Touch computer RF Exposure Info None Zebra Technologies Corporation

Zebra Technologies Corporation Touch computer

See More Details For FCC ID: UZ7TC700K
Purchase on Amazon: Touch computer
Download: Touch computer RF Exposure Info None Zebra Technologies Corporation
Document DescriptionRF Exposure Appendix A-2
Document TypeRF Exposure Info
Date Submitted2017-01-10 00:00:00
Producing SoftwareFoxit PhantomPDF - Foxit Software Inc.
Document TitleNone

Document

Trouble Loading? Try Touch computer RF Exposure Info None Zebra Technologies Corporation Downloading this document.
SPORTON INTERNATIONAL INC.
TEL : 886-3-327-3456 / FAX : 886-3-328-4978
Issued Date
:
Oct. 07, 2016
FCC ID : UZ7TC75EK
Page C1 of C1
Form version.
:
160427
Report No. : FA672834
Appendix C. DASY Calibration Certificate
The DASY calibration certificates are shown as follows.
Calibration Laboratory
of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich,
Sw
itzerland
Accredited by the Swiss Accreditation Service (SAS)
The
Swiss
Accreditation
Service
is
one
of
the
signatories
to
the
EA
Multilateral Agreement
for
the
recognition
of
calibration
certificates
s Schweizerischer Kalibrierdienst
C Service suisse d'etalonnage
Servizio svizzero di taratura
S Swiss Calibration Service
Accreditation No.: SCS 0108
Client
Auden Certificate No: D2450V2-735_Dec15
I CALIBRATION CERTIFICATE
Object D2450V2 -SN: 735
Calibration procedure(s) QA CAL-05.v9
Calibration procedure for dipole validation kits above 700 MHz
Cali
br
ation dat
e:
December
10
, 2015
This calib
ra
tion certificate documents the traceability to national stan
dar
ds, which realize the physical units
of
measurements (SI).
The measuremen
ts
and the uncertainties with
co
nfidence p
ro
b
ab
ility are given on the following pages and are
pa
rt
of the certificate.
All calibrations have been conducted in the closed laboratory facilit
y:
envi
ro
nment tempera
tu
re
(22 ± 3)°C and humidity < 70%.
Calibration Equipment used (M&TE critical for calibration)
Primary Standards ID # Cal Date (Certifi
ca
te No.)
Power meter EPM-442A GB37480704 07-
0c
t-15 (No. 217
-0
2222)
Power sensor HP 8481A US37292783
07-0ct
-1
5 (N
o.
21
7-
02222)
Power sensor HP 8481 A MY41092317 07-0ct-15 (N
o.
217-02223)
Reference 20
dB
Attenuator SN: 5058 (20k) 01-Ap
r-1
5 (N
o.
217 -02131)
Type-N misma
tc
h combination SN: 5047.2 I 06327 01-Ap
r-1
5 (No. 217-02134)
Re
ference Probe EX3DV4 SN: 7349 30-Dec-
14
(No. EX3-7349_Dec14)
DAE4 SN:
601
17-Aug-15 (No. DAE4-601_Aug15)
Secondary Standa
rd
s I
D#
Check Date (in house)
RF gene
ra
tor R&S SMT-06 100972 15-Jun-1 5
(i
n house check
Ju
n-15)
Network Analyzer HP 8753E US37390585 S4206 1
8-0
ct
-0
1 (in house check Oct-15)
Name F
un
ction
Calibrated by: lsrae Elnaouq Laboratory Technician
Approved by: Kat
ja
Pokovic
Tec
hni
ca
l Manager
This calibration ce
rti
fi
cate s
ha
ll not be reproduced except in full without written approval
of
the laboratory.
Ce
rt
if
icate
No :
D2450V2
-
735
_D
ec
15
Page
1 of 8
Scheduled Calibration
Oc
t-1
6
Oc
t-1
6
Oct-16
Mar-16
Mar-16
Dec-15
Aug-16
Sc
hedu
le
d Check
In house check: Jun-18
In
house check: Oct-16
Issu
ed
: December 10, 2015
Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse
43
, 8004 Zurich, Switzerland
Accredited
by
the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one
of
the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL
ConvF
N/A
tissue simulating liquid
sensitivity
in
TSL / NORM x,y,z
not applicable or not measured
Calibration is Performed According to the Following Standards:
S Schweizerischer Kalibrierdienst
C
s
Service suisse d'etalonnage
Servizio svizzero di taratura
Swi
ss
Calibration Service
Accreditation
No
.:
SCS 0108
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-
Averaged Specific Absorption Rate (SAR)
in
the Human Head from Wireless
Communications Devices: Measurement Techniques", June 2013
b)
IEC 62209-1 , "Procedure to measure the Specific Absorption Rate (SAR) for hand-held
devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)",
February 2005
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless
communication devices used
in
close proximity to the human body (frequency range of 30
MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
Additional Documentation:
e) DASY 4/5 System Handbook
Methods Applied and Interpretation of Parameters:
Measurement Conditions: Further details are available from the Validation Report at the end
of the certificate. All figures stated
in
the certificate are valid
at
the frequency indicated.
Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
point exactly below the center marking of the flat phantom section, with the arms oriented
parallel to the body axis.
Feed Point Impedance
and
Return Loss: These parameters are measured with the dipole
positioned under the liquid filled phantom. The impedance stated
is
transformed from the
measurement at the SMA connector to the feed point. The Return Loss ensures low
reflected power. No uncertainty required.
Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
No uncertainty required.
SAR measured: SAR measured at the stated antenna input power.
SAR normalized: SAR as measured, normalized to
an
input power of 1 W at the antenna
connector.
SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the
nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement
multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage
probability of approximately 95%.
Certificate N
o:
02450V2-735_D
ec
15 Page 2 of 8
Measurement Conditions
DASY system confiquration, as far as not
~
iven on paqe 1.
DASY Version DASY5 V52.8.8
Extrapolation Advanced Extrapolation
Phantom Modular Flat Phantom
Distance Dipole Center -
TSL
10mm
with Spacer
Zoom Scan Resolution
dx
,
dy
, dz = 5 mm
Frequency 2450 MHz ± 1 MHz
Head TSL parameters
Th f
II
. d I I .
e o owing parameters an ca cu ations were
app11e
I'
d
Temperature Permittivity Conductivity
Nominal Head
TSL
parameters 22.0 °C 39.2 1.80 mho/m
Measured Head TSL parameters (22.0 ± 0.2) 0c 37.9 ± 6 % 1 .88 mho/m ± 6 %
Head
TSL
temperature change during test < 0.5 °C
----
----
SAR result with Head TSL
SAR averaged over 1
cm
3
(1
g) of Head TSL Condition
SAR measured 250 mW input power 13.4 W/kg
SAR for nominal Head
TSL
parameters normalized to 1 W 52.1 W/kg
:t:
17.0 % (k=2)
SAR
averaged over 10 cm3 (10
g)
of Head TSL condition
SAR measured 250 mW input power 6.20 W/
kg
SAR for nominal Head TSL parameters normalized to 1 W 24.4 W/kg
:t:
16.5 % (k=2)
Body TSL parameters
T
he followinq parameters and calculations were applied.
Temperature Permittivity Conductivity
Nominal Body TSL parameters 22.0 °C 52.7 1.95 mho/m
Measured Body TSL parameters (22.0 ± 0.2) °C 52.2
±6
% 2.03 mho/m ± 6 %
Body
TSL
temperature change during test < 0.5 °C
----
----
SAR result with Body TSL
SAR averaged over 1 cm3
(1
g)
of
Body
TSL
Condition
SAR measured 250 mW input power 13.3 W/kg
SAR for nominal Body TSL parameters normalized to 1 W 52.1
W/kg
:t:
17.0 % (k=2)
SAR averaged over
10
cm3 (10 g) of Body
TSL
condition
SAR measured 250
mW
input power 6.21 W/kg
SAR for nominal Body TSL parameters normalized to 1 W 24.5 W/kg
:t:
16.5 % (k=2)
Ce
rtificate N
o:
D2450V2-735_De
c1
5 Page 3 of 8
Appendix (Additional assessments outside
the
scope of SCS 0108)
Antenna Parameters with Head TSL
Impedance, transformed to feed point 56.4 Q + 5.4
jQ
Return Loss -22.1 dB
Antenna Parameters with Body TSL
Impedance, transformed to feed point 53.1 Q + 7.8
jQ
Return Loss -
21
.8 dB
General Antenna Parameters and Design
Electrical Delay (one direction) 1.152 ns
After long term use with 1
OOW
radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the
second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps
a
re
added to the dipole a
rm
s in order to improve matching when loaded according to the position as explained in the
"Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still
according
to
the Standard.
No excessive force must be applied to the dipole arms, because they might bend
or
the soldered connections near the
feedpoint may be damaged.
Additional EUT Data
Manufactured by SPEAG
Manufactured on May 07, 2003
Certificate
No
: D2450V2-
735
_D
ec
15
Pa
ge 4 of 8
DASYS Validation Report for Head TSL
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2450 MHz ; Type: D2450V2; Serial: D2450V2 -SN: 735
Communication System: UID O -
CW;
Frequency: 2450 MHz
Medium parameters used: f = 2450 MHz;
CJ=
l.88 Sim;
Sr=
37.9; p = 1000 kg/m3
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-201 l)
DASY52 Configuration:
Probe:
EX3DV4-
SN7349; ConvF(7.67, 7.67, 7.67); Calibrated: 30. 12.2014;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn601; Calibrated: 17.08.2015
Phantom: Flat Phantom 5.0 (front); Type: QDOOOP50AA; Serial: 1001
DASY52 52.8.8(1222);
SEMCAD
X 14.6.10(733
1)
Date: 10.l2.2015
Dipole Calibration for Head Tissue/Pin=250 mW, d=lOmm/Zoom Scan (7x7x7)/Cube
0:
Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference
Value=
112.7 Y/m;
Power
Drift=
0.07 dB
Peak SAR (extrapolated)= 27.9 W/kg
SAR(l
g) = 13.4 W/kg; SAR(lO g) = 6.2 W/kg
Maximum
value
of
SAR (measured) = 22.0 W/kg
dB
0
-4.80
-
9.60
-19.20
-24.00
0
dB=
22.0 W/kg = 13.42 dBW/kg
Certificate No: D2450V2-735_Dec15 Page 5
of
8
Impedance Measurement Plot for Head TSL
10
Dec
2015
14:42:
48
ln!I)
S11
*
Del
CA
Avg
16
Hld
1 U
FS
4:
56
.3'31 u 5
.4
414
u
353.48
pH
I
i
I
I
!
I
I
-
----r
----
'\
\ - -- I
-...
J
2
450.000
000
MHz
CH2
S'.11
LOG 5 d B/ REF -
20
dB 4:-
22
071
d B 2 450
000
000
M
Hz
CA
-------
---
--
i__....---
--.
----
__,/"""
~
~
V
/
'
._,/
Hi d
START 2
250
.
000
000
MHz
STOP 2
650
.
000
000
MHz
Certificate No: 0 2450V2-735_Dec15 Page 6 of 8
DASY5 Validation Report for Body TSL
Test
Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2450 MHz ;
Type
: D2450V2; Serial: D2450V2 -SN: 735
Commun
ication System: UID O - CW; Frequency:
2450
MHz
Medium
parameters used: f =
2450
MHz;
cr
= 2.03 Sim;
Er
= 52.2; p = 1000 kg/m3
Phantom sectio
n:
Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-201 l )
DASY52
Co
nfiguration:
Probe:
EX3DV4-
SN7349; ConvF(7.53, 7.53, 7.53);
Ca
librated: 30.12.2014;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4
Sn60l
; Calibrated:
17
.08.2015
Phantom: Flat Phantom
5.0
(back); Type: QDOOOP50AA; Serial: 1002
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331 )
Date: 10.12.2015
Dipole Calibration for Body Tissue/Pin=250 mW, d=lOmm/Zoom Scan (7x7x7)/Cube
0:
Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference
Value=
10
8.4 Y/m; Power Drift = 0.02 dB
Peak
SAR (extrapolat
ed)=
26.6 W/kg
SAR(l
g) = 13.3 W/kg; SAR(lO
g)
= 6.21 W/kg
Maximum value
of
SAR
(measured) = 22.0 W /kg
dB
0
·
4.80
-
9.60
-U.40
-
19.20
-24.
00
0
dB=
22.0 W/kg = 13.42 dBW/kg
Certificate No: D245
0V
2-735_De
c15
Page 7 of 8
Impedance Measurement Plot for Body TSL
[!ill
S11
*
Del
C
il
Av9
16
Hld
CH2
S11
1 U
FS
LOG
----
--
Av 9
16
Hl d
10
Dec
2015
14:42:21
4:
53.094
o 7.
8184
n
507
.
89
pH
--
--r-
----
-.
2
450.000
000
MHz
<
..
.--F
'
/ I ' '
'
'
I \
-\
·-
\
/ . ,\
I A
I
i .
-
\ . . I
'
\ \ \
..
L /
\
\ I -/
I .
' -
....
'{
i
'•
-
··-----
__
.,,.
-.l-
-
--
5
dB
/ REF
-20
dB 4
"-
21
791
dB
2
450
0
00
000
MHz
-
-
i.----
~
' 7
_,,..--
""'
/
\ I
\ I
\I
V
START 2
250
.
00
0 0
00
MHz S
TOP
2
650
.
000
000
MHz
Certificate No: D2450V
735_Dec15 Page 8 of 8
Calibration Laboratory
of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
Accredited
by
the Swiss Accreditation Service (SAS)
The Swiss Accreditation Servi
ce
is
one
of
the signatories to the EA
Multilateral Agreement for the recognition
of
calibration certificates
s Schweizerischer Kalibrierdienst
C Service suisse d'etalonnage
Servi
zio
sv
izzero di taratura
S Swiss
Ca
libration Service
Accreditation No.:
SCS
0108
Client Sporton-TW (Auden) Certificate No: 05GHzV2-1128_Jul16
CALIBRATION CERTIFICATE
Object 05GHzV2 -SN:1128
Calibration procedure(s)
QA
CAL-22.v2
Calibration procedure for dipole validation kits between 3-6 GHz
Calibration date: July 27, 2016
This calibration certificate documents the traceability
to
national standards, which realize the physical units
of
measurements (SI).
The
measurements and the uncertainties with confidence probability are given on the following pages and are part
of
the certificate.
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.
Calibration Equipment used (M&
TE
critical for calibration)
Pr
imary Standards
ID#
Cal Date (Certificate No.) Scheduled Calibration
Power meter NAP SN: 104778 06-Apr-16 (No. 217-02288/02289) Apr-17
Power sensor NRP-Z91 SN: 103244 06-Apr-16 (No. 217-02288) Apr-17
Power sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) Apr-17
Reference
20
dB Attenua
to
r SN: 5058 (20k) 05-
Apr
-16 (No. 217-02292) Apr-17
Type-N mismatch combination SN: 5047.2 / 06327 05-Apr-16 (No. 217-02295) Apr-17
Reference Probe EX3DV4 SN: 3503 30-Jun-16 (No. EX3-3503_Jun16) Jun-17
DAE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Dec-16
Secondary Standards
ID#
Check Date (in house) Scheduled Check
Power meter EPM-442A SN: GB37480704 07-0ct-15 (No. 217-02222) In house check: Oct-
16
Power sensor
HP
8481A SN: US37292783 07-0ct-15 (No. 217-02222) In house check: Oct-
16
Power sensor
HP
8481A SN: MY41092317 07-
0ct-15
(No. 217-02223) In house check: Oct-16
RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Jun-15) In house check: Oct-16
Network Analyzer
HP
8753E SN: US37390585 18-0ct-01 (in house check Oct-15) In house check: Oct-
16
Name Function
s~
Calibrated by: Claudio Leubler Laboratory Technician
Approved by: Katja Pokovic Technical Manager
#~
Issued:
July
27, 2016
This calibration certificate shall not be reproduced except in full without written approval
of
the laboratory.
Certificate No: D5GHzV2-1128_Jul16 Page 1
of
13
I
Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich,
Sw
itzerland
Accredited by
the
Swiss Accreditation Service (SAS)
The Swiss Accreditation
Se
rvice is
one
of
the signatories to the EA
Multilateral Agreement
for
the recognition
of
calibration certificates
Glossary:
TSL
ConvF
N/A
tissue simulating liquid
sensitivity in TSL / NORM x,y,z
not applicable
or
not measured
Calibration is Performed According to the Following Standards:
$ Schweizerischer Kalibrierdienst
C Service suisse d'etalonnage
Servizio svizzero di taratura
s Swiss Calibration Service
Accreditation
No.:
SCS
0108
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-
Averaged Specific Absorption Rate (SAR)
in
the Human Head from Wireless
Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless
communication devices used in close proximity to the human body (frequency range
of
30
MHz to 6 GHz)", March 2010
c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
Additional Documentation:
d) DASY 4/5 System Handbook
Methods Applied and Interpretation of Parameters:
Measurement Conditions: Further details are available from the Valid
at
ion Report
at
the end
of
the certificate. All figures stated in the certificate are valid
at
the frequency indicated.
Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
point exactly below the center marking
of
the flat phantom section, with the arms oriented
parallel to the body axis.
Feed Point Impedance
and
Return Loss: These parameters are measured with the dipole
positioned under the liquid filled phantom. The impedance stated is transformed from the
measurement
at
the SMA connector to the feed point. The Return Loss ensures l
ow
reflected power. No uncertainty required.
Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
No uncertainty required.
SAR measured: SAR measured at the stat
ed
antenna input power.
SAR normalized: SAR as measured, normalized to an input power
of
1
Wat
the antenna
connector.
SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the
nominal SAR result.
The reported uncertainty of measurement is stated as the standa
rd
uncertainty
of
measurement
multiplied by the coverage factor k=2, which for a normal distribution corresponds
to
a coverage
probability
of
approximately 95%.
Certificate No: 05GHzV2-1128_Jul16 Page 2 of 13
Measurement Conditions
DASY f f f
sys
em
con
1Qura
10n,
as ar as not
~
1ven
on page
DASY Version DASYS V52.8.8
Extrapolation Advanced Extrapolation
Phantom Modular Flat Phantom V5.0
Distance Dipole Center -TSL 10 mm with Spacer
Zoom Scan Resolution dx, dy = 4.0 mm, dz = 1.4 mm Graded
Ratio=
1.4 (Z direction)
5250
MHz±
1 MHz
Frequency 5600 MHz ± 1 MHz
5750 MHz ± 1 MHz
Head TSL parameters at 5250 MHz
Th
f
II
. d I I .
I"
d
e o
ow
i
ng
parameters an ca cu
at1ons
were
app11e
Temperature Permittivity Conductivity
Nominal Head TSL parameters 22.0 °C 35.9 4.
71
mho/m
Measured Head
TSL
parameters (22.0 ± 0.2) °C
34
.4
±6
% 4.52 mho/m ± 6 %
Head TSL temperature change during test < 0.5 °C
---- ----
SAR result with Head TSL
at
5250 MHz
SAR averaged over 1
cm
3
(1
g)
of
Head
TSL
Condition
SAR measured
100
mW input power 7.87 W/kg
SAR for nominal Head
TSL
parameters normalized to 1 W 77.9 W/kg ±
19
.9 % (k=
2)
SAR averaged over 10
cm
3 (10
g)
of
Head
TSL
condition
SAR measured
100
mW input power 2.27 W/kg
SAR for nominal Head
TSL
parameters normalized to 1 W
22
.4 W/kg ± 19.5 % (k=2)
Certificate No: D5GHzV2-1128_Jul16 Page 3 of
13
Head TSL parameters
at
5600 MHz
The following parameters and calculations were applied.
Temperature Permittivity Conductivity
Nominal Head TSL parameters 22.0
°c
35.5 5.07 mho/m
Measured Head
TSL
parameters (22.0 ± 0.2) 0c 33.9
±6
% 4.
86
mho/m ± 6 %
Head
TSL
temperature change during test < 0.5
°C
--
--
----
SAR result with Head TSL at 5600 MHz
SAR averaged over 1 cm3
(1
g)
of
Head TSL Condition
SAR measured
100
mW input power
8.21
W/kg
SAR for nominal Head
TSL
parameters normalized to
1W
81.2 W
/kg±
19.9 % (k
=2
)
SAR averaged over
10
cm3
(1
O g)
of
Head TSL condition
SAR measured
100
mW
input power 2.36 W/kg
SAR for nominal Head TSL parameters normalized
to
1 W 23.3 W/kg ± 19.5 % (k=2)
Head TSL parameters at 5750 MHz
The
following parameters and calculations were applied
Temperature Permittivity Conductivity
Nominal Head
TSL
parameters 22.0
°c
35.4 5.22 mho/m
Measured Head TSL parameters (22.0 ± 0.2) 0c 33.7 ± 6 % 5.02 mho/m ± 6 %
Head TSL temperature change during test < 0.5
°C
----
----
SAR result with Head TSL at 5750 MHz
SAR averaged over 1 cm3
(1
g)
of
Head
TSL
Condition
SAR measured
100
mW input power 7.92 W/kg
SAR for nominal Head
TSL
parameters normalized to 1 W 78.3 W/kg ± 19.9 %
(k
=2)
SAR averaged over
10
cm3 (10
g)
of
Head TSL condition
SAR measured
100
mW input power 2.27 W/kg
SAR for nominal Head
TSL
parameters normalized
to
1 W 22.4 W/kg ± 19.5 % (k=2)
Certificate No: D5GHzV2-1128_Jul16 Page 4 of
13
Body
TSL
parameters at 5250 MHz
Thfll.
d
11·
l"d
e o owing parameters an
ca
cu
at1ons
were app
1e
Temperature Permittivity Conductivity
Nominal Body TSL parameters 22.0
°C
48.9 5.36 mho/m
Meas
ur
ed Body
TSL
parameters (22.0 ± 0.2)
°C
47.1
±6
% 5.42 mho/m ± 6 %
Body T
SL
temperature change during test < 0.5 °C _
......
...
----
SAR result with Body
TSL
at 5250 MHz
SAR averaged over 1 cm3
(1
g) of Body TSL Condition
SAR measured 100 mW input power
7.51
W/kg
SAR for nominal Body TSL parameters normalized to 1 W 74.5 W/kg ± 19.9 % (k
=2
)
SAR averaged over 1 O cm3
(1
O g)
of
Body TSL condition
SAR measured 100 mW input power 2.12 W/kg
SAR for nominal Body TSL parameters normalized
to
1 W 21.0 W/kg
:1:
19
.5 % (k
=2
)
Body
TSL
parameters at 5600 MHz
Th
f
II
. d I I
e o owing parameters an
ca
cu ations were applied.
Temperature Permittivity Conductivity
Nominal Body TSL parameters 22.0 °C 48.5 5.77 mho/m
Measured Body TSL parameters (22.0 ± 0.2) 0c 46.5
±6
% 5.
88
mho/m ± 6 %
Body
TSL
temperature change during t
es
t < 0.5 °C
----
----
SAR result with Body
TSL
at
56
00 MHz
SAR averaged over 1 cm3
(1
g)
of
Body
TSL
Condition
SAR measured 100 mW input power 7.86 W/kg
SAR
for
nominal Body TSL parameters normalized to 1 W 78.0 W/kg ± 19.9 % (k=
2)
SAR averaged over 1 O cm3 (10
g)
of
Body TSL condition
SAR measured 100 mW input power 2.
21
W/kg
SAR
for
nominal Body TSL parameters normalized to 1 W 21.9 W/kg ± 19.5 %
(k
=2
)
Certificate No: D5GHzV2-1128
_J
ul16 P
age
5 of
13
B
ody
TSL parameters at 5750 MHz
Thfll'
t
dl
l f
I'd
e o owing parame ers an
ca
cu a ions were app ,e
Temperature Permittivity Conductivity
Nomi
na
l Body
TS
L parameters 22.0 °c 48.3 5.94 mho/m
Measured Body TSL parameters (22.0 ± 0.2) °C
46
.2
±6
% 6.
11
mho/m ± 6 %
Body TSL temperature change during test < 0.5 °C --
--
-
---
SAR r
es
ult with Body
TS
L at 5750 MHz
SAR averaged over 1 cm3
(1
g) of Body
TS
L Condition
SAR measured
100
mW
input power 7.67
W/kg
SAR for nominal Body
TSL
parameters normalized to 1 W
76
.1 W/kg ± 19.9 % (k=2)
SAR averaged over
10
cm3
(1
O g) of Body TSL condition
SAR measured
100
mW
input power 2.14 W/kg
SAR for nominal Body TSL parameters normalized to 1 W 21.2 W/kg
:t
19.5 % (k=
2)
Certificate No: D5GHzV2-1128 Jul16 Page 6 of 13
Appendix (Additional assessments outside the scope of SCS 0108)
Antenna Parameters with Head TSL at 5250 MHz
Impedance, transformed
to
fe
ed
po
i
nt
51
.6 Q - 3.0
jQ
Return Loss -
29
.5
dB
Antenna Parameters with Head TSL at 56
00
MHz
Impedance, transformed
to
feed point 56.1 Q +
1.7
jQ
Return Loss -24.6
dB
Antenna Parameters with H
ea
d TSL at 5750 MHz
Impedance, transformed
to
feed point 53.9 Q + 3.2
jQ
Return Loss -
26
.2
dB
Antenna Parameters with Bo
dy
TSL at 5250 MHz
Impedance, transformed
to
feed point
49.8
Q - 1.3
jQ
Return Loss - 37.6
dB
Antenna Parameters with Bo
dy
TSL at 56
00
MHz
Impedance, transformed
to
feed point 57.4 Q + 1.9
jQ
Return Loss -23.0
dB
Antenna Parameters with Bo
dy
TSL at 5750 MHz
Impedance, transformed
to
feed point
54
.8 Q + 2.6
jQ
Return Loss -
25
.6
dB
General Antenna Parameters and Design
Electrical Delay (one direction) 1.203 ns
After long term use with 1
OOW
radiated power,
only
a slight warming
of
the
dipo
le
near
the feedpoint can
be
measured.
The
dipole is made
of
standard semirigid coaxial cable. T
he
center
conductor
of
the
feeding line is directly connected
to
the
second arm
of
the dipole.
The
ante
nna
is therefore short-circuit
ed
for
DC-signals.
On
some
of
the
dipoles, small end
caps
are added
to
the
dipole arms in order
to
improve matching when loaded according
to
the position as explained in
the
"Measurement Conditions" paragraph.
The
SAR
data are not affected
by
this change.
The
overall dipole length is sti
ll
according
to th
e Standard.
No
excessive force must be applied to the dipole arms, because th
ey
might bend
or
the
soldered connecti
ons
near the
feedpoint may
be
damaged.
Additional EUT Data
Manufactured
by
SPEAG
Manufactured on September 08, 2011
Certificate No: D5GHzV2-1128_Jul16 Page 7 of 13
DASY5 Validation Report for Head TSL
Date: 27.07.2016
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 -SN:1128
Communication System: UID O - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz
Medium parameters used: f = 5250 MHz;
cr
= 4.52 Sim; tr = 34.4; p = 1000 kg/m3
Medium parameters used: f = 5600 MHz;
cr
= 4.86 Sim; Sr= 33.9; p = 1000 kg/m3
Medium parameters used: f = 5750 MHz;
cr
= 5.02 Sim;
tr
= 33.7; p = 1000 kglm3
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEEIIECIANSI C63.19-201
l)
DASY52 Configuration:
Probe: EX3DV4 -SN3503; ConvF(5.42, 5.42, 5.42); Calibrated: 30.06.2016, ConvF(4.89, 4.89,
4.89); Calibrated: 30.06.2016, ConvF(4.85, 4.85, 4.85); Calibrated:
30
.06.2016;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn601; Calibrated: 30.12.2015
Phantom: Flat Phantom 5.0 (front); Type:
QDOOOP50AA;
Serial: 1001
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)
Dipole Calibration for Head Tissue/Pin=
lOOmW,
dist=lOmm, f=5250 MHz/Zoom Scan,
dist=l.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz= 1.4mm
Reference Value = 73.50 Vim; Power
Drift=
0.00
dB
Peak SAR (extrapolated) = 28.9 W/kg
SAR(l
g) = 7.87 W/kg; SAR(lO g) = 2.27 W/kg
Maximum value
of
SAR
(measured) = 18.1
Wlkg
Dipole Calibration for Head Tissue/Pin=
lOOmW,
dist=lOmm, f=5600 MHz/Zoom Scan,
dist=
l.4mm
(8x8x7)/Cube 0: Measurement grid:
dx
=4mm, dy=4mm,
dz=l.4mm
Reference Value = 73.
50
Vim; Power
Drift=
0.00 dB
Peak
SAR
(extrapol
ated)=
32.4
Wlkg
SAR(l
g) = 8.21 W/kg; SAR(lO
g)
= 2.36 W/kg
Maximum value
of
SAR (measured) = 19.6 W/kg
Dipole Calibration for Head Tissue/Pin=
lOOmW,
dist=lOmm, f=5750 MHz/Zoom Scan,
dist=
l.4mm
(8x8x7)/Cube 0: Measurement grid:
dx
=4mm, dy=4mm, dz=l .4mm
Reference Value = 71.33 Vim; Power Drift = 0.
01
dB
Peak SAR (extrapolated)= 32.0
Wlkg
SAR(l
g) = 7.92 W/kg; SAR(lO g) = 2.27 W/kg
Maximum value
of
SAR
(measured)= 19.0 W/kg
Certificate No: D5GHzV2-1128_Jul16 Page 8
of
13
dB
0
-5.
00
-
10
.00
-15.00
-20.00
-25.00
0 dB = 18.1
W/kg
= 12.58 dBW/kg
Certificate No: D5GHzV2-1128_Jul16 Page 9
of
13
Impedance Measurement Plot for H
ea
d TSL
[E1J
S
11
*
Del
Hld
CH
2 S
11
c.:i
Hld
27 Jul
20
1 6 1
0:45:46
1 U FS 1:
51.548
il
-2
.9
7
45
il
10
.
191
pF
5
250.000
000
MHz
1
l -,-
~ 5
dB
/ REF
-20
~dB 1
:-
29.50~
dB
5
_750
.
000
~
000
M
Hz
LOG T
.,.
T
- ~
--
-
---
-
-----
--
-+
-
_..
--
-~
--
-
---~
START 5
000.000
000
MHz
STOP 5
000
.
000
000
MHz
Certificate No: D5GHzV2-1128_Jul16 Page
10
of
13
CH1
Marker
s
2:
56
.
055
fl
1.
5719
il
5.50000
GH
z
3:
5:3.
'345
(,!
3.
2109
(,!
5.
75000
GHz
CH2
Markers
2:
-24.550
dB
5.
60000
G
Hz
3
:-
26.209
dB
5.75000
GH
z
DASYS Validation Report for Body
TSL
Date: 26.07.2016
Test Laboratory: SPEAG, Zurich, Switzerland
OUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 -SN:1128
Communication System: UID
0-
CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz
Medium parameters used: f = 5250 MHz;
a=
5.42 Sim;
tr
= 47.1; p = 1000 kg/m3
Medium parameters used: f = 5600 MHz;
a=
5.88 Sim;
tr
= 46.5; p = 1000 kg/m3
Medium parameters used: f = 5750 MHz; a = 6.
11
Sim;
tr
= 46.2; p = 1000 kg/m3
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:
Probe: EX3DV4 -SN3503; ConvF(4.85, 4.85, 4.85); Calibrated: 30.06.2016, ConvF(4.35, 4.35,
4.35); Calibrated: 30.06.2016, ConvF(4.3, 4.3, 4.3); Calibrated: 30.06.2016;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn601; Calibrated: 30.12.2015
Phantom: Flat Phantom 5.0 (back); Type:
QDOOOP50AA;
Serial: 1002
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)
Dipole Calibration for Body Tissue/Pin=
lOOmW,
dist=lOmm, f=5250MHz/Zoom Scan,
dist=
l.4mm
(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=
l.4mm
Reference Value = 67.75 V/m; Power Drift = -0.01 dB
Peak SAR (extrapolated) = 28.4 W/kg
SAR(l
g)
= 7.51 W/kg; SAR(lO
g)
= 2.12 W/kg
Maximum value
of
SAR ( measured) =
17
.5
W /kg
Dipole Calibration for Body Tissue/Pin=
lOOmW,
dist=lOmm, f=5600 MHz/Zoom Scan,
dist=l.4mm (8x8x7)/Cube 0: Measurement grid:
dx
=4mm, dy=4mm, dz=
l.4mm
Reference
Value=
67.02 V/m; Power
Drift=
-0.04 dB
Peak
SAR
(extrapolated) = 32.5 W/kg
SAR(l
g)
= 7.86 W/kg; SAR(lO
g)
= 2.21 W/kg
Maximum value
of
SAR
(measured)= 18.7 W/kg
Dipole Calibration for Body Tissue/Pin=
lOOmW,
dist=lOmm, f=5750 MHz/Zoom Scan,
dist=l.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,
dz=l.4mm
Reference Value = 65.29 V/m; Power
Drift=
-0.02 dB
Peak
SAR
(extrapolat
ed)=
33.1 W/kg
SAR(l
g)
= 7.67 W/kg; SAR(lO
g)
= 2.14 W/kg
Maximum value
of
SAR (measured) = 18.5 W/kg
Certificate No: D5GHzV2-1128_Jul16 Page
11
of
13
dB
0
-5.00
-10.
00
-15.00
-20.
00
-25.
00
0 dB = 18.5 W/kg = 12.67 dBW
/kg
Certificate No: D5GHzV2-1128_Jul16 Page 12
of
13
Impedan
ce
M
eas
urement Plot for Bo
dy
TSL
25
Jul
2015
18:07:48
[lill
S
11
1 U FS
1:
49.
838
~
- 1.3
10
5
{l
23.132
p F 5
250
.
000
000
MH
z
*
De l
Cor
Hld
CH2 S
11
Cor
Avg
16
H
ld
,-
LOG
~5
dB
/ REF -
20
jB
+
Certificate No: D5GHzV2-1128_Jul16
t
1:-
3
7.
5
55
dB
5 )
50.
0
00
000
MHz
_,_
___
_._
___
_,_
-
STOP
5
000
.
000
00
0
MHz
Page 13
of
13
CH1
Marker
s
2:
57
e3
89
fl
1
.9
1 02
{l
5.
6
0000
GHz
3:
54
.
845
~
2.
5211
r,
5
.75000
GH
z
CH2
Marke
r s
2:-22.955
dB
5.50000
GHz
3:
-2
5. 5 85
dB
5.75000
G
Hz
Calibration Laboratory
of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
Accredited by the Swiss Accreditation Service (SAS)
The
Swiss
Accreditation Servi
ce
is
one
of
the
signatories
to
the
EA
Multilateral Agreement
for
the
recognition
of
calibration
certificates
C
li
ent
Sporton
-TW
(Auden)
CALIBRATION CERTIFICATE
Object DAE3 -SD 000
003
AD -SN: 495
Calibration procedure(s)
QA
CAL-06.v29
s
Schweizerischer Kalibrierdienst
C Service suisse d'etalonnage
Servizio svizzero
di
taratura
S
Swiss Calibration Service
Accreditation
No
.:
SCS
0108
Certificate
No:
DAE3
-495
_May16
Calibration procedure for
the
data acquisition electronics (DAE)
Calibration date:
May 27, 2016
This calibration certificate documents the traceability
to
national standards, which realize the physical units of measurements (SI).
The
measurements and the uncertainties with confidence probability are given on
the
following pages and
are
part
of
the certificate.
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3}°C and humidity < 70%.
Calibrati
on
Equipment used (M& TE critical for calibration)
Primary Standards
Keithley Multimeter Type 2001
Secondary Standards
j SN: 0810278
ID#
Cal Date (Certificate No.)
09-Sep-15 (No:17153)
Check Date (in house)
Auto
DAE
Calibration Unit
Ca
librator Box V2.1
SE UWS 053
AA
1001 05-Jan-16 (in house check)
SE UMS 006
AA
1002 05-Jan-16 (in house check)
Calibrated by:
Approved by:
Name
R.Mayoraz
Fin B
om
holt
Function
Te
chnician
Deputy Technical Manager
This
ca
libration certificate shall not be reproduced except in full without written approval of
the
laboratory.
Certificate No: DAE3-495_May16 Page 1 of 5
Scheduled Calibration
Sep-16
Scheduled Check
In house check: Jan-17
In house check: Jan-17
Signature
Issued: May
27
, 2016
Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
Accredited
by
the Swiss Accreditation Service (SAS)
The
Swiss
Accreditation Service
is
one
of
the
signatories
to
the
EA
Multilateral Agreement
for
the
recognition
of
calibration
certificates
Glossary
DAE data acquisition electronics
S Schweizerischer
Kalibrierdienst
C
s
Service
suisse
d'etalonnage
Servizio svizzero
di
taratura
Swiss
Calibration Service
Accreditation No.:
SC$
0108
Connector angle information used in DASY system to align probe sensor X to the robot
coordinate system.
Methods Applied and Interpretation of Parameters
DC
Voltage Measurement: Calibration Factor assessed for use in DASY system
by
comparison with a calibrated instrument traceable to national standards.
The
figure given
corresponds to the full scale range
of
the voltmeter in the respective range.
Connector angle: The angle
of
the connector is assessed measuring the angle
mechanically
by
a tool inserted. Uncertainty is not required.
The
following parameters
as
documented in the Appendix contain technical information as a
result from the performance test and require no uncertainty.
DC
Voltage Measurement Linearity: Verification of the Linearity
at
+
10%
and -10%
of
the nominal calibration voltage. Influence
of
offset voltage is included in this
measurement.
Common mode sensitivity: Influence
of
a positive
or
negative common mode voltage on
the differential measurement.
Channel separation: Influence of a voltage on the neighbor channels not subject to an
input voltage.
AD
Converter Values with inputs shorted: Values on the internal AD converter
corresponding to zero input voltage
Input Offset Measurement Output voltage and statistical results over a large number
of
zero voltage measurements.
Input Offset Current: Typical value for information; Maximum channel input offset
current, not considering the input resistance.
Input resistance: Typical value for information: DAE input resistance
at
the connector,
during internal auto-zeroing and during measurement.
Low
Battery Alarm Voltage: Typical value
for
information. Below this voltage, a battery
alarm signal is generated.
Power consumption: Typical value for information. Supply currents in various operating
modes.
Certificate No: DAE3-495_May16 Page 2
of
5
DC Voltage Measurement
AID -Converter Resolution nominal
High Range: 1LSB =
6.1µV,
full range = -100 ... +300 mV
Low Range: 1 LSB =
61
nV , full range =
-1
....... +3mV
DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec
Calibration Factors X y
z
High Range 404.392
±
0.0
2%
(k=2) 405.369
±
0.02% (k=2) 405.725
±
0.02% (k=2)
Low
Range 3.95295
±
1.50% (k=2) 3.99096
±
1.50% (k=2) 3.96580
±
1 .
50%
(k=
2)
Connector Angle
Connector Angle
to be used in DASY system 78.0
°
±
1
°
Certificate
No:
DAE3
-495_May16 Page 3 of 5
Appendix (Additional assessments outside the scope of SCS0108)
1. DC Voltaae Linearity
High Range Reading (µV) Difference (µV) Error(%)
Channel X + Input 199996.62 1.58 0.
00
ChannelX + Input 20000.74 -0.12 -0.00
ChannelX -Input -19996.44 4.
68
-0.02
ChannelY + Input 199995.94 1.53 0.00
Channe
lY
+ Input 20002.54 1.56 0.01
ChannelY -Input -19999.75 1.29 -0.01
Channel Z + Input 199992.83 -1.82 -0.00
ChannelZ
+ Input 20002.61 1.74 0.01
Channe
lZ
-Input -19998.46 2.69 -0.
01
Low Range Reading (µV) Difference (µV) Error(%)
Channe
lX
+ Input 2001.48 0.75 0.04
Channe
lX
+ Input 201.55 0.46 0.23
Channe
lX
-Input -198.32 0.30 -0.
15
ChannelY + Input 2000.13 -0.57 -0.
03
Ch
annelY
+ Input 200.91 -0.45 -0.
22
ChannelY -Input -199.30 -0.77 0.39
Channel Z + Input 1999.63 -0.96 -0.
05
ChannelZ
+ Input 200.82 -0.44 -0.22
ChannelZ
-Input -199.88 -1.27 0.64
2. Common mode sensitivity
DASY measurement parameters· Auto Zero Time· 3 sec· Measuring time· 3
sec
'
Common mode High Range Low Range
Input Voltage (mV) Average Reading (µV) Average Reading (µV)
Channe
lX
200
3.
18
2.27
-
200
-2.
19
-3.80
ChannelY
200
0.69 0.05
-200 -0.39 -0.92
Channel Z 200 2.28 2.22
-
200
-4.44 -4.68
3. Channel separation
DASY measurement parameters: Auto Zero Time: 3 sec; Measurina time: 3
sec
Input Voltage (mV) Channel X
V) Channel Y (µV) Channel Z (µV)
ChannelX
200
--0.76 -
2.16
ChannelY
200
7.44 --0.52
ChannelZ
200
5.77 5.68 -
Certificate No: DAE3-495_May16 Page 4 of 5
4. AD-Converter Values with inputs shorted
DASY A
T
M measurement parameters: uto Zero
1me:
3 sec; easuring time: 3 sec
High Range (LSB) Low Range (LSB)
ChannelX
15817 17431
ChannelY
15765 17509
Channel Z
15903 17029
5.
Input Offset Measurement
DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec
Input 10MQ
Average (µV) min. Offset (µV) max. Offset
V) Std. Deviation
(µV)
Channe
lX
-0.1 5 -1.92 1.72 0.56
Channe
lY
0.33 -0.86 2.13 0.60
Channe
ll
-1.62 -2.91 -0.07 0.62
6.
Input Offset Current
Nominal Input circuitry offset current on all channels: <25fA
7. I
R
nput es1stance
(Typical values for information)
Zeroing (kOhm) Measuring (MOhm)
ChannelX
200 200
Channel Y
200 200
Channel Z
200 200
8. L
ow
B atterv Al arm
VI
o taqe
(Typical values for information)
Typical values Alarm Level (VDC)
Supply(+ Vee)
+7.9
S
upply(
· Vee)
-7.6
9. P C
ower
onsumpt1on
(Tvpi
ca
l
va
lues for information)
Typical values Switched off (mA) Stand by (mA) Transmitting (mA)
S
upply(+
Vee)
+0.01 +6 +14
Supply (- Vee)
--0.01 -8 -9
Certificate No: DAE3-495_May16 Page 5 of 5
Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
Accredited by the Swiss Accreditation Service (SAS)
The
Sw
i
ss
Accreditation
Service
is
one
of
the
signatories
to
the
EA
Multilateral Agreement
for
th
e
recognit
i
on
of
calibration
certificates
Client Sporton
-TW
(Auden)
CALIBRATION CERTIFICATE
Object
DAE
4-
SD
000
D04
BM -SN:
778
Calibration procedure(s)
QA
CAL-06.v29
s
Schweizerischer
Kali
brierd
i
enst
C
Service
suisse
d'etalonnage
Servizio
sv
izzero
di
taratura
S
Swiss
Ca
li
bration
Service
Accreditation
No.:
SCS 0108
Certificate
No:
DAE4-n8_May1
6
Calibration procedure
for
the
data
acquisition electronics (DAE)
Calibration date:
May
12, 2016
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conducted in the closed laboratory facility: environment temperature (22
± 3)°C and humidity
< 70%.
Calibration Equipment used (M&TE critical for calibration)
Primary Standards Cal Date (Certificate No.)
Keithley Multimeter Type
2001
J
SN: 0810278 09-Sep-15 (No:
17
153)
Secondary Standards
Auto DAE Calibration Unit
Calibrator Box
V2.1
Calibrated by:
Approved by:
ID#
Check Date (in house)
SE UWS 053 AA
1001
05-Jan-16 (in house check)
SE
UMS 006
AA
1002 05-Jan-16 (in hou
se
check)
Name
Dominique Steffen
Fin Bomholt
Function
Technician
Deputy Technical Manager
This calibration certificate shall not
be
re
produced except in fu
ll
without written approval of the laboratory.
Certificate No: DAE4-778_May
16
Page 1
of
5
Scheduled Calibration
Sep-16
Scheduled Check
In house check: Jan-17
In house check: Jan
-1
7
Signature
Issued: May 12, 2016
Calibration Laboratory
of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
Accredited
by
the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is
one
of
the
signatories to the EA
Multilateral Agreement
for
the recognition
of
calibration certificates
Glossary
DAE
data
acquisition electronics
S
Schweizerischer
Kalibrierdienst
C
s
Service
sulsse
d'etalonnage
Servizio svizzero di taratura
Swiss Calibration Service
Accreditation No.:
SCS
0108
Connector angle information used in DASY system
to
align probe
sensor
X
to
the
robot
coordinate system.
Methods Applied and Interpretation of Parameters
DC
Voltage Measurement:
Calibration Factor assessed
for
use in
DASY
system
by
comparison with a calibrated instrument traceable
to
national standards.
The
figure given
corresponds
to
the full scale range of the voltmeter in the respective range.
Connector angle:
The
angle
of
the connector is assessed measuring the angle
mechanically
by
a tool inserted. Uncertainty is
not
required.
The
following parameters as documented in the Appendix contain technical information
as
a
result from the performance test and require no uncertainty.
DC
Voltage Measurement Linearity:
Ver
ification of the Linearity
at
+10%
and -10%
of
the nominal calibration voltage. Influence of offset voltage is included in this
measurement.
Common mode sensitivity:
Influence
of
a positive
or
negative common
mode
voltage
on
the differential measurement.
Channel separation:
Influence
of
a voltage
on
the neighbor channels
not
subject to
an
input voltage.
AD
Converter Values with inputs shorted:
Values on the internal AD converter
corresponding
to
zero input voltage
Input Offset Measurement
Output voltage
and
statistical results over a large
number
of
zero voltage measurements.
Input Offset Current:
Typical value
for
information; Maximum channel input offset
current, not considering
the
input resistance.
Input resistance:
Typical value for information: DAE input resistance
at
the connector,
during internal auto-zeroing and during measurement.
Low
Battery Alarm Voltage:
Typical value for information. Below this voltage, a battery
alarm signal is generated.
Power consumption:
Typical value for information. Supply currents in various operating
modes.
Certificate No: DAE4-
778
_May16 Page 2
of
5
DC Voltage Measurement
AID -Converter Resolution nominal
High Range: 1
LS8
=
6.1µV,
full
range=
-100 ... +300 mV
Low Range: 1 LSB =
61
nV , full
range=
-1
..
..... +3mV
DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec
Calibration Factors X
y
z
High Range 404.712 ± 0.
02%
(k=2) 403.516 ± 0.02% (k=2) 405.068 ±
0.02%
(k=2)
Low
Range 3.98678 ± 1.50% (k=2) 3.96495 ± 1.50% (k=2) 4.00091 ±
1.50%
(k=2)
Connector Angle
Connector Angle to be used
in
DASY system 270.0
°
±
1
°
Certificate
No:
DAE4-778_May16
Pag
e 3 of 5
Appendix (Additional assessments outside the scope of SCS0108)
1. DC V It
o age
L"
mearuy
High Range Reading (µV) Difference
V) Error(%)
ChannelX
+ Input 200032.14
·1.38
-0.
00
Channe
lX
+ Input 20005.68 0.79 0.
00
Channe
lX
-Input -20003.61 1.31 -0.01
Channe
lY
+ Input 200030.28 -3.73 -0.00
Channe
+ Input 20006.01 1.25 0.01
Channe
lY
-Input -20003.
00
1.
89
-0.01
ChannelZ
+ Input 200035.46 1.52
0.00
Channel Z + Input 20002.36 -2.31 -0.01
Channel Z -Input -20008.31 -3.27
0.02
Low Range Reading V) Difference V) Error (%)
ChannelX
+ Input 2001.27 0.01
0.00
ChannelX + Input
201.37
0.21
0.10
Channe
lX
-Input -198.61 -0.02 0.01
Channe
lY
+ Input 2001.38
0.24
0.01
Channe
+ Input
200.13
-0.97 -0.48
Channe
lY
-Input -198.84 -0.10
0.05
Ch
annelZ
+ Input 2001.29 0.21 0.01
ChannelZ
+ Input
200.34
-0.69 -
0.34
ChannelZ
-Input -200.58 -1.74
0.88
2. Common mode sensitivity
DASY
t t A t Z T measuremen
parame
ers:
uo
ero
1me:
3 sec; M f
easunng
1me:
3
sec
Common mode High Range Low Range
Input Voltage (mV) Average Reading {µV) Average Reading {µV)
Channel X
200
-4.35 -5.61
-
200
7.07
5.78
ChannelY
200
-
1.79
-1.82
-
200
0.49 0.20
Channel Z
200
-
12
.55 -12.56
-200
10.17
10
.
19
3. Channel separation
DASY
measurement parameters: Auto
Zero
Time: 3 sec; Measuring time: 3 sec
Input Voltage {mV) Channel X
V) Channel Y {
µV
) Channel Z {µV)
Channe
lX
200
-
-0
.66 -2.54
Channe
lY
200
8.70 --0
.26
Channe
lZ
200 3.71
7.16
-
Certificate No: DAE4-778_May16 Page 4 of 5
4. AD-Converter Values with inputs shorted
DASY measurement
pa
rameters: Auto Zero Time: 3 sec; Measuring time: 3 sec
High Range (LSB) Low Range (LSB)
ChannelX 16054
ChannelY 16191
ChannelZ
16441
5. Input Offset Measurement
DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec
Input 10MQ
Average (µV) min. Offset (µV) max. Offset V)
ChannelX 0.48 ·0.
60
1.44
ChannelY -0.
09
-1.42 2.50
ChannelZ
-1.11 -2.45 -0.19
6.
Input Offset Current
Nominal Input circuitry offset current on all channels: <25fA
7. I t R . t
npu
es1s
ance (Typical values for information)
16869
17846
16314
Std. Deviation
(µV)
0.42
0.58
0.45
Zeroing (kOhm) Measuring (MOhm)
ChannelX 200 200
ChannelY 2
00
200
ChannelZ
200 200
8. L
ow
B tt
a
ery
Al arm V It
0
age
(Typical values
or
information
Typical values Alarm Level (VDC)
Supply(+ Vee) +7.9
Supply (- Vee) -7.6
9. p
ower
C f
onsump
10n
(Typical values for information)
Typical values Switched off (mA) Stand by (mA) Transmitting (mA)
Supply(+ Vee) +0.01 +6 +14
Supply (- Vee) -
O.Q1
-8 -9
Certificate No: DAE4-778_May16 Page 5 of 5
Calibration Laboratory
of
Schmid & Partner
Engineering AG
Ze
ughausstrasse
43, 8004
Zur
i
ch
,
Switzerland
Accredited
by
the Swiss Accreditation Service (SAS)
s
C
s
Schweizerischer
Kal
ibrierdienst
Service
suisse
d'
eta
lonnage
Servizio
svizzero
di
taratura
Swiss
Calibration
Service
Ac
c
reditation
No.:
SCS 0108
The
Swiss
Accreditation Service
is
one
of
the
signato
ri
es
to
the
EA
Multilateral Agreement
for
the
recognition of
ca
libration certificates
C
li
e
nt
Sporton-TW (Auden)
Certificate
No
: EX3-3925_May16
CALIBRATION CERTIFICATE
Object EX3DV4 -SN:3925
Calibration procedure(s)
QA
CAL
-01.v9,
QA
CAL-14.v4,
QA
CAL-23.v5,
QA
CAL
-
25.v6
Calibr
at
ion procedure
for
dosimetric E-field probes
Calibration date:
May
26,
2016
This calibration certificate documents the traceability
to
national standards, which realize the physical units
of
measurements (SI).
The
measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conducted
in
the closed laboratory facility: environment temperature (22 ± 3)°C and
humidity<
70%.
Calibration Equipment used (M&TE critical for calibration)
Primary Standards ID
Power meter NRP SN: 104778
Power sensor NRP-Z91 SN: 103244
Power sensor NRP-Z91 SN: 103245
Reference 20 dB Attenuator SN: S5277 (20x)
Reference Probe ES3DV2 SN: 3013
DAE4 SN: 660
Secondary Standards ID
Power meter E4419B SN: GB41293874
PowersensorE4412A
SN: MY41498087
PowersensorE441
2A
SN: 0001102
10
RF generator HP 8648C SN: US3642U01700
Netwo
rk
Analyzer HP 8753E
SN
: US37390585
Name
Calibrated by: Leif Klysner
Approved by: Katja Pokovic
Cal Date (Certificate No.)
06-Apr-16 (No. 217-02288/02289)
06-
Apr
-
16
(No. 217-02288)
06-Apr-16 (No. 217-02289)
05-
Apr
-16 (No. 217-02293)
31-Dec-15 (No. ES3-3013 Dec15)
23-Dec-15 (No. DAE4-660 Dec15)
Check Date (in house)
06-Apr-16 (No. 217-02285/02284)
06-Apr-16 (No. 217-02285)
06
-A
pr-16 (No. 217-02284)
04-Aug-99 (in house check Apr-13)
18
-0c
t-01 (in house check Oct-15)
Function
Laboratory Technician
Technical Manager
Scheduled Calibration
Apr
-17
Apr-17
Apr
-17
Apr-17
Dec-
16
Dec-16
Scheduled Check
In house check: Jun
-1
6
In house check: Jun-16
In
house check: Jun-16
In house check: Jun-16
In house check: Oct-16
Signature
~~
~~
Issued: M
ay
31
, 2016
This calibration certificate shall not be reproduced except in full without written approval
of
the laboratory.
Certificate No: EX3-39
25
_May16 Page 1
of
11
I
Calibration Laboratory of
Schmid & Partner
Engineering AG
s
C
s
Schweizerischer Kal
ibrierd
i
ens
t
Service
suisse
d'etalonnage
Servizio svizzero
di
taratura
Swiss
Calibrat
ion
Service
Zeughausstrasse 43, 8004
Zu
rich, Switzerland
Accredited
by
the
Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108
T
he
Swiss Accreditation Service
is
one
of
the signatories
to
t
he
EA
Multilateral Agreement
fo
r the recognition
of
calibration certificates
Glossary:
TSL
NORMx,y,z
ConvF
tissue simulating liquid
sensitivity in free space
sensitivity
in
TSL / NORMx,y,z
diode compression point
DCP
CF
A, B,
C,D
Polarization
<Jl
Polarization S
crest factor (1/duty_cycle)
of
the RF signal
modulation dependent linearization· parameters
<Jl
rotation around probe axis
S rotation around
an
axis that is
in
the plane normal to probe axis (at measurement center),
i
.e.
, S
==
0 is normal to probe axis
Connector Angle information used
in
DASY system to align probe sensor X to the robot coordinate system
Calibrat
io
n is Pe
rf
ormed Ac
co
rding to the Following Stan
da
rds:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific
Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
Techniques", June 2013
b)
IEC 62209-
1,
"Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used
in
close
proximity to the ear (frequency range
of
300 MHz
to
3 GHz)", February 2005
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices
used in close proximity to the human body (frequency range
of
30 MHz
to
6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements
for
100 MHz to 6 GHz"
Methods
Ap
p
li
ed and Interpretation
of
Parameters:
NORMx,y,z: Assessed for E-field polarization S
==
0
(f
s 900 MHz
in
TEM-cell; f > 1800 MHz: R22 waveguide).
NORMx,y,z are only intermediate values, i.e., the uncertainties
of
NORMx,y,z does not affect the E2-field
uncertainty inside TSL (see below ConvF).
NORM(f)x,y,z
==
NORMx,y,z * frequency_response (see Frequency Response Chart).
Th
is linearization is
implemented in DASY4 software versions later than 4.2. The uncertainty
of
the frequency response is included
in the stated uncertainty
of
ConvF.
DCPx,y,z: DCP are numerical linearization parameters assessed based on the data
of
power sweep with CW
signal (no uncertainty required). DCP does not depend on frequency nor media.
PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
characteristics
Ax
,y,z;
Bx,y
,z;
Cx
,y,z; Dx,y,z; VRx,y,z: A,
8,
C,
D are numerical linearization parameters assessed based on
the data
of
power sweep for specific modulation signal. The parameters do not depend on frequency
nor
media.
VR
is the maximum calibration range expressed
in
RMS voltage across the diode.
ConvF
and
Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer
Standard for f s 800 MHz) and inside waveguide using analytical field distributions based on power
me
asurements
for
f > 800 MHz. The same setups are used for assessment
of
the parameters applied for
boundary compensation (alpha, depth)
of
which typical uncertainty values are given. These parameters are
used in DASY 4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds
to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent
ConvF is used in DASY version 4.4 and higher which allows extending the validity
from±
50 MHz to ± 100
MHz.
Spherical isotropy
(30
deviation from isotropy): in a field
of
low gradients realized using a flat phantom
exposed by a patch antenna.
Sensor Offset: The sensor offset corresponds to the offset
of
virtual measurement center from the probe tip
(on probe axis).
No
tolerance required.
Connector Angle: The angle is assessed using the information gained
by
determining the NORMx (no
uncerta
in
ty required).
Certificate N
o:
EX3
-
3925
_
May
16
Page
2 of
11
EX3DV4 -SN:3925
Probe EX3DV4
Certificate No: EX3-3925_May16
SN:3925
Manufactured:
Calibrated:
March 8,
2013
May 26,
2016
Calibrated for
DASY/EASY
Systems
(Note: non-compatible with DASY2 system!)
Page 3
of
11
May 26, 2016
EX3DV4- SN:3925 May 26, 2016
DASY/EASY -Parameters
of
Probe: EX3DV4 -SN:3925
Basic Calibration Parameters Sensor X Sensor Y
SensorZ
Unc (k=2)
Norm (uV/(V/m)2t 0.59 0.52 0.50 ± 10.1 %
DCP(mV)"
96.5 97.9 98.9
Modulation Calibration Parameters
UID Communication System Name A B C D VR Un
c"
dB
dBvµ
V dB mV (k=2)
0
cw
X 0.0 0.0 1.0 0.00 152.6 ±2.7 %
y 0.0 0.0 1.0 143.7
z 0.0 0.0 1.0 138.9
The reported uncertainty
of
measurement is stated
as
the standard uncertainty of measurement
multip
li
ed by the coverage factor k=2, which
for
a normal di
st
ribution corresponds to a coverage
probabili
ty
of
appr
ox
imately 95%.
A
The
uncertainties
of
Norm X,Y,Z do not affect the E2-field uncertainty inside
TSL
(see Pages 5 and 6).
0 Numerical linearization paramete
r:
uncertainty not required.
E Uncertainty is determined
us
ing the
max
. deviation from linear response applying rectangul
ar
distribution and is expressed for the square
of
the
field val
ue
.
Certificate No: EX3-3925_May16 Page 4
of
11
EX3DV4-
SN:3925 May 26, 2016
DASY/EASY -Parameters
of
Probe: EX3DV4 -SN:3925
Ca
libration Parameter Determined in Head Tissue Simulating Media
Relative Conductivity DepthG Unc
f (MH
z)
c Permittivitv F IS/ml F ConvF X ConvF Y ConvF Z Alph
aG
(mm) (k=2)
750
41.9 0.89 10.37 10.37 10.37 0.48
0.80
+ 12.0 %
835
41.5
0.90 9.92 9.92
9.92
0.47 0.81 + 12.0 %
900
41.5
0.97 9.72 9.72
9.72
0.41
0.80
+ 12.0 %
1750 40.1 1.37 8.57 8.57 8.
57
0.29
0.80
+ 12.0 %
1900 40.0 1.40 8.30 8.30
8.30
0.30
0.80
+ 12.0 %
2000
40.0 1.40 8.26 8.26
8.26
0.30
0.80
+ 12.0 %
2450
39.2 1.80 7.47 7.47 7.47
0.35
0.80 ± 12.0 %
2600
39.0 1.96 7.28 7.28 7.28 0.36 0.86 + 12.0 %
3500
37.9 2.91 7.14 7.14 7.14
0.29
1.
30
+
13
.1 %
5200
36.0 4.66 5.31
5.3
1 5.
31
0.35
1.80 + 13.1 %
5300
35.9 4.76 5.15 5.15
5.15
0.35
1.80 ± 13.1 %
5500
35.6 4.96 4.66 4.66
4.66
0.45
1.80 ± 13.1 %
5600
35.5 5.07 4.47 4.47 4.
47
0.
50
1.80 ± 13.1 %
5800
35.3 5.
27
4.51 4.
51
4.51 0.50 1.80 ± 13.1 %
c Frequency validity above 300 MHz
of±
100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted
to±
50 MHz.
The
uncertainty
is
the RSS
of
the ConvF uncertainty at calibration frequency
and
the uncertainty for the indicated frequency band. Frequency validity
bel
ow
300 MHz
is±
10, 25, 40, 50 and 70 MHz for ConvF assessments
at
30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency
validi
ty
can be extended
to±
110 MHz.
F At frequencies below 3 GHz, the validity
of
tissue parameters
(&
and
<T)
can
be relaxed
to±
10%
if
liquid compensation formula
is
applied to
measured SAR values. At frequencies above 3 GHz, the validity
of
tissue parameters (& and
<T
) is restricted
to±
5%.
The
uncertainty is the RSS
of
the ConvF uncertainty for indicated target tissue parameters.
G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation
due
to
the boundary effect after compensation
is
always less than ± 1 % for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz
at
any distance larger than half the probe tip
diameter from the boundary.
Certificate No: EX3-3925_May16 Page 5
of
11
EX3DV4-
SN:3925 May 26, 2016
DASY/EASY -Parameters
of
Probe: EX3DV4 -SN:3925
Calibration Parameter Determined in Body Tissue Simulating Media
Relative Conductivity Depthu Unc
f
(MHz)c
Permittivitv F (Sim) F ConvF X
ConvFY
ConvF Z AlphaG (mm)
(k
=
2)
750
55
.5 0.96 10.18 10.18 10.18 0.49 0.80 + 12.0 %
835
55.2 0.97 9.91 9.91 9.91 0.44 0.
88
+ 12.0 %
900
55.0 1.05 9.96 9.
96
9.96 0.47 0.80 + 12.0 %
1750 53.4 1.49 8.30 8.30 8.30 0.
34
0.80 + 12.0 %
1900 53.3 1.52 8.00 8.00 8.00 0.38 0.80 + 12.0 %
2000
53.3 1.52 8.18 8.18 8.18 0.
37
0.80 + 12.0 %
2450
52.7 1.95 7.64 7.64 7.64 0.36 0.
80
+ 12.0 %
2600 52.5 2.16 7.38 7.38 7.38 0.26 0.80 ± 12.0 %
3500
51.3 3.31 6.73 6.73 6.73 0.29 1.30 ± 13.1 %
5200
49.0 5.30 4.39 4.39 4.39 0.50 1.90 +
13
.1
%
5300
48.9 5.42 4.22 4.22 4.22 0.50 1.90 + 13.1 %
5500
48.6 5.65 4.02 4.02 4.02 0.55 1.90 + 13.1 %
5600
48
.5 5.77 3.85
3.85 3.85
0.
60
1.90 + 13.1 %
5800 48.2 6.00 3.85 3.85 3.85 0.
60
1.90 ± 13.1 %
c Frequency validity above 300 MHz
of±
100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted
to
± 50 MHz.
The
uncertainty is the RSS
of
the ConvF uncertainty
at
calibration frequency and the uncertainty for the indicated frequency band. Frequency
va
lidity
below 300 MHz
is±
10, 25, 40, 50 and 70 MHz for ConvF assessments
at
30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency
validity can be extended
to
± 110 MHz.
F
At
frequencies below 3 GHz. the validi
ty
of
tissue parameters
{E
and
er)
can be relaxed
to±
10%
if
liquid compensation formula is applied to
measured SAR values. At frequencies above 3 GHz, the validity
of
tissue parameters
(e
and
er)
is
restricted
to
± 5%.
The
uncertainty is the RSS
of
the ConvF uncertainty for indicated target tissue parameters.
G Alpha/Depth are determined during calibratio
n.
SPEAG warrants that the remaini
ng
deviation due
to
the boundary effect after compensation is
always less than ± 1 %
for
frequencies below 3 GHz and
below±
2% for frequencies between 3-6
GHz
at
any distance larger than half the probe tip
diameter from the boundary.
Certificate No: EX3-3925_May16 Page 6
of
11
EX3DV4-
SN:3925 May 26, 2016
Frequency Response
of
E-Field
(TEM-Cell: ifi110 EXX, Waveguide: R22)
1.5-
----------
---------
---
--
--~
14
. . . . . .
.
..
....................
T
.....
.
..
.....
................................
;
.......................
...
................
....
r
......................
t
...
.
. . .
. . .
:;::;'
1.3 ....
..
..
............... ; ...................... i
.............
.
........
!
.....................
..
·
......................
:
................
.......
:
.....
.
Q)
.!:::!
ro
1.
2
E
. .
. .
> l I O I t
--
-
....
·---·-
...
--
..
··-
..
···•·•·
..
······
........
.......... -
.....
-----
..
------------------
--
--
-
--
--
....
-----
--
...................
---
...
--
....
--.
~-
--
--
-
> I t I I
' ' ' . . '
' . . . .
. . . . '
. . . '
. . . '
'-
f 1
.1
-
\~
·
)··
= :
···
····
··
········
··J
···
··
··
···· · J
···
·
1··
··
··
···
+
···
C
1.Q
....................... : ....................... : ...................... : ............
..
...... ,
+.-----
-+-
--
-- -
-+
..
..
..
............... : ..... .
~
: : r
~
. . . .
()' 0.9 ....................... !
.......................
!
......................
·
......................
,:
.....
...
..
....
........
(
.....
....
............
!
.....
.
C . . .
Q) o 8 I . . . : I
[ . .
....
.
..
...........
...
.
1.:
.....................
..
;
....
..................
;.:
.......................
:
........
..........
..
..
r
.........
...........
T
....
.
LL
0.7 : . . : : :
0.6 : : : : : : - -
. .
. .
. .
0.5-+--
--'---J......._L....J.
--+---'----'-_.__-'----i--.l.....-J~--1---+---'--'---'---'---;----1~--'---'---+---'---'---'---'----i---'-'
0
500
...!J
TE
M
1000 1500
f [MHz] 2000
2500
.±J
R22
Uncertainty
of
Frequency Response
of
E-field: ± 6.3% (k=2)
Certificate No: EX3-3925_May16 Page 7
of
11
3000
EX3DV4-SN:3925 May 26, 2016
ai'
~
e
w
Receiving Pattern {
cp
), 3 = 0°
f=600 MHz,TEM
f=
1800
MH
z,R22
90
_90
45
1&
..
·,
...
· ..
:
••
o:,,.
o o.e ? a : I;- : 0 2
.. . · . o o
.?
oa :,
1&
:,
225
315
22
5 315
Tot
X
y
z Tot
X
y
z
0.5
0 0
-0.5
. . .
' . . '
I I ' I o !
····
·
······
·1
···
·
··
··········
-
···r··
···
··
·
···
··
·····
·r·······
·-······
·····1
···········
··
·······
·;·····
················1
·················-
··r
···········
: - ~i.-- : : : _
_..--!:_i
_
:•
---.
._
:
...
..
..:
.
--e=--~
-
l:
=.----.
.::.,.
~ ~. -....
,..
·~
· :• -·•~ ·
---.,,..~~.-,
-
~~--~
-
_..,.
.
..
. . . ~ -
--
. . ._...._.
~
.
••
j ! ! i : ! j
............ : .................... ;.---·················r·-··················1·················-··t
··-
···········-
···:················-
--
·r·
·······
--
-
-150
::.!J
100 MHz
-100
-50
m
600
MHz
0
Ron[°] 50 1 0
_J
1800
MHz
Uncertainty
of
Axial Isotropy Assessment: ± 0.5%
(k
=2)
1 0
....!J
2500
MHz
Certificate No: EX3-3925_May16 Page 8
of
11
EX3DV4-SN:3925
.....
:::,
CL
C:
104
103
102
101
...
e
ui
Dynamic Range
f{SARh
ead
)
(TEM cell ,
feva
1= 1900 MHz)
..
.
....
.. -
~;
..
. ;
..
:
.:
.:.:
.::;·-c···:
... :
..
;.:.:.;;.;
;",
...
;,
...
:
..
;.:.:
.
:::i.
···
__
;_
··:
..
;.;.:
.:.
::i
.....
~
...
;
..
'
..
:
:.:
:.
r
··
· __ ;
___
:
..
: ..
:.,
.',
,
1()
·3
10-
2 1
0-
1
100
101
10
2
10
3
SAR
[
mW/cm3]
~
not compensated
[!]
compensated
21 ·
::::
: >:(
:i:.:-
·': < .
.
..
. · : : : : . : : · . · : . : : : .
. ...
..
10·3
10
·2
10-1
100 1
01
102 103
SAR
[mW/cm3]
~
n
ot
compensated
[!]
compensated
Uncertainty
of
Li
near
i
ty
Assessment:±
0.6% (k=2)
Certificate No: EX3-3925_May16 Page 9
of
11
May 26, 2016
EX3DV4-SN:3925 May 26, 2016
Conversion Factor Assessment
f =
835
MHz
,
WGLS
R9
(H_convF)
f
=
1900
MHz
,
WGLS
R22
(H_convF)
4 0
35·
.
30
..
·•.
t
: s
a,
1
2 0-
X
<{
:n
' 5
' 0 :
05
00
--11,
1
0
5
.
.
.
.
,o
I
I
,o
15
l
~
_ · -
-~
_.,.
..
I.
1 . ·
1
20
25
30
:JS
40
Q.
l
I,
..
L .
.._
_
J ,
L
~
.!
0
~
'lO
15
20
2!>
lO
3~ 40
zfmm
]
z[m
m]
_!_
.
J
nal\"bC31
Deviation from Isotropy in Liquid
Error
(cj,,
S),
f
=
900 MHz
1.0
0.8
0.6
C
0.4
~
0.2
-~ 0.0
0
·0.2
135
+/~
180
~ 225
270
315
0
-1.0 -0.8 -0.6 -0.4 -0.2
0.0
0.2 0.4
0.6
0.8 1.0
Uncertainty
of
Spherical Isotropy Assessment: ± 2.6% (k=2)
Certificate No: EX3-3925_May16 Page
10
of
11
EX3DV4-SN:3925 May 26, 2016
DASY/EASY -Parameters
of
Probe: EX3DV4 -SN:3925
Other Probe Parameters
Sensor
Arrangement
Triangular
Connector
Angle (°)
92
.2
Mechanical Surface Detection
Mode
enabled
Optical Surface Detection
Mode
disabled
Probe Overall Length
337mm
Probe
Body
Diameter
10mm
Tip
Length
9mm
Tip Diameter 2.
5mm
Probe
Tip
to
Sensor
X Calibration Point 1
mm
Probe
Tip
to
Sensor
Y Calibration
Po
i
nt
1
mm
Probe Tip
to
Sensor
Z Calibration Point 1
mm
Recommended
Measurement
Distance
from
Surface 1.4
mm
Certificate No: EX3-3925_May16 Page
11
of
11
Download: Touch computer RF Exposure Info None Zebra Technologies Corporation

Document ID3253656
Application IdLeObSPYvcK1IiwqUG0/6pw==
Document DescriptionRF Exposure Appendix A-2
Short Term ConfidentialNo
Permanent ConfidentialNo
SupercedeNo
Document TypeRF Exposure Info
Display FormatAdobe Acrobat PDF - pdf
Filesize5478939
Date Submitted2017-01-10 00:00:00
Date Available2017-01-11 00:00:00
Creation Date2016-12-28 15:48:02
Producing SoftwareFoxit PhantomPDF - Foxit Software Inc.
Document Lastmod2017-01-06 17:20:09
Document TitleNone
Document CreatorNone
Document Author: Wan

Facebook Twitter Google+ RSS © FCCID.io 2017