the Master Device detections, the Master Device is the RDD.
- When a Client Device with In-Service Monitoring is the UUT, and is tested for independent response to detections by the Client Device, the Client Device is the RDD.

A spectrum analyzer is used to establish the test signal level for each radar type. During this process, there are no transmissions by either the Master Device or Client Device. The spectrum analyzer is switched to the zero span (time domain) mode at the frequency of the Radar Waveform generator. The peak detector function of the spectrum analyzer is utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) are set to at least 3 MHz.

The signal generator amplitude and/or step attenuators are set so that the power level measured at the spectrum analyzer is equal to the DFS Detection Threshold that is required for the tests. The signal generator and attenuator settings are recorded for use during the test.

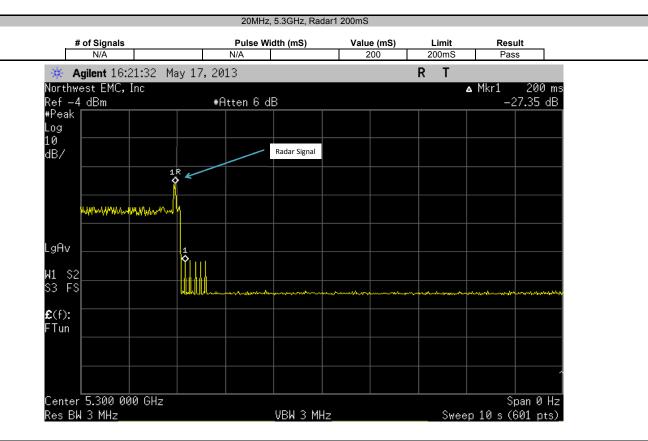
Closing Time

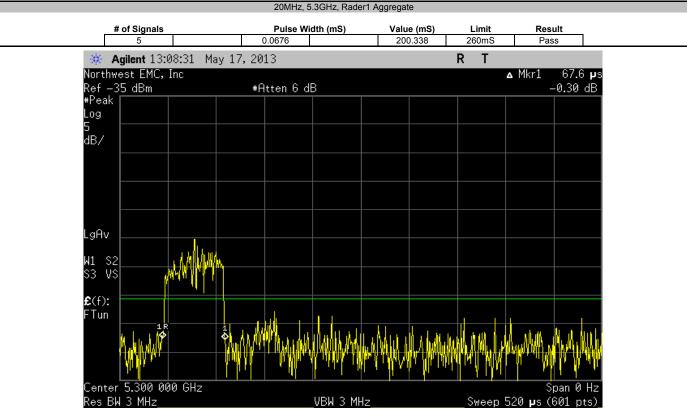
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Manufacturer	Model	ID	Last Cal.	Interval
Agilent	E4440A	AFA	6/15/2012	24
S.M. Electronics	MP0208-2	None	NCR	0
S.M. Electronics	MP0208-2	None	NCR	0
Aeroflex/Weinchel	3053	26834	NCR	0
Aeroflex/Weinchel	3053	26835	NCR	0
Agilent	V2920A	TIH	NCR	0
	Agilent S.M. Electronics S.M. Electronics Aeroflex/Weinchel Aeroflex/Weinchel	AgilentE4440AS.M. ElectronicsMP0208-2S.M. ElectronicsMP0208-2Aeroflex/Weinchel3053Aeroflex/Weinchel3053	AgilentE4440AAFAS.M. ElectronicsMP0208-2NoneS.M. ElectronicsMP0208-2NoneAeroflex/Weinchel305326834Aeroflex/Weinchel305326835	AgilentE4440AAFA6/15/2012S.M. ElectronicsMP0208-2NoneNCRS.M. ElectronicsMP0208-2NoneNCRAeroflex/Weinchel305326834NCRAeroflex/Weinchel305326835NCR

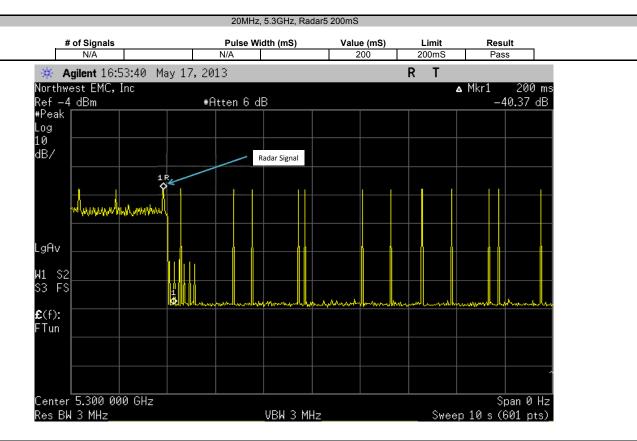
TEST DESCRIPTION

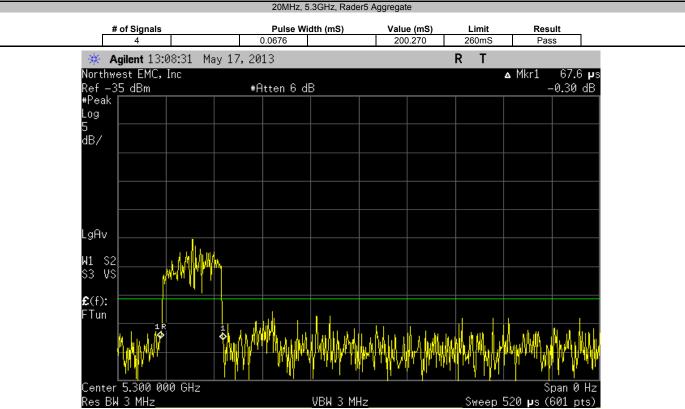

FCC KDB 905462 describes the compliance measurement procedures including acceptable instrument system configurations for performing Dynamic Frequency Selection (DFS) tests under FCC Part 15 Subpart E Rules required for Unlicensed – National Information Infrastructure (U-NII) equipment that operates in the frequency bands 5.25 GHz to 5.35 GHz and/or 5.47 GHz to 5.725 GHz. The master and client were connected using the conducted method decribed in the procedure via a series of splitters and attenuators which allows the radar signals to be injected and monitored. Where required, the FCC approved MPEG video was streamed through the master and client or an alternative method to load the channel. Configuration and status of the master and client devices were monitored and controlled through a serial/usb connection linked to a host pc. The Closing Time test was performed by starting a transmission between the Master and Client device, and then injecting the appropriate radar signals. All transmissions signals between the Master and Client in the first 200mS are allowed. After this time period, the number of transmissions signals are counted and multiplied by the pulse width value. This aggregate is then added to the 200mS allowance for the final value.

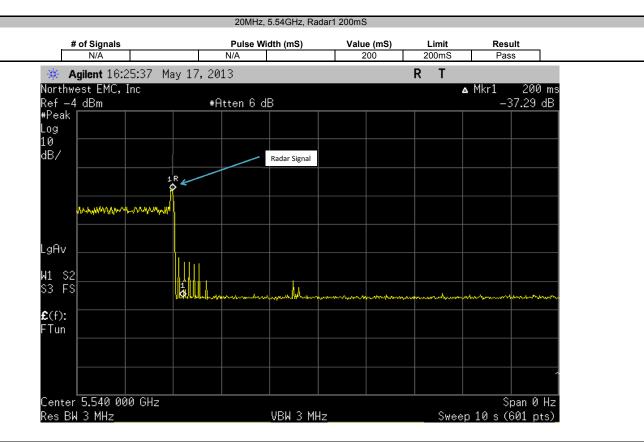


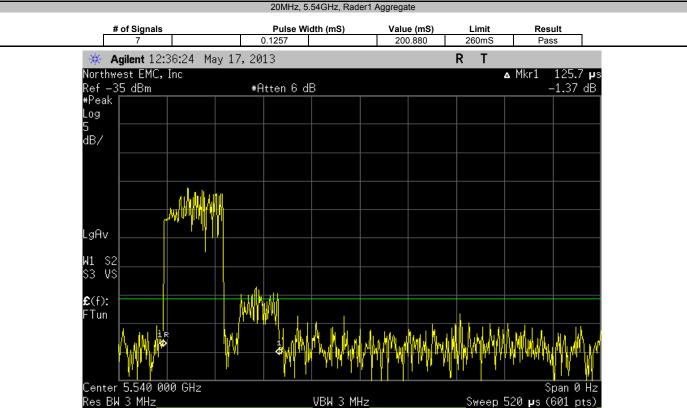
XMit 2013.02.28

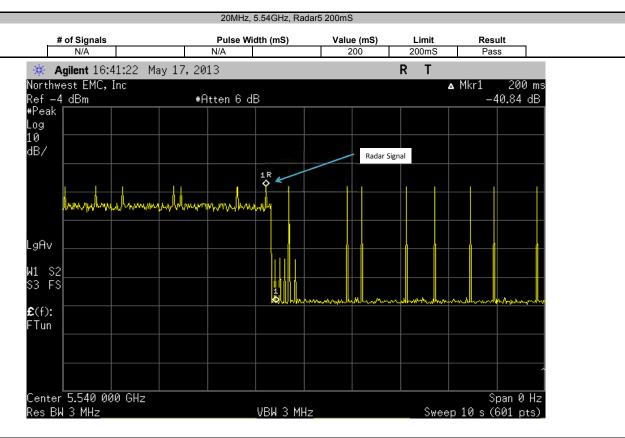
EU	T: Zoll CF Card Module				Work Order:	LGPD0094	
Serial Numbe	er: SN0024				Date:	05/17/13	
Custome	er: Logic Product Developm	ent			Temperature:	23°C	
Attendee	es: None				Humidity:	40%	
Projec	ct: None				Barometric Pres.:	1014mb	
	y: Jeremiah Darden		Power: 110V	AC/60Hz	Job Site:	OC11	
EST SPECIFICA	ATIONS		Test M	/lethod			
CC 15.407:2013			ANSI	C63.10:2009			
COMMENTS							
None							
EVIATIONS ED	OM TEST STANDARD						
	ON TEST STANDARD						
None							
lone			Jun Da				
	2	Sia	nature Juny Da				
lone		Sig	nature Juny Da				
one		Sig	nature Juny Da	Pulse Width (mS)	Value (mS)	Limit	Result
one		Sig	nature	Pulse Width (mS)	Value (mS)	Limit	Result
one onfiguration #		Sig	nature	Pulse Width (mS)	Value (mS)	Limit	Result
one onfiguration #	2		nature	Pulse Width (mS)	Value (mS)	Limit 200mS	Result
lone	2 5.3GHz	nS	# of Signals				
one	2 5.3GHz Radar1 200n	nS egate	# of Signals	N/A	200	200mS	Pass
one onfiguration #	2 5.3GHz Radar1 200n Radar1 200n	nS egate nS	# of Signals N/A 5	N/A 0.0676	200 200.338	200mS 260mS	Pass Pass
one onfiguration #	2 5.3GHz Radar1 200n Rader1 Aggr Radar5 200n	nS egate nS	# of Signals N/A 5 N/A	N/A 0.0676 N/A	200 200.338 200	200mS 260mS 200mS	Pass Pass Pass
one	5.3GHz Radar1 200n Rader1 Aggr Radar5 200n Rader5 Aggr	nS egate egate	# of Signals N/A 5 N/A	N/A 0.0676 N/A	200 200.338 200	200mS 260mS 200mS	Pass Pass Pass
one	2 5.3GHz Radar1 200n Rader1 Aggr Radar5 200n Rader5 Aggr 5.54GHz Radar1 200n	nS egate egate nS	# of Signals N/A 5 N/A 4	N/A 0.0676 N/A 0.0676	200 200.338 200 200.2704	200mS 260mS 200mS 260mS	Pass Pass Pass Pass
ione	2 5.3GHz Radar1 200n Radar5 200n Radar5 200n Radar5 Aggr 5.54GHz	nS egate nS egate nS egate	# of Signals N/A 5 N/A 4 N/A	N/A 0.0676 N/A 0.0676 N/A	200 200.338 200 200.2704 200	200mS 260mS 200mS 260mS 200mS	Pass Pass Pass Pass Pass

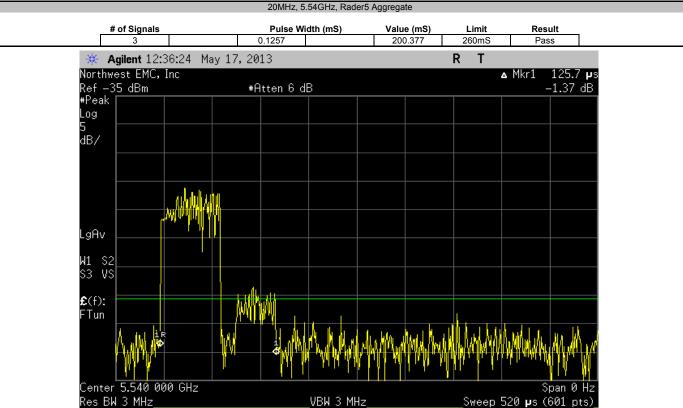







Closing Time





Closing Time

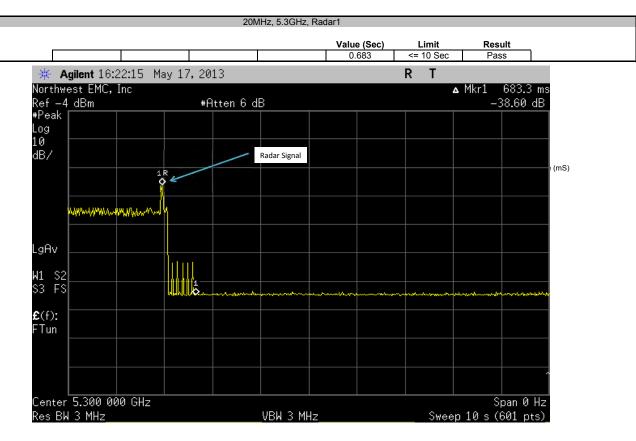
Move Time

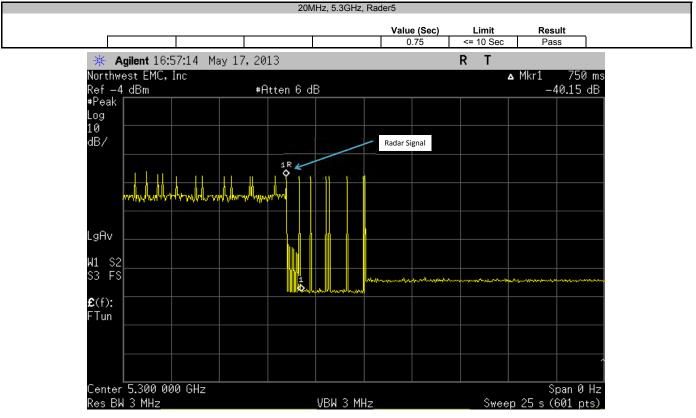
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

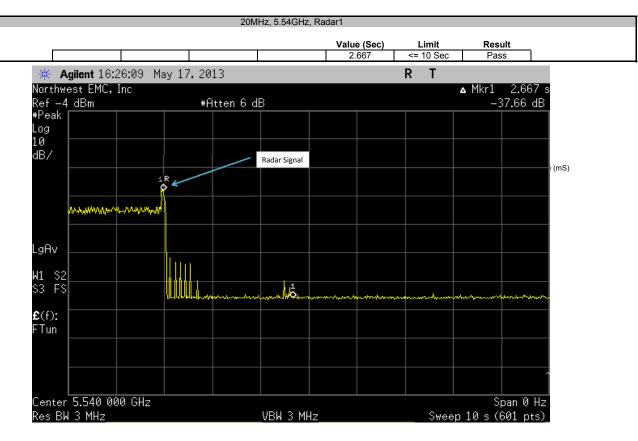
Manufacturer	Model	ID	Last Cal.	Interval
Agilent	E4440A	AFA	6/15/2012	24
S.M. Electronics	MP0208-2	None	NCR	0
S.M. Electronics	MP0208-2	None	NCR	0
Aeroflex/Weinchel	3053	26834	NCR	0
Aeroflex/Weinchel	3053	26835	NCR	0
Agilent	V2920A	TIH	NCR	0
	Agilent S.M. Electronics S.M. Electronics Aeroflex/Weinchel Aeroflex/Weinchel	AgilentE4440AS.M. ElectronicsMP0208-2S.M. ElectronicsMP0208-2Aeroflex/Weinchel3053Aeroflex/Weinchel3053	AgilentE4440AAFAS.M. ElectronicsMP0208-2NoneS.M. ElectronicsMP0208-2NoneAeroflex/Weinchel305326834Aeroflex/Weinchel305326835	AgilentE4440AAFA6/15/2012S.M. ElectronicsMP0208-2NoneNCRS.M. ElectronicsMP0208-2NoneNCRAeroflex/Weinchel305326834NCRAeroflex/Weinchel305326835NCR

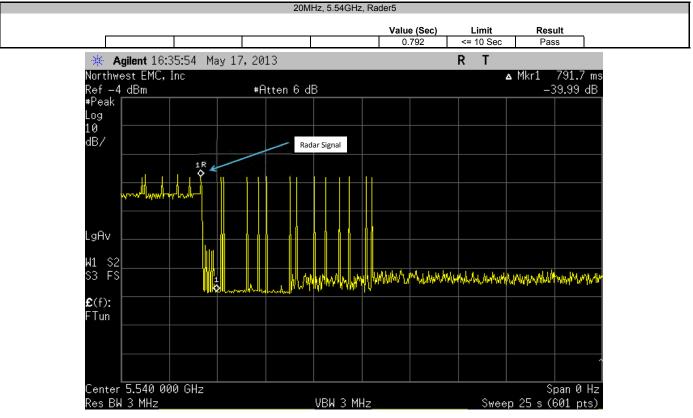
TEST DESCRIPTION


FCC KDB 905462 describes the compliance measurement procedures including acceptable instrument system configurations for performing Dynamic Frequency Selection (DFS) tests under FCC Part 15 Subpart E Rules required for Unlicensed – National Information Infrastructure (U-NII) equipment that operates in the frequency bands 5.25 GHz to 5.35 GHz and/or 5.47 GHz to 5.725 GHz. The master and client were connected using the conducted method decribed in the procedure via a series of splitters and attenuators which allows the radar signals to be injected and monitored. Where required, the FCC approved MPEG video was streamed through the master and client or an alternative method to load the chanell. Configuration and status of the master and client devices were monitored and controlled through a serial/usb connection linked to a host pc. The Move Time test was performed by starting a transmission between the Master and Slave device, and then injecting the appropriate radar signals and making sure both the Master and Slave device vacate the DFS channel.



EUT: Zoll C	F Card Module				Work Order:	LGPD0094	
Serial Number: SN002	24					05/17/13	
Customer: Logic	Product Development				Temperature:	23°C	
Attendees: None					Humidity:		
Project: None					Barometric Pres.:		
Tested by: Jerem	iiah Darden		Pow	er: 110VAC/60Hz	Job Site:	OC11	
EST SPECIFICATIONS				Test Method			
CC 15.407:2013				ANSI C63.10:2009			
OMMENTS							
one							
EVIATIONS FROM TEST	STANDARD						
EVIATIONS FROM TEST	STANDARD						
	STANDARD		L. K.				
	2 STANDARD		Jung Da				
one		Signature	Jug Da				
one		Signature	Jug Da		Value (Sec)	Limit	Result
one onfiguration #		Signature	Jug Da		Value (Sec)	Limit	Result
one onfiguration #	2	Signature	Jag Da		Value (Sec)	Limit	Result
one onfiguration #	2	Signature	Jug Da-		Value (Sec) 0.683	Limit	Result
one onfiguration #	2 Iz	Signature	yay Da-				
one onfiguration #	2 Radar1 Rader5	Signature	gay Da		0.683	<= 10 Sec	Pass
onfiguration #	2 Radar1 Rader5	Signature	yay Da		0.683	<= 10 Sec	Pass

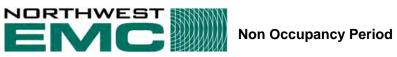

Move Time



Move Time

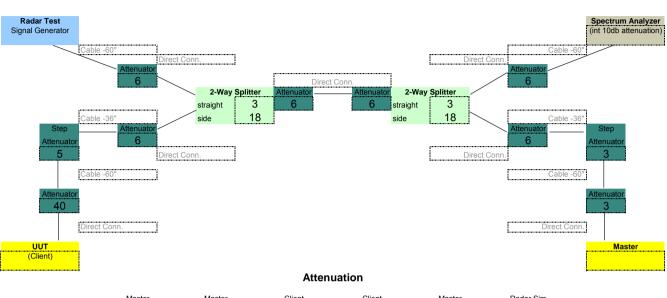
EMC

Non Occupancy Period


Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFA	6/15/2012	24
SMA Power Divider	S.M. Electronics	MP0208-2	None	NCR	0
SMA Power Divider	S.M. Electronics	MP0208-2	None	NCR	0
Step Attenuator	Aeroflex/Weinchel	3053	26834	NCR	0
Step Attenuator	Aeroflex/Weinchel	3053	26835	NCR	0
RF Vector Signal Generator	Agilent	V2920A	TIH	NCR	0


TEST DESCRIPTION

FCC KDB 905462 describes the compliance measurement procedures including acceptable instrument system configurations for performing Dynamic Frequency Selection (DFS) tests under FCC Part 15 Subpart E Rules required for Unlicensed –National Information Infrastructure (U-NII) equipment that operates in the frequency bands 5.25 GHz to 5.35 GHz and/or 5.47 GHz to 5.725 GHz. The master and client were connected using the conducted method decribed in the procedure via a series of splitters and attenuators which allows the radar signals to be injected and monitored. Where required, the FCC approved MPEG video was streamed through the master and client or an alternative method to load the channel. Configuration and status of the master and client devices were monitored and controlled through a serial/usb connection linked to a host pc. The Non Occupancy Period test was performed by starting a transmission between the Master and Client device, and then injecting the appropriate radar signals. After the channel is vacated, it is monitored for a minimum of 30 minutes to ensure the channel is not used during this time period.

	Zoll CF Card Module	Work Order:				
Serial Number:	SN0024		05/17/13			
Customer:	Logic Product Development	Temperature:	23°C			
Attendees:	None			Humidity:	40%	
Project:	None			Barometric Pres.:	1014mb	
Tested by:	Jeremiah Darden	Power:	110VAC/60Hz	Job Site:	OC11	
TEST SPECIFICATIONS Test Method						
FCC 15.407:2013			ANSI C63.10:2009			
COMMENTS						
None						
DEVIATIONS FROM TEST STANDARD						
None						
		Jus I-				
Configuration #	2	your 2-				
	Signature	0/				
				Mahaa	1 June 14	Description
				Value	Limit	Result
20MHz						
5.3GHz						
30min Non Occupancy Period				>30.5 min	>= 30 Min	Pass

Client Client Radar Sim Master Master Master Radar Sim Spec. Anal. Spec. Anal. Radar Sim Client Spec. Anal. ======= ======= ======== ======= ======= ========

1/0/1900