LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED

LAVA INTERNATIONAL (H.K) LIMITED Mobile Phone

FCC ID Filing: 2AEE8LAVAIRIS30
Purchase on Amazon: Mobile Phone

Trouble Viewing? See the or view the HTML Version or PDF in frame
Page 1 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 2 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 3 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 4 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 5 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 6 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 7 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 8 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 9 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 10 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 11 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 12 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 13 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 14 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 15 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 16 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 17 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 18 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 19 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 20 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 21 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 22 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 23 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 24 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 25 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 26 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 27 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 28 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 29 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 30 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 31 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 32 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 33 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 34 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 35 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 36 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 37 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 38 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 39 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 40 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 41 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 42 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 43 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 44 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 45 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 46 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 47 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 48 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 49 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 50 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 51 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 52 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 53 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 54 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 55 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 56 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 57 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 58 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 59 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 60 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 61 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 62 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 63 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 64 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 65 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 66 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 67 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 68 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 69 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 70 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 71 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 72 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 73 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 74 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 75 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 76 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 77 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 78 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 79 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 80 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 81 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 82 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 83 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 84 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 85 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 86 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 87 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 88 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 89 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 90 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 91 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 92 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 93 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 94 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 95 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 96 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 97 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 98 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 99 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 100 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 101 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 102 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 103 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 104 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 105 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 106 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 107 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 108 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 109 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 110 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 111 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 112 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Page 113 of LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED

Shenzhen Zhongjian Nanfang Testing Co.,Ltd.
Report No: CCISE170501701
Cover Page
FCC SAR REPORT
Applicant:
LAVA INTERNATIONAL (H.K) LIMITED
Address of Applicant:
UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST,
JORDAN KL, HK
Equipment Under Test (EUT)
Product Name:
Mobile Phone
Model No.:
iris 30
Trade mark:
LAVA
FCC ID:
2AEE8LAVAIRIS30
Applicable standards:
FCC 47 CFR Part 2.1093
Date of Test:
09 May., 2017~16 May., 2017
Test Result:
Maximum Reported1-g SAR (W/kg)
Head: 0.793
Body: 1.034
Hotspot: 1.182
Authorized Signature:
Bruce Zhang
Laboratory Manager
This report details the results of the testing carried out on one sample. The results contained in this test report do not relate
to other samples of the same product and does not permit the use of theCCISproduct certification mark. The manufacturer
should ensure that all products in series production are in conformity with the product sample detailed in this report.
This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than
that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.
This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized
alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted
to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested
and such sample(s) are retained for 90 days only.
Report No: CCISE170501701
Version
Version No.
Date
Description
00
01 Jun., 2017
Original
Prepared by:
Date:
01 Jun., 2017
Date:
01 Jun., 2017
Report Clerk
Reviewed by:
Project Engineer
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 2 of 113
Report No: CCISE170501701
Contents
COVER PAGE ....................................................................................................................................................... 1
VERSION ............................................................................................................................................................... 2
CONTENTS ........................................................................................................................................................... 3
SAR RESULTS SUMMARY................................................................................................................................. 5
GENERAL INFORMATION .................................................................................................................................. 6
5.1
5.2
5.3
5.4
5.5
INTRODUCTION ................................................................................................................................................... 8
6.1
6.2
INTRODUCTION ............................................................................................................................................................................... 8
SAR DEFINITION ............................................................................................................................................................................ 8
RF EXPOSURE LIMITS ....................................................................................................................................... 9
7.1
7.2
7.3
CLIENT INFORMATION ..................................................................................................................................................................... 6
GENERAL DESCRIPTION OF EUT ................................................................................................................................................... 6
MAXIMUM RF OUTPUT POWER ...................................................................................................................................................... 7
ENVIRONMENT OF TEST SITE ......................................................................................................................................................... 7
TEST LOCATION ............................................................................................................................................................................. 7
UNCONTROLLED ENVIRONMENT ..................................................................................................................................................... 9
CONTROLLED ENVIRONMENT ......................................................................................................................................................... 9
RF EXPOSURE LIMITS .................................................................................................................................................................... 9
SAR MEASUREMENT SYSTEM....................................................................................................................... 10
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
E-FIELD PROBE............................................................................................................................................................................ 11
DATA ACQUISITION ELECTRONICS (DAE) .................................................................................................................................... 11
ROBOT ......................................................................................................................................................................................... 12
MEASUREMENT SERVER .............................................................................................................................................................. 12
LIGHT BEAM UNIT ......................................................................................................................................................................... 12
PHANTOM ..................................................................................................................................................................................... 13
DEVICE HOLDER........................................................................................................................................................................... 14
DATA STORAGE AND EVALUATION ................................................................................................................................................ 15
TEST EQUIPMENT LIST ................................................................................................................................................................. 17
TISSUE SIMULATING LIQUIDS ....................................................................................................................... 18
10
SAR SYSTEM VERIFICATION.......................................................................................................................... 21
11
EUT TESTING POSITION .................................................................................................................................. 23
11.1
11.2
11.3
11.4
11.5
11.6
12
MEASUREMENT PROCEDURES .................................................................................................................... 27
12.1
12.2
12.3
12.4
12.5
12.6
13
GSM CONDUCTED POWER .................................................................................................................................................... 30
WCDMA CONDUCTED POWER .............................................................................................................................................. 32
WLAN 2.4 GHZ BAND CONDUCTED POWER ......................................................................................................................... 35
BLUETOOTH CONDUCTED POWER .......................................................................................................................................... 36
EXPOSURE POSITIONS CONSIDERATION .................................................................................................. 37
14.1
14.2
15
SPATIAL PEAK SAR EVALUATION ........................................................................................................................................... 27
POWER REFERENCE MEASUREMENT...................................................................................................................................... 28
AREA & ZOOM SCAN PROCEDURES........................................................................................................................................ 28
VOLUME SCAN PROCEDURES ................................................................................................................................................. 29
SAR AVERAGED METHODS .................................................................................................................................................... 29
POWER DRIFT MONITORING ................................................................................................................................................... 29
CONDUCTED RF OUTPUT POWER................................................................................................................ 30
13.1
13.2
13.3
13.4
14
HANDSET REFERENCE POINTS ............................................................................................................................................... 23
POSITIONING FOR CHEEK / TOUCH ......................................................................................................................................... 24
POSITIONING FOR EAR / 15ºTILT ............................................................................................................................................ 24
SAR EVALUATIONS NEAR THE MOUTH/JAW REGIONS OF THE SAM PHANTOM ..................................................................... 25
BODY W ORN ACCESSORY CONFIGURATIONS ......................................................................................................................... 25
W IRELESS ROUTER (HOTSPOT) CONFIGURATIONS ................................................................................................................ 26
EUT ANTENNA LOCATIONS..................................................................................................................................................... 37
TEST POSITIONS CONSIDERATION .......................................................................................................................................... 37
SAR TEST RESULTS SUMMARY .................................................................................................................... 38
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 3 of 113
Report No: CCISE170501701
15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
16
STANDALONE HEAD SAR DATA.............................................................................................................................................. 38
STANDALONE BODY SAR ....................................................................................................................................................... 39
BODY SAR IN HOTSPOT MODE .............................................................................................................................................. 40
REPEATED SAR MEASUREMENT ............................................................................................................................................. 41
MULTI-BAND SIMULTANEOUS TRANSMISSION CONSIDERATIONS ............................................................................................ 42
SAR SIMULTANEOUS TRANSMISSION ANALYSIS ..................................................................................................................... 43
MEASUREMENT UNCERTAINTY ................................................................................................................................................ 46
MEASUREMENT CONCLUSION ................................................................................................................................................. 48
REFERENCE....................................................................................................................................................... 49
APPENDIX A: EUT PHOTOS ..................................................................................................................................... 50
APPENDIX B: TESTSETUP PHOTOS ...................................................................................................................... 52
APPENDIX C: PLOTS OF SAR SYSTEM CHECK .................................................................................................. 55
APPENDIX D: PLOTS OF SAR TEST DATA ........................................................................................................... 62
APPENDIX E: SYSTEM CALIBRATION CERTIFICATE ......................................................................................... 75
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 4 of 113
Report No: CCISE170501701
SAR Results Summary
The maximum results of Specific Absorption Rate (SAR) found during test as bellows:

Reported 1-g SAR
Exposure Position
Frequency Band
(W/kg)
GSM 850
0.527
GSM 1900
0.639
Head
WCDMA Band V
0.349
WCDMA Band II
0.793
WLAN 2.4GHz
0.527
GSM 850
0.753
GSM 1900
0.597
Body
WCDMA Band V
0.629
(10 mm Gap)
WCDMA Band II
1.034
WLAN 2.4GHz
0.077
GSM 850
1.182
GSM 1900
0.973
Hotspot
WCDMA Band V
0.629
(10 mm Gap)
WCDMA Band II
1.034
WLAN 2.4GHz
0.077
Equipment Class
PCE
Highest Reported
1-g SAR (W/kg)
0.793
DTS
PCE
1.034
DTS
PCE
1.182
DTS

Exposure Position
Frequency Band
Reported 1-g SAR
(W/kg)
Back
GPRS 850 4Slots
WLAN 2.4GHz
1.182
0.077
Equipment Class
Highest
ReportedSimultaneous
Transmission
1-g SAR (W/kg)
PCE
DTS
1.259
Note:
1.
2.
The highest simultaneous transmission is scalar summation of Reported standalone SAR per FCCKDB 690783 D01 v01r03, and
scalar SAR summation of all possible simultaneous transmission scenarios are< 1.6W/kg.
This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolledexposure limits (1.6 W/kg) specified
in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and hadbeen tested in accordance with the measurement methods and
procedures specified in IEEE 1528-2013.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 5 of 113
Report No: CCISE170501701
General Information
5.1 Client Information
Applicant:
LAVA INTERNATIONAL (H.K) LIMITED
Address of Applicant:
UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST, JORDAN
KL, HK
Manufacturer:
LAVA INTERNATIONAL (H.K) LIMITED
Address of Manufacturer:
UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST, JORDAN
KL, HK
5.2 General Description of EUT
Product Name:
Mobile Phone
Model No.:
iris 30
Category of device
Portable device
Operation Frequency:
GSM850: 824.2 ~ 848.8 MHz
PCS 1900: 1850.2 ~ 1909.8 MHz
WCDMA Band V: 826.4 ~ 846.6 MHz
WCDMA Band II: 1852.4 ~ 1907.6 MHz
Bluetooth: 2402 MHz ~ 2480 MHz
Wi-Fi: 802.11b/g/n-HT20: 2412MHz ~ 2462 MHz
802.11n-HT40 :2422MHz~2452MHz
Modulation technology:
GSM/GPRS:GMSK,EGPRS: 8PSK,WCDMA/HSDPA/HSUPA: BPSK
Bluetooth: GFSK/π/4DQPSK/8DPSK
Wi-Fi: 802.11b: DSSS, 802.11g/n: OFDM
Antenna Type:
Internal Antenna
Antenna Gain:
GSM 850: 0.6 dBi, PCS 1900: 0.7 dBi
WCDMA Band V: 0.6 dBi, WCDMA Band II: 0.7 dBi
WIFI/BT: 0dBi
Release Version:
R99 for GSM, R6 for WCDMA
(E)GPRS Class:
(E)GPRS Class: 12
Dimensions (L*W*H):
122mm (L)× 63mm (W)× 10mm (H)
Accessories information:
Adapter:
Model: CLV-3
Input: AC100-300V 50/60Hz 0.15A
Output: DC 5.0V, 500mA
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Battery:
Rechargeable Li-ion Battery
3.8V/1400mAh
Headset:
Support headset
Project No.: CCISE1705017
Page 6 of 113
Report No: CCISE170501701
5.3 Maximum RF Output Power
Average Power (dBm)
Mode
GSM 850
33.10
32.93
32.13
30.30
29.15
27.96
26.83
24.64
23.48
GSM (Voice)
GPRS (1TX Slot)
GPRS (2TX Slots)
GPRS (3TX Slots)
GPRS (4TX Slots)
EGPRS (1 TX Slot)
EGPRS (2 TX Slots)
EGPRS (3 TX Slots)
EGPRS (4 TX Slots)
GSM 1900
29.55
29.44
28.70
26.89
25.82
26.63
25.42
23.37
21.86
Average Power (dBm)
WCDMA Band V
WCDMA Band II
22.19
22.95
22.39
23.22
21.38
22.03
20.93
21.98
19.56
20.07
19.42
19.98
21.30
21.93
21.36
21.98
19.51
20.06
21.36
22.03
20.45
22.02
Mode
AMR 12.2 kbps
RMC 12.2 kbps
HSDPA Sub-test 1
HSDPA Sub-test 2
HSDPA Sub-test 3
HSDPA Sub-test 4
HSUPA Sub-test 1
HSUPA Sub-test 2
HSUPA Sub-test 3
HSUPA Sub-test 4
HSUPA Sub-test 5
Mode/Band
WLAN 2.4GHz
WLAN 2.4 GHz Band Average Power (dBm)
n (HT-20)
16.11
17.19
15.23
n (HT-40)
14.84
Mode/Band
Bluetooth 2.4 GHz
Bluetooth Average Power (dBm)
1 Mbps(GFSK)
2 Mbps(π/4DQPSK)
3 Mbps (8DPSK)
5.81
5.33
5.36
LE (BT 4.0)
-1.49
5.4 Environment of Test Site
Temperature:
18C ~25C
Humidity:
35%~75% RH
Atmospheric Pressure:
1010 mbar
5.5 Test Location
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong, China
Tel: +86-755-23118282
Fax: +86-755-23116366
E-mail:info@ccis-cb.com
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 7 of 113
Report No: CCISE170501701
Introduction
6.1 Introduction
SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The
SARdistribution in a biological body is complicated and is usually carried out by experimental techniques or
numericalmodeling. The standard recommends limits for two tiers of groups, occupational/controlled and
generalpopulation/uncontrolled, based on a person’s awareness and ability to exercise control over his or her
exposure. Ingeneral, occupational/controlled exposure limits are higher than the limits for general
population/uncontrolled.
6.2 SAR Definition
The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in)
anincremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is
asbelow:
SAR 
d  dU  d  dU 


 
dt  dm  dt  dv 
SAR is expressed in units of Watts per kilogram (W/kg)
SAR measurement can be either related to the temperature elevation in tissue by
Where: C is the specific heat capacity,
theelectrical field in the tissue by
T
 T 
SAR  C 

 t 
is the temperature rise and
t is the exposure duration, or related to
  E2
SAR 

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field
strength.However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 8 of 113
Report No: CCISE170501701
RF Exposure Limits
7.1 Uncontrolled Environment
Uncontrolled Environments are defined as locations where there is the exposure of individualswho have no
knowledge or control of their exposure. The general population/uncontrolled exposure limitsare applicable to
situations in which the general public may be exposed or in which persons who areexposed as a consequence
of their employment may not be made fully aware of the potential forexposure or cannot exercise control over
their exposure. Members of the general public would comeunder this category when exposure is not
employment-related; for example, in the case of a wirelesstransmitter that exposes persons in its vicinity.
7.2 Controlled Environment
Controlled Environments are defined as locations where there is exposure that may be incurredby persons who
are aware of the potential for exposure, (i.e. as a result of employment or occupation). Ingeneral,
occupational/controlled exposure limits are applicable to situations in which persons are exposedas a
consequence of their employment, who have been made fully aware of the potential for exposureand can
exercise control over their exposure. This exposure category is also applicable when theexposure is of a
transient nature due to incidental passage through a location where the exposure levelsmay be higher than the
general population/uncontrolled limits, but the exposed person is fully aware ofthe potential for exposure and
can exercise control over his or her exposure by leaving the area or bysome other appropriate means.
7.3 RF Exposure Limits
Note:
1.
2.
3.
The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a
cube)and over the appropriate averaging time.
The Spatial Average value of the SAR averaged over the whole body.
The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of
acube) and over the appropriate averaging time.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 9 of 113
Report No: CCISE170501701
SAR Measurement System
Fig.8.1 SPEAG DASY System Configurations
The DASY system for performance compliance tests is illustrated above graphically. This system consists of
thefollowing items:
 A standard high precision 6-axis robot with controller, a teach pendant and software
 A data acquisition electronic (DAE) attached to the robot arm extension
 A dosimetric probe equipped with an optical surface detector system
 The electro-optical converter (EOC) performs the conversion between optical and electrical signals
 A measurement server performs the time critical tasks such as signal filtering, control of the robot
operationand fast movement interrupts.
 A probe alignment unit which improves the accuracy of the probe positioning
 A computer operating Windows XP
 DASY software
 Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
 The SAM twin phantom
 A device holder
 Tissue simulating liquid
 Dipole for evaluating the proper functioning of the system
Component details are described in the following sub-sections.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 10 of 113
Report No: CCISE170501701
8.1 E-Field Probe
The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is
specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special
calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent
from collision with phantom.

E-Field Probe Specification

Construction
Symmetrical design with triangular core Built-in
shielding against static charges PEEK
enclosure material (resistant to organic
solvents, e.g., DGBE)
Frequency
10MHz to 6 GHz; Linearity: ± 0.2 dB
Directivity
± 0.3 dB in HSL (rotation around probe axis)
± 0.5 dB in tissue material (rotation normal to
probe axis)
Dynamic Range 10 µW/g to 100 mW/g; Linearity: ± 0.2 dB
(noise: typically < 1 µW/g)
Dimensions
Overall length: 330 mm (Tip: 20mm)
Tip diameter: 2.5 mm (Body: 12mm)
Typical distance from probe tip to dipole
centers: 1 mm
Fig.8.2 Photo of E-Field Probe

E-Field Probe Calibration
Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better
than ±10%. The spherical isotropy shall be evaluated and within ±0.25 dB. The sensitivity parameters
(Norm X, Norm Y and Norm Z), the diode compression parameter (DCP) and the conversion factor (ConvF)
of the probe are tested. The calibration data can be referred to appendix E of this report.
8.2 Data Acquisition Electronics (DAE)
The Data acquisition electronics (DAE) consists of a highly sensitive
electrometer-grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16 bit AD-converter and a command decoder
and control logic unit. Transmission to the measurement server is
accomplished through an optical downlink for data and status information
as well as an optical uplink for commands and the clock. The input
impedance of the DAE is 200 MOhm; the inputs are symmetrical and
floating. Common mode rejection is above 80 dB.
Fig. 8.3 Photo of DAE
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 11 of 113
Report No: CCISE170501701
8.3 Robot
The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For
the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubliis used. The Stäublirobot
series have many features that are important for our application:





High precision (repeatability 0.02 mm)
High reliability (industrial design)
Low maintenance costs (virtually maintenance free due to
direct drive gears; nobelt drives)
Jerk-free straight movements
Low ELF interference (motor control fields shielded via the
closed metallic constructionshields)
Fig. 8.4 Photo of Robot
8.4 Measurement Server
The measurement server is based on a PC/104 CPU board with CPU (DASY 5: 400MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE
electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are
contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.
The measurement server performs all the real-time data evaluation for field measurements and surface
detection, controls robot movements and handles safety operations.
Fig. 8.5 Photo of Server for DASY5
8.5 Light Beam Unit
The light beam switch allows automatic "tooling" of the probe. During
the process, the actualposition of the probe tip with respect to the
robot arm is measured, as well as the probe lengthand the horizontal
probe offset. The software then corrects all movements, such that
the robotcoordinates are valid for the probe tip.
The repeatability of this process is better than0.1 mm. If a position
has been taught with analigned probe, the same position will be
reachedwith another aligned probe within 0.1 mm, even ifthe other
probe has different dimensions. Duringprobe rotations, the probe tip
will keep its actualposition.
Fig. 8.6 Photo of Light Beam
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 12 of 113
Report No: CCISE170501701
8.6 Phantom

Shell Thickness
2 ± 0.2 mm;
Center ear point: 6 ± 0.2 mm
Filling Volume
Approx. 25 liters
Dimensions
Length: 1000mm; Width: 500mm;
Height: adjustable feet
Measurement
Left Head, Right Head, Flat phantom
Areas
Fig. 8.7Photo of SAM Twin Phantom
The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are
adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the
phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom
top, three reference markers are provided to identify the phantom position with respect to the robot.

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the
frequency range of 30MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209-2
and all known tissue simulating liquids.
ELI4 has been optimized regarding its performance and can be integrated into a SPEAG standardphantom table.
A cover prevents evaporation of the liquid. Reference markings on the phantom allowinstallation of the complete
setup, including all predefined phantom positions and measurementgrids, by teaching three points
The phantom can be used with the following tissue simulating liquids:
 Water-sugar based liquids can be left permanently in the phantom. Always cover the liquid if the system is
not in use; otherwise the parameters will change due to water evaporation.
 DGBE based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should
be taken out of the phantom and the phantom should be dried when the system is not in use (desirable at
least once a week).
 Do not use other organic solvents without previously testing the phantom resistiveness.
Fig.8.8 Photo of ELI4 Phantom
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 13 of 113
Report No: CCISE170501701
8.7 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the
source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would
produce a SAR uncertainty of ± 20 %. Accurate device positioning is therefore crucial for accurate and
repeatable measurements. The positions in which the devices must be measured are defined by the standards.
The DASY device holder is designed to cope with different positions given in the standard. It has two scales for
the device rotation (with respect to the body axis) and the device inclination (with respect to the line between
the ear reference points). The rotation center for both scales is the ear reference point (ERP).
Thus the device needs no repositioning when changing the angles.
The DASY device holder is constructed of low-low POM material having the following dielectric parameters:
relative permittivity ε = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the
closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test
results could thus be lowered.
Fig. 8.9Photo of Device Holder
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 14 of 113
Report No: CCISE170501701
8.8 Data storage and Evaluation

Data Storage
The DASY software stores the assessed data from the data acquisition electronics as raw data (in
microvolt readings from the probe sensors), together with all the necessary software parameters for the
data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in
measurement files. The post-processing software evaluates the desired unit and format for output each
time the data is visualized or exported. This allows verifications of the complete software setup even after
the measurement and allows correction of erroneous parameter settings. For example, if a measurement
has been performed with an incorrect crest factor parameter in the device setup, the parameter can be
corrected afterwards and the data can be reevaluated.
The measured data can be visualized or exported in different units or formats, depending on the selected
probe type (e.g., [V/m], [mW/g]). Some of these units are not available in certain situations or give
meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be
exported to perform the evaluation with other software packages.

Data Evaluation
The DASY post-processing software (SEMCAD) automatically executes the following procedures to
calculate the field units from the microvolt readings at the probe connector. The parameters used in the
evaluation are stored in the configuration modules of the software:
Probe Parameters:
Device Parameters:
Media Parameters:
- Sensitivity
- Conversion
- Diode compression point
- Frequency
- Crest
- Conductivity
- Density
Normi, ai0, ai1, ai2
ConvFi
dcpi
cf
σ
ρ
These parameters must be set correctly in the software. They can be found in the component documents
or they can be imported into the software from the configuration files issued for the DASY components. In
the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used.
In the scan visualization and export modes, the parameters stored in the corresponding document files are
used.
The first step of the evaluation is a linearization of the filtered input signal to account for the compression
characteristics of the detector diode. The compensation depends on the input signal, the diode type and
the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the
crest factor of the signal must be known to correctly compensate for peak power.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 15 of 113
Report No: CCISE170501701
The formula for each channel can be given as:
cf
Vi = U i + U i2 ·
dcpi
WithVi = compensated signal of channel i, (i = x, y, z)
Ui= input signal of channel i, (i = x, y, z)
cf = crest factor of exciting field (DASY parameter)
dcp = diode compression point (DASY parameter)
From the compensated input signals, the primary field data for each channel can be evaluated:
vi
Normi ConvF
E- Field Probes: Ei =
H-Field Probes: H i =
Vi 
ai 0  ai1 f  ai 2 f 2
WithVi = compensated signal of channel i, (i = x, y, z)
Normi= senor sensitivity of channel i, (i = x, y, z), µV/ (V/m)
ConvF = sensitivity enhancement in solution
aij= sensor sensitivity factors for H-field probes
f = carrier frequency (GHz)
Ei = electric field strength of channel i in V/m
Hi = magnetic field strength of channel i in A/m
The RSS value of the field components gives the total field strength (Hermitian magnitude):
Etot=
Ex2  E y2  Ez2
The primary field data are used to calculate the derived field units.
SAR = Etot


  1000
With
SAR = local specific absorption rate in mW/g
Etot= total field strength in V/m
σ = conductivity in (mho/m) or (Siemens/m)
ρ= equipment tissue density in g/cm
Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue
simulating liquid.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 16 of 113
Report No: CCISE170501701
8.9 Test Equipment List
Manufacturer
Equipment Description
Model
S/N
Cal. Information
Last Cal.
Due Date
SPEAG
835MHz System Validation Kit
D835V2
4d154
06.16.2016
06.15.2019
SPEAG
1900MHz System Validation Kit
D1900V2
5d175
06.15.2016
06.14.2019
SPEAG
2450MHz System Validation Kit
D2450V2
910
06.15.2016
06.14.2019
SPEAG
Data Acquisition Electronics
DAE4
1373
02.09.2017
02.08.2018
SPEAG
Dosimetric E-Field Probe
EX3DV4
3924
06.22.2016
06.21.2017
SPEAG
Phantom
Twin Phantom
1765
N.C.R
N.C.R
SPEAG
Phantom
ELI V5.0
1208
N.C.R
N.C.R
SPEAG
Phone Positioner
N/A
N/A
N.C.R
N.C.R
Stäubli
Robot
TX60L
F13/5P6VB1/A/01
N.C.R
N.C.R
R&S
Universal Radio Communication Tester
CMU200
117042
02.25.2017
02.24.2018
HP
Network Analyzer
8753D
3410A06291
02.25.2017
02.24.2018
Agilent
EPM Series Power Meter
E4418B
GB39512692
02.25.2017
02.24.2018
Agilent
MAX Signal Analyzer
N9020A
MY50510123
02.25.2017
02.24.2018
Agilent
Power Sensor
8481A
MY41090341
02.25.2017
02.24.2018
R&S
Power Sensor
URV5-Z2
SEL0071
02.25.2017
02.24.2018
R&S
Signal Generator
SMX
835457/016
02.25.2017
02.24.2018
R&S
Signal Generator
SMR20
10080050
02.25.2017
02.24.2018
Huber Suhner
RF Cable
SUCOFLEX
12341
See Note 3
Huber Suhner
RF Cable
SUCOFLEX
17268
See Note 3
Huber Suhner
RF Cable
SUCOFLEX
2080
See Note 3
Weinschel
Attenuator
23-3-34
BL5513
See Note 3
Anritsu
Directional Coupler
MP654A
100217491
See Note 3
SPEAG
Dielectric Assessment Kit
3.5 Probe
1119
See Note 4
Mini-circuits
Power amplifier
ZHL-42W
SC609401309
See Note 5
Note:
1.
2.
3.
4.
5.
6.
7.
The calibration certificate of DASY can be referred to appendix C of this report.
Referring to KDB 865664 D01v01r04, the dipole calibration interval can be extended to 3 years with justification.
Thedipoles are also not physically damaged, or repaired during the interval.
The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the networkanalyzer
and compensated during system check.
The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in purewater)
and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure andcalibration kit
are provided by Speag.
In system check we need to monitor the level on the power meter, and adjust the power amplifier level to haveprecise
power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of1W to the
input power to the dipole. For system check, the calibration of the power amplifier is deemed not criticallyrequired for
correct measurement; the power meter is critical and we do have calibration for it
Attenuator insertion loss is calibrated by the network Analyzer, which the calibration is valid, before systemcheck.
N.C.R means No Calibration Requirement.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 17 of 113
Report No: CCISE170501701
Tissue Simulating Liquids
For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled
with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from
the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in
Fig. 9.1, for body SAR testing, the liquid height from the center of the flat phantom to liquid top surface is larger
than 15 cm, which is shown in Fig. 9.2.
Fig. 9.1 Photo of Liquid Height for Head SAR
Fig. 9.2 Photo of Liquid Height for Body SAR of
(850MHz) (depth>15cm)
ELI V5.0 (850MHz) (depth>15cm)
Fig. 9.3 Photo of Liquid Height for Head SAR
Fig. 9.4 Photo of Liquid Height for Body SAR of
(1900MHz) (depth>15cm)
ELI V5.0 (1900MHz) (depth>15cm)
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 18 of 113
Report No: CCISE170501701
Fig. 9.6 Photo of Liquid Height for Body SAR of
Fig. 9.5 Photo of Liquid Height for Head SAR
(2450MHz) (depth>15cm)
Twin Phantom (2450MHz) (depth>15cm)
The relative permittivity and conductivity of the tissue material should be within±5% of the values given in the
table below recommended by the FCC OET 65supplement C and RSS 102 Issue 5.
Target Frequency
Head
Body
(MHz)
εr
σ(S/m)
εr
σ(S/m)
150
52.3
0.76
61.9
0.80
300
45.3
0.87
58.2
0.92
450
43.5
0.87
56.7
0.94
835
41.5
0.90
55.2
0.97
900
41.5
0.97
55.0
1.05
915
41.5
0.98
55.0
1.06
1450
40.5
1.20
54.0
1.30
1610
40.3
1.29
53.8
1.40
1800-2000
40.0
1.40
53.3
1.52
2450
39.2
1.80
52.7
1.95
3000
38.5
2.40
52.0
2.73
35.3
5.27
48.2
5800
6.00
( εr = relative permittivity, σ = conductivity and ρ = 1000 kg/m )
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 19 of 113
Report No: CCISE170501701
The dielectric parameters of liquids were verified prior to the SAR evaluation using a SpeagDielectric Probe Kit
and an Agilent Network Analyzer.
The following table shows the measuring results for simulating liquid.
Frequency
(MHz)
Liquid
Type
Liquid
Temp.
(℃)
Conductivity
(σ)
Permittivity
(εr)
Conductivity
Target(σ)
Permittivity
Target(εr)
Delta
(σ)%
Delta
(εr)%
Limit
(%)
Date
(mm/dd/yy)
835
Head
21.5
0.91
41.32
0.9
41.5
1.11
-0.43
±5
05.12.2017
1900
Head
21.3
1.42
40.16
1.4
40.0
1.43
0.40
±5
05.10.2017
2450
Head
21.6
1.83
38.70
1.8
39.2
1.67
-1.28
±5
05.09.2017
835
Body
21.4
0.98
55.06
0.97
55.2
1.03
-0.25
±5
05.11.2017
1900
Body
21.6
1.51
53.14
1.52
53.3
-0.66
-0.30
±5
05.09.2017
2450
Body
21.7
1.93
52.49
1.95
52.7
-1.03
-0.40
±5
05.16.2017
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 20 of 113
Report No: CCISE170501701
10 SAR System Verification
Each DASY system is equipped with one or more system validation kits. These units, together with the
predefined measurement procedures within the DASY software, enable the user to conduct the system
performance check and system validation. System validation kit includes a dipole, tripod holder to fix it
underneath the flat phantom and a corresponding distance holder.

Purpose of System Performance check
The system performance check verifies that the system operates within its specifications. System and
operator errors can be detected and corrected. It is recommended that the system performance check be
performed prior to any usage of the system in order to guarantee reproducible results. The system
performance check uses normal SAR measurements in a simplified setup with a well characterized source.
This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The
system check does not intend to replace the calibration of the components, but indicates situations where
the system uncertainty is exceeded due to drift or failure.

System Setup
In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power
source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be
placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The
distance holder should touch the phantom surface with a light pressure at the reference marking and be
oriented parallel to the long side of the phantom. The equipment setup is shown below:
Fig.10.1 System Verification Setup Diagram
Fig.10.2 Photo of Dipole setup
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 21 of 113
Report No: CCISE170501701

System Verification Results
Comparing to the original SAR value provided by SPEAG, the verification data should be within its
specification of 10%. The table as below indicates the system performance check can meet the variation
criterion and the plots can be referred to Appendix C of this report.
Date
(mm/dd/yy)
Frequency
(MHz)
Liquid
Type
Power fed
onto dipole
(mW)
Measured 1g
SAR
(W/kg)
05.12.2017
05.10.2017
05.09.2017
05.11.2017
05.09.2017
05.16.2017
835
1900
2450
835
1900
2450
Head
Head
Head
Body
Body
Body
80
40
40
80
40
40
0.748
1.65
2.04
0.790
1.58
2.10
Normalized
to250 mW
1g SAR
(W/kg)
2.34
10.31
12.75
2.47
9.88
13.13
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
250 mW
Target 1g
SAR
(W/kg)
2.30
9.99
13.0
2.43
10.1
13.0
Deviation
(%)
1.74
3.20
-1.92
1.65
-2.18
1.00
Project No.: CCISE1705017
Page 22 of 113
Report No: CCISE170501701
11 EUT Testing Position
This EUT was tested in ten different positions. They are right cheek/right tilted/left cheek/left tilted for head,
Front/Back/Right Side/Top Side/Bottom Side of the EUT with phantom 1 cm gap, as illustrated below, please
refer to Appendix B for the test setup photos.
11.1 Handset Reference Points



The vertical centreline passes through two points on the front side of the handset – the midpoint of the
width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the bottom of
the handset.
The horizontal line is perpendicular to the vertical centreline and passes the center of the acoustic output.
The horizontal line is also tangential to the handset at point A.
The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the
acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note
that the vertical centreline is not necessarily parallel to the front face of the handset, especially for
clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.
Fig.11.1 Illustration for Front, Back and Side of SAM Phantom
Fig. 11.2Illustration for Handset Vertical and Horizontal Reference Lines
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 23 of 113
Report No: CCISE170501701
11.2 Positioning for Cheek / Touch


To position the device with the vertical center line of the body of the device and the horizontal line crossing
the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this
plane, align the vertical center line with the reference plane containing the three ear and mouth reference
point (M: Mouth, RE: Right Ear and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone
touched the ear. While maintaining the device in the reference plane and maintaining the phone contact
with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of
the phantom or until contact with the ear is lost (see below figure)
Fig. 11.3 Illustration for Cheek Position
11.3 Positioning for Ear / 15ºTilt


To position the device in the “cheek” position described above.
While maintaining the device the reference plane described above and pivoting against the ear, moves it
outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see figure
below).
Fig.11.4 Illustration for Tilted Position
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 24 of 113
Report No: CCISE170501701
11.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom
Antennas located near the bottom of a phone may require SAR measurements around the mouth and
jawregions of the SAM head phantom. This typically applies to clam-shell style phones that are generallylonger
in the unfolded normal use positions or to certain older style long rectangular phones.
Under these circumstances, the following procedures apply, adopted from the FCC guidance on SARhandsets
document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAMshould be
measured using a flat phantom. The phone should be positioned with a separation distance of4 mm between
the ear reference point (ERP) and the outer surface of the flat phantom shell. Whilemaintaining this distance at
the ERP location, the low (bottom) edge of the phone should be lowered fromthe phantom to establish the same
separation distance between the peak SAR locations identified by thetruncated partial SAR distribution
measured with the SAM phantom. The distance from the peak SARlocation to the phone is determined by the
straight line passing perpendicularly through the phantomsurface. When it is not feasible to maintain 4 mm
separation at the ERP while also establishing therequired separation at the peak SAR location, the top edge of
the phone will be allowed to touch thephantom with a separation < 4 mm at the ERP. The phone should not be
tilted to the left or right whileplaced in this inclined position to the flat phantom.
11.5 Body Worn Accessory Configurations



To position the device parallel to the phantom surface with either keypad up or down.
To adjust the device parallel to the flat phantom.
To adjust the distance between the device surface and the flat phantom to 1.5 cm or holster surface and
the flat phantom to 0 cm.
Fig.11.5 Illustration for Body Worn Position
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 25 of 113
Report No: CCISE170501701
11.6 Wireless Router (Hotspot) Configurations
Some battery-operated handsets have the capability to transmit and receive internet connectivity
throughsimultaneous transmission of WIFI in conjunction with a separate licensed transmitter. The FCC
hasprovided guidance in KDB Publication 941225 D06 where SAR test considerations for handsets (L x W ≥
9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edgesof the
device with antennas 2.5 cm or closer to the edge of the device, determined from general mixeduse conditions
for this type of devices. Since the hotspot SAR results may overlap with the body-wornaccessory SAR
requirements, the more conservative configurations can be considered, thus excluding some body-worn
accessory SAR tests.
When the user enables the personal wireless router functions for the handset, actual operations
includesimultaneous transmission of both the WIFI transmitter and another licensed transmitter.
Bothtransmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated forSAR
under actual use conditions. Therefore, SAR must be evaluated for each frequency transmissionand mode
separately and summed with the WIFI transmitter according to KDB 648474 publicationprocedures. The
“Portable Hotspot” feature on the handset was NOT activated, to ensure the SARmeasurements were evaluated
for a single transmission frequency RF signal.
Fig.11.6 Illustration for Hotspot Position
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 26 of 113
Report No: CCISE170501701
12 Measurement Procedures
The measurement procedures are as bellows:

 For WWAN power measurement, use base station simulator to configure EUT WWAN transition in
conducted connection with RF cable, at maximum power in each supported wireless interface and
frequency band.
 Read the WWAN RF power level from the base station simulator.
 For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously
transmission, at maximum RF power in each supported wireless interface and frequency band.
 Connect EUT RF port through RF cable to the power meter or spectrum analyzer, and measure WLAN/BT
output power.

 Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering
software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest
power channel.
 Place the EUT in positions as Appendix B demonstrates.
 Set scan area, grid size and other setting on the DASY software.
 Measure SAR results for the highest power channel on each testing position.
 Find out the largest SAR result on these testing positions of each band.
 Measure SAR results for other channels in worst SAR testing position if the Reported SAR or highest
power channel is larger than 0.8 W/kg.
According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value
consists of the following steps:




Power reference measurement
Area scan
Zoom scan
Power drift measurement
12.1 Spatial Peak SAR Evaluation
The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be
conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical
procedures necessary to evaluate the spatial peak SAR value.
The base for the evaluation is a “cube” measurement. The measured volume must include the 1g and 10 g
cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to
the interpolated peak SAR value of a previously performed area scan.
The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The
system always gives the maximum values for 1g and 10g cubes. The algorithm to find the cube with highest
averaged SAR is divided into the following stages:
 Extraction of the measured data (grid and values) from the Zoom Scan.
 Calculation of the SAR value at every measurement point based on all stored data (A/D values and
measurement parameters).
 Generation of a high-resolution mesh within the measured volume.
 Interpolation of all measured values form the measurement grid to the high-resolution grid
 Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to
surface
 Calculation of the averaged SAR within masses of 1g and 10g.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 27 of 113
Report No: CCISE170501701
12.2 Power Reference Measurement
The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the
device under test in the batch process. The minimum distance of probe sensors to surface determines the
closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor
calibration points to probe tip as defined in the probe properties.
12.3 Area & Zoom Scan Procedures
First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement
grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine
the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is
performed around the highest E-field value to determine the averaged SAR-distribution over 10g. Area scan and
zoom scan resolution setting follows KDB 865664 D01v01r04 quoted below.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 28 of 113
Report No: CCISE170501701
12.4 Volume Scan Procedures
The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different
frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The
measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas
transmitting simultaneously in different frequency bands, the volume scan is measured separately in each
frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test
position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all
volume scan were completed, the software, SEMCAD post-processor scan combine and subsequently
superpose these measurement data to calculating the multiband SAR.
12.5 SAR Averaged Methods
In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard’s method. The
interpolation scheme combines a least-square fitted function method and a weighted average method which are
the two basic types of computational interpolation and approximation.
Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner
phantom surface. The extrapolation distance is determined by the surface detection distance and the probe
sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for
the 1g and 10g cubes, the extrapolation distance should not be larger than 5 mm.
12.6 Power Drift Monitoring
All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY
measurement software, the power reference measurement and power drift measurement procedures are used
for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified
reference position before and after the SAR testing. The software will calculate the field difference in dB. If the
power drifts more than 5%, the SAR will be retested.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 29 of 113
Report No: CCISE170501701
13 Conducted RF Output Power
13.1 GSM Conducted Power
Band: GSM 850
Channel
Frequency (MHz)
GSM (GMSK, Voice)
GPRS (GMSK, 1 TX slot)
GPRS (GMSK, 2 TX slots)
GPRS (GMSK, 3 TX slots)
GPRS (GMSK, 4 TX slots)
EGPRS (8PSK, 1 TX slot)
EGPRS (8PSK, 2 TX slots)
EGPRS (8PSK, 3 TX slots)
EGPRS (8PSK, 4 TX slots)
Burst Average Power (dBm)
128
190
251
824.2
836.6
848.8
33.10
33.08
32.95
32.93
32.86
32.73
32.13
32.07
31.96
30.30
30.26
30.15
29.15
29.11
29.01
27.96
27.81
27.64
26.83
26.70
26.51
24.64
24.50
24.26
23.48
23.32
23.16
Frame-Average Power(dBm)
128
190
251
824.2
836.6
848.8
24.07
24.05
23.92
23.90
23.83
23.70
26.11
26.05
25.94
26.04
26.00
25.89
26.14
26.10
26.00
18.93
18.78
18.61
20.81
20.68
20.49
20.38
20.24
20.00
20.47
20.31
20.15
Remark:
1.
2.
The frame-averaged power is linearly reported the maximum burst averaged power over 8 time slots. The calculated
method are shown as below:
The duty cycle “x” of different time slots as below:
1 TX slot is 1/8, 2 TX slots is 2/8, 3 TX slots is 3/8 and 4 TX slots is 4/8
Based on the calculation formula:
Frame-averaged power = Burst averaged power + 10 1og (x)
So,
Frame-averaged power (1 TX slot) = Burst averaged power (1 TX slot)– 9.03
Frame-averaged power (2 TX slots) = Burst averaged power (2 TX slots)– 6.02
Frame-averaged power (3 TX slots) = Burst averaged power (3 TX slots)– 4.26
Frame-averaged power (4 TX slots) = Burst averaged power (4 TX slots) – 3.01
CS1 coding scheme was used in GPRS conducted power measurements and SAR testing, MCS5 coding scheme was
used in EGPRS conducted power measurements and SAR testing (if necessary).
Note:
1.
2.
3.
4.
5.
For Head SAR testing, GSM Voice mode should be evaluated, therefore the EUT was set in GSM 850 Voice mode.
For Body worn SAR testing, GSM Voice mode should be evaluated, therefore the EUT was set in GSM 850 Voice
mode.
For Hotspot mode SAR testing, GPRS and EGPRS mode should be evaluated, therefore the EUT was set in GPRS 4
TX slots mode due to the highest frame-averaged power.
Per KDB447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test
reduction.
The EUT do not support DTM and VoIP function.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 30 of 113
Report No: CCISE170501701
Band: GSM 1900
Channel
Frequency (MHz)
GSM (GMSK, Voice)
GPRS (GMSK, 1 TX slot)
GPRS (GMSK, 2 TX slots)
GPRS (GMSK, 3 TX slots)
GPRS (GMSK, 4 TX slots)
EGPRS (8PSK, 1 TX slot)
EGPRS (8PSK, 2 TX slots)
EGPRS (8PSK, 3 TX slots)
EGPRS (8PSK, 4 TX slots)
Burst Average Power (dBm)
512
661
810
1850.2
1880.0
1909.8
29.55
29.24
28.94
29.44
29.15
28.85
28.70
28.40
28.11
26.89
26.70
26.44
25.82
25.56
25.31
26.63
26.26
25.87
25.42
25.11
24.65
23.37
22.99
22.47
21.86
21.44
20.94
Frame-Average Power(dBm)
512
661
810
1850.2
1880.0
1909.8
20.52
20.21
19.91
20.41
20.12
19.82
22.68
22.38
22.09
22.63
22.44
22.18
22.81
22.55
22.30
17.60
17.23
16.84
19.40
19.09
18.63
19.11
18.73
18.21
18.85
18.43
17.93
Remark:
1.
2.
The frame-averaged power is linearly reported the maximum burst averaged power over 8 time slots. The calculated
method are shown as below:
The duty cycle “x” of different time slots as below:
1 TX slot is 1/8, 2 TX slots is 2/8, 3 TX slots is 3/8 and 4 TX slots is 4/8
Based on the calculation formula:
Frame-averaged power = Burst averaged power + 10 1og (x)
So,
Frame-averaged power (1 TX slot) = Burst averaged power (1 TX slot) – 9.03
Frame-averaged power (2 TX slots) = Burst averaged power (2 TX slots) – 6.02
Frame-averaged power (3 TX slots) = Burst averaged power (3 TX slots) – 4.26
Frame-averaged power (4 TX slots) = Burst averaged power (4 TX slots) – 3.01
CS1 coding scheme was used in GPRS conducted power measurements and SAR testing, MCS5 coding scheme was
used in EGPRS conducted power measurements and SAR testing (if necessary).
Note:
1.
2.
3.
4.
5.
For Head SAR testing, GSM Voice mode should be evaluated, therefore the EUT was set in GSM 1900 Voice mode.
For Body worn SAR testing, GSM Voice mode should be evaluated, therefore the EUT was set in GSM Voice 1900
mode.
For Hotspot mode SAR testing, GPRS and EGPRS mode should be evaluated, therefore the EUT was set in GPRS 4
TX slots mode due to the highest frame-averaged power.
Per KDB447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test
reduction.
The EUT do not support DTM and VoIP function.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 31 of 113
Report No: CCISE170501701
13.2 WCDMA Conducted Power
The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.
A summary of these settings are illustrated below:
HSDPA Setup Configuration:
a. The EUT was connected to Base Station Rohde & Schwarz CMU200 referred to the
SetupConfiguration.
b. The RF path losses were compensated into the measurements.
c. A call was established between EUT and Base Station with following setting:
i.
ii.
iii.
iv.
v.
vi.
vii.
viii.
ix.
x.
xi.
Set Gain Factors (βc and βd) and parameters were set according to each
Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
Set RMC 12.2kbps + HSDPA mode.
Set Cell Power = -86 dBm
Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
Select HSDPA Uplink Parameters
Set Delta ACK, Delta NACK and Delta CQI = 8
Set Ack-Nack Repetition Factor to 3
Set CQI Feedback Cycle (k) to 4 ms
Set CQI Repetition Factor to 2
Power Ctrl Mode = All Up bits
d. The transmitted maximum output power was recorded.
HSDPA Sub-test setup configuration
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 32 of 113
Report No: CCISE170501701
HSUPA Setup Configuration:
a. The EUT was connected to Base Station Rohde & Schwarz CMU200referred to the SetupConfiguration.
b. The RF path losses were compensated into the measurements.
c. A call was established between EUT and Base Station with following setting * :
i.
ii.
iii.
iv.
v.
vi.
vii.
viii.
Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
Set the Gain Factors (βc and βd) and parameters (AG Index) were set according to each specific sub-test
inthe following table, C11.1.3, quoted from the TS 34.121
Set Cell Power = -86 dBm
Set Channel Type = 12.2k + HSPA
Set UE Target Power
Power Ctrl Mode= Alternating bits
Set and observe the E-TFCI
Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest’s E-TFCI
d. The transmitted maximum output power was recorded.
HSUPA Sub-test setup configuration
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 33 of 113
Report No: CCISE170501701
WCDMA Conducted Power:
Band
Channel
Frequency (MHz)
AMR 12.2 kbps
RMC 12.2 kbps
HSDPA Sub-test 1
HSDPA Sub-test 2
HSDPA Sub-test 3
HSDPA Sub-test 4
HSUPA Sub-test 1
HSUPA Sub-test 2
HSUPA Sub-test 3
HSUPA Sub-test 4
HSUPA Sub-test 5
4132
826.4
22.19
22.39
21.38
20.93
19.56
19.42
21.30
21.36
19.51
21.36
20.45
WCDMA Average power (dBm)
WCDMA Band V
4183
4233
9262
836.6
846.6
1852.4
22.08
21.69
22.92
23.22
22.21
21.90
21.21
20.89
22.01
20.84
20.52
21.98
19.07
19.06
20.07
19.10
18.93
19.98
21.08
20.77
21.92
21.20
20.87
21.96
19.17
18.81
19.93
21.18
20.86
22.00
20.25
19.82
22.01
WCDMA Band II
9400
1880.0
22.84
23.10
22.00
21.57
19.94
19.93
21.93
21.98
19.94
22.03
22.01
9538
1907.6
22.95
23.07
22.03
21.59
20.01
19.97
21.92
21.94
20.06
21.96
21.95
Note:
1.
2.
3.
Applying the subtest setup in Table C.11.1.3 of 3GPP TS 34.121-1
Per KDB 941225 D01, RMC 12.2kbps mode is used to evaluate SAR due the highest output power. If AMR 12.2kbps
power is < 0.25dB higherthan RMC 12.2kbps, SAR tests with AMR 12.2kbps can be excluded.
AMR, HSDPA RF power will not be larger than RMC 12.2kbps, detailed information is included inTune-up Procure
exhibit.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 34 of 113
Report No: CCISE170501701
13.3 WLAN 2.4 GHz Band Conducted Power
Channel
CH 01
CH 06
CH 11
Frequency (MHz)
2412
2437
2462
Channel
CH 03
CH 06
CH 09
Average Power (dBm)
802.11 b
15.77
15.75
16.11
Average Power (dBm)
Frequency (MHz)
2422
2437
2452
802.11 g
14.91
17.19
15.27
802.11n (HT20)
15.40
15.05
15.23
802.11n (HT40)
13.17
14.84
13.06
Note:
1.
2.
3.
4.
5.
6.
Per KDB 447498 D01v06, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances
≤50 mm are determined by:
[(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm)] ·[√f(GHz)] ≤ 3.0 for1-g
SAR, where

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison
exclusion
Frequency
Max. Tune-up
Max. Power
Test distance
Channel
Result
thresholds for
(GHz)
Power (dBm)
(mW)
(mm)
1-g SAR
b/CH 11
2.462
16.50
44.67
14.03
3.0
g/CH 06
2.437
17.50
56.23
17.54
3.0
Base on the result of note1, RF exposure evaluation of 802.11 b mode is required.
Per KDB 248227 D01v02r02, choose the highest output power channel to test SAR and determine further SAR
exclusion.
Per KDB 248227 D01v02r02, In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM
configurations to simplify DSSS test requirements.SAR is not required for the following 2.4 GHz OFDM conditions:
1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output
power and the adjusted SAR is ≤ 1.2 W/kg.
The output power of all data rate were pre-scan, just the worst case (the lowest data rate) of all mode were shown in
report.
Per KDB 248227 D01V02r02 section 2.2, when the EUT in continuously transmitting mode, the actual duty cycle is
99.46%, so the duty cycle factor is 1.01.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 35 of 113
Report No: CCISE170501701
13.4 Bluetooth Conducted Power
Channel
CH 01
CH 39
CH 78
Average Power (dBm)(Bluetooth)
Frequency (MHz)
GFSK
π/4-DQPSK
2402
5.72
5.24
5.81
2441
5.33
2480
5.58
4.99
Channel
CH 00
CH 20
CH 39
Average Power (dBm)
Frequency (MHz)
2402
2442
2480
8DPSK
5.24
5.36
5.05
BLE
-1.49
-1.61
-2.22
Note:
1.
2.
3.
4.
Per KDB 447498 D01v06, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances
≤50 mm are determined by:
[(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm)] ·[√f(GHz)] ≤ 3.0 for1-g
SAR, where

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison
exclusion
Frequency
Max. tune-up Max. Power Test distance
thresholds
Channel
Result
(GHz)
Power (dBm)
(mW)
(mm)
for 1-g
SAR
CH 39
2.441
6.0
3.98
1.24
3.0
The max. tune-up power was provided by manufacturer, base on the result of note 1, RF exposure evaluation is not
required.
The output power of all data rate were pre-scan, just the worst case of all mode were shown in report.
When the minimum test separation distance is < 5 mm, a distance of 5 mm according is applied to determine SAR test
exclusion.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 36 of 113
Report No: CCISE170501701
14 Exposure Positions Consideration
14.1 EUT Antenna Locations
Fig.14.1 EUT Antenna Locations
14.2 Test Positions Consideration
Antennas
WWAN
WLAN & Bluetooth
Distance of Antennas to EUT edge/surface
Test distance: 10mm
Top
Bottom
Back
Front
Side
Side
<25mm
<25mm
107mm
<25mm
<25mm
<25mm
<25mm
105mm
Antennas
Back
WWAN
WLAN & Bluetooth
Yes
Yes
Test Positions
Test distance: 10mm
Top
Front
Side
Yes
No
Yes
Yes
Bottom
Side
Yes
No
Right
Side
<25mm
<25mm
Left
Side
<25mm
52mm
Right
Side
Yes
Yes
Left
Side
Yes
No
Note:
1.
2.
3.
Head/Body-worn/Hotspot mode SAR assessments are required.
Referring to KDB 941225 D06v02r01, when the overall device length and width are ≥ 9cm * 5cm, the test distance is
10mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that
surface or edge.
Per KDB 447498 D01v06, for handsets the test separation distance is determined by the smallest distance between the
outer surface of the device and the user, which is 0 mm for head SAR, 10 mm for hotspot SAR, and 10 mm for bodyworn SAR.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 37 of 113
Report No: CCISE170501701
15 SAR Test Results Summary
15.1 Standalone Head SAR Data

GSM Head SAR
Plot
No.
Band/Mode
Test Position
CH.
Freq.
(MHz)
GSM850/Voice
GSM850/Voice
GSM850/Voice
GSM850/Voice
GSM1900/Voice
GSM1900/Voice
GSM1900/Voice
GSM1900/Voice
Right Cheek
Right Tilted
Left Cheek
Left Tilted
Right Cheek
Right Tilted
Left Cheek
Left Tilted
128
128
128
128
512
512
512
512
824.2
824.2
824.2
824.2
1850.2
1850.2
1850.2
1850.2
Ave.
Power
(dBm)
33.10
33.10
33.10
33.10
29.55
29.55
29.55
29.55
Power
Drift
(dB)
0.03
0.10
-0.09
-0.01
-0.06
0.08
-0.00
0.03
ANSI / IEEE C95.1 – SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population

Tune-Up
Limit
(dBm)
33.50
33.50
33.50
33.50
30.00
30.00
30.00
30.00
Meas.
SAR1g
(W/kg)
0.422
0.330
0.481
0.351
0.406
0.175
0.576
0.204
Scaling
Factor
1.096
1.096
1.096
1.096
1.109
1.109
1.109
1.109
Reported
SAR1g
(W/kg)
0.463
0.362
0.527
0.385
0.450
0.194
0.639
0.226
1.6 W/kg (mW/g)
Averaged over 1g
WCDMA Head SAR
Plot
No.
Band/Mode
Test
Position
CH.
Freq.
(MHz)
Band V/RMC
Band V/RMC
Band V/RMC
Band V/RMC
Band II/RMC
Band II/RMC
Band II/RMC
Band II/RMC
Right Cheek
Right Tilted
Left Cheek
Left Tilted
Right Cheek
Right Tilted
Left Cheek
Left Tilted
4132
4132
4132
4132
9262
9262
9262
9262
826.4
826.4
826.4
826.4
1852.4
1852.4
1852.4
1852.4
Ave.
Power
(dBm)
22.39
22.39
22.39
22.39
23.22
23.22
23.22
23.22
Power
Drift
(dB)
0.16
0.11
-0.04
0.20
-0.15
0.07
-0.13
-0.00
ANSI / IEEE C95.1 – SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population

Tune-Up
Limit
(dBm)
22.50
22.50
22.50
22.50
23.50
23.50
23.50
23.50
Meas.
SAR1g
(W/kg)
0.340
0.202
0.337
0.235
0.682
0.265
0.743
0.372
Scaling
Factor
1.026
1.026
1.026
1.026
1.067
1.067
1.067
1.067
Reported
SAR1g
(W/kg)
0.349
0.207
0.346
0.241
0.728
0.283
0.793
0.397
1.6 W/kg (mW/g)
Averaged over 1g
WLAN 2.4 GHz Head SAR
Plot
No.
Band/Mode
Test Position
CH.
Freq.
(MHz)
2.4GHz/802.11b
2.4GHz/802.11b
2.4GHz/802.11b
2.4GHz/802.11b
Right Cheek
Right Tilted
Left Cheek
Left Tilted
11
11
11
11
2462
2462
2462
2462
ANSI / IEEE C95.1 – SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population
Ave. Power
Power Drift
(dBm) (dB)
16.11
0.02
16.11
0.03
16.11
0.31
16.11
0.08
Tune-Up
Limit
(dBm)
16.50
16.50
16.50
16.50
Meas.
SAR1g
(W/kg)
0.355
0.477
0.250
0.164
Scaling D.C
Factor Factor
1.094
1.094
1.094
1.094
1.01
1.01
1.01
1.01
Reported
SAR1g
(W/kg)
0.392
0.527
0.276
0.181
1.6 W/kg (mW/g)
Averaged over 1g
Note:
1.
2.
3.
4.
5.
Per KDB 447498 D01v06, for each exposure position, if the highest output power channel Reported SAR ≤0.8W/kg,
other channels SAR testing is not necessary.
Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required when the
measuredSAR is ≥0.8W/kg.
PerKDB248227 D01v02r02, for 802.11b DSSS , when the reported SAR of the highest measured maximum output
power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required in that exposure
configuration.
Per KDB248227 D01v02r02, OFDM SAR is not required when the highest reported SAR for DSSS is adjusted by the
ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.Cuz the maximum output
power specified for OFDM and DSSS are 56.23mW(17.19dBm) and 44.67mW(16.11dBm), the scaled SAR would be
0.527×(56.23/44.67)=0.676W/Kg﹤1.2 W/kg, therefore, SAR is not required for OFDM.
According toKDB 865664 D02v01r02, SAR plot is required for the highest measured SAR in each exposure
configuration, wireless mode and frequency band combination.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 38 of 113
Report No: CCISE170501701
15.2 Standalone Body SAR

GSM Body SAR
Plot
No.
Band/Mode
Test
Position
CH.
Freq.
(MHz)
GSM850/Voice
GSM850/Voice
GSM1900/Voice
GSM1900/Voice
Front
Back
Front
Back
128
128
512
512
824.2
824.2
1850.2
1850.2
Ave.
Power
(dBm)
33.10
33.10
29.55
29.55
Power
Drift
(dB)
0.14
-0.19
0.07
-0.02
ANSI / IEEE C95.1 – SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population

Tune-Up
Limit
(dBm)
33.50
33.50
30.00
30.00
Meas.
SAR1g
(W/kg)
0.546
0.687
0.400
0.538
Scaling
Factor
1.096
1.096
1.109
1.109
Reported
SAR1g
(W/kg)
0.598
0.753
0.444
0.597
1.6 W/kg (mW/g)
Averaged over 1g
WCDMA Body SAR
Plot
No.
Band/Mode
Test
Position
CH.
Freq.
(MHz)
Band V/RMC
Band V/RMC
Band II/RMC
Band II/RMC
Band II/RMC
Band II/RMC
Band II/RMC
Front
Back
Front
Back
Back
Back
Back
4132
4132
9262
9262
9262
9400
9538
826.4
826.4
1852.4
1852.4
1852.4
1880.0
1907.6
Ave.
Power
(dBm)
22.39
22.39
23.22
23.22
23.22
23.10
23.07
Power
Drift
(dB)
0.01
-0.09
-0.07
-0.04
-0.07
-0.17
-0.09
ANSI / IEEE C95.1 – SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population

Tune-Up
Limit
(dBm)
22.50
22.50
23.50
23.50
23.50
23.50
23.50
Meas.
SAR1g
(W/kg)
0.486
0.613
0.651
0.969
0.925
0.899
0.736
Scaling
Factor
1.026
1.026
1.067
1.067
1.067
1.096
1.104
Reported
SAR1g
(W/kg)
0.499
0.629
0.695
1.034
0.987
0.985
0.813
1.6 W/kg (mW/g)
Averaged over 1g
WLAN 2.4 GHz Body SAR
Plot
No.
10
Band/Mode
Test
Position
CH.
Freq.
(MHz)
2.4GHz/802.11b
2.4GHz/802.11b
Front
Back
11
11
2462
2462
Ave.
Power
(dBm)
16.11
16.11
ANSI / IEEE C95.1 – SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population
Power
Drift
(dB)
-0.05
0.06
Tune-Up
Limit
(dBm)
16.50
16.50
Meas.
SAR1g
(W/kg)
0.056
0.070
Scaling D.C
Factor Factor
1.094
1.094
1.01
1.01
Reported
SAR1g
(W/kg)
0.062
0.077
1.6 W/kg (mW/g)
Averaged over 1g
Note:
1.
2.
3.
4.
5.
6.
7.
8.
9.
Body-worn SAR testing was performed at 10mm separation, and this distance is determined by the
handsetmanufacturer that there will be body-worn accessories that users may acquire at the time of equipment
certification,to enable users to purchase aftermarket body-worn accessories with the required minimum separation.
Per KDB 941225 D06v02r01, when the same wireless modes and device transmission configurations are required for
testingbody-worn accessories and hotspot mode, it is not necessary to test body-worn accessory SAR for the same
deviceorientation if the test separation distance for hotspot mode is more conservative than that used for bodywornaccessories.
Body-worn exposure conditions are intended to voice call operations, therefore GSM voice call is selected to betested.
Per KDB 648474 D04v01r03, when the ReportedSAR for a body-worn accessory measured without a headset
connectedto the handset is ≤ 1.2 W/kg, SAR testing with a headset connected to the handset is not required.
The WLAN SAR perform the front and back position, due considered the simultaneous SAR for body-worn.
Per KDB 447498 D01v06, for each exposure position, if the highest output channel Reported SAR ≤0.8W/kg, other
channels SAR testing is not necessary.
Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required when the
measuredSAR is ≥0.8W/kg.
According toKDB 865664 D02v01r02, SAR plot is required for the highest measured SAR in each exposure
configuration, wireless mode and frequency band combination.
Highlight part of test data means repeated test.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 39 of 113
Report No: CCISE170501701
15.3 Body SAR in Hotspot Mode

GSM Body SAR in Hotspot mode
Plot
No.
11
12
Band/Mode
Test
Position
CH.
Freq.
(MHz)
GPRS850/4 slots
GPRS850/4 slots
GPRS850/4 slots
GPRS850/4 slots
GPRS850/4 slots
GPRS850/4 slots
GPRS850/4 slots
GPRS850/4 slots
GPRS850/4 slots
GPRS850/4 slots
GPRS850/4 slots
GPRS1900/4 slots
GPRS1900/4 slots
GPRS1900/4 slots
GPRS1900/4 slots
GPRS1900/4 slots
GPRS1900/4 slots
GPRS1900/4 slots
GPRS1900/4 slots
Front
Front
Front
Front
Back
Back
Back
Back
Left
Right
Bottom
Front
Back
Back
Back
Back
Left
Right
Bottom
128
128
190
251
128
128
190
251
128
128
128
512
512
661
661
810
512
512
512
824.2
824.2
836.6
848.8
824.2
824.2
836.6
848.8
824.2
824.2
824.2
1850.2
1850.2
1880.0
1880.0
1909.8
1850.2
1850.2
1850.2
Ave.
Power
(dBm)
29.15
29.15
29.11
29.01
29.15
29.15
29.11
29.01
29.15
29.15
29.15
25.82
25.82
25.56
25.56
25.31
25.82
25.82
25.82
Power
Drift
(dB)
0.02
0.10
-0.31
0.22
-0.07
-0.21
-0.01
0.02
0.01
-0.32
-0.20
0.01
-0.08
-0.16
-0.21
-0.21
0.20
-0.16
-0.07
ANSI / IEEE C95.1 – SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population

Plot
No.
10
Scaling
Factor
1.084
1.084
1.094
1.119
1.084
1.084
1.094
1.119
1.084
1.084
1.084
1.042
1.042
1.107
1.107
1.172
1.042
1.042
1.042
Reported
SAR1g
(W/kg)
0.882
0.879
0.863
0.852
1.182
1.160
1.127
1.119
0.112
0.229
0.115
0.738
0.883
0.973
0.910
0.939
0.242
0.431
0.685
1.6 W/kg (mW/g)
Averaged over 1g
Band/Mode
Test
Position
CH.
Freq.
(MHz)
Band V/RMC
Band V/RMC
Band V/RMC
Band V/RMC
Band V/RMC
Band II/RMC
Band II/RMC
Band II/RMC
Band II/RMC
Band II/RMC
Band II/RMC
Band II/RMC
Band II/RMC
Front
Back
Left
Right
Bottom
Front
Back
Back
Back
Back
Left
Right
Bottom
4132
4132
4132
4132
4132
9262
9262
9262
9400
9538
9262
9262
9262
826.4
826.4
826.4
826.4
826.4
1852.4
1852.4
1852.4
1880.0
1907.6
1852.4
1852.4
1852.4
Ave.
Power
(dBm)
22.39
22.39
22.39
22.39
22.39
23.22
23.22
23.22
23.10
23.07
23.22
23.22
23.22
ANSI / IEEE C95.1 – SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population

Meas.
SAR1g
(W/kg)
0.814
0.811
0.789
0.761
1.090
1.070
1.030
1.000
0.103
0.211
0.106
0.708
0.847
0.879
0.822
0.801
0.232
0.414
0.657
WCDMA Body SAR in Hotspot mode
Plot
No.
Tune-Up
Limit
(dBm)
29.50
29.50
29.50
29.50
29.50
29.50
29.50
29.50
29.50
29.50
29.50
26.00
26.00
26.00
26.00
26.00
26.00
26.00
26.00
Power
Drift
(dB)
0.01
-0.09
-0.14
0.19
0.28
-0.07
-0.04
-0.07
-0.17
-0.09
-0.17
0.25
0.28
Tune-Up
Limit
(dBm)
22.50
22.50
22.50
22.50
22.50
23.50
23.50
23.50
23.50
23.50
23.50
23.50
23.50
Meas.
SAR1g
(W/kg)
0.486
0.613
0.087
0.102
0.076
0.651
0.969
0.925
0.899
0.736
0.270
0.354
0.641
Scaling
Factor
1.026
1.026
1.026
1.026
1.026
1.067
1.067
1.067
1.096
1.104
1.067
1.067
1.067
Reported
SAR1g
(W/kg)
0.499
0.629
0.089
0.105
0.078
0.695
1.034
0.987
0.985
0.813
0.288
0.378
0.684
1.6 W/kg (mW/g)
Averaged over 1g
WLAN 2.4GHz Body SAR in Hotspot mode
Band/Mode
Test
Position
CH.
Freq.
(MHz)
2.4GHz/802.11b
2.4GHz/802.11b
2.4GHz/802.11b
2.4GHz/802.11b
Front
Back
Right
Top
11
11
11
11
2462
2462
2462
2462
Ave.
Power
(dBm)
16.11
16.11
16.11
16.11
ANSI / IEEE C95.1 – SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population
Power
Drift
(dB)
-0.05
0.06
-0.31
-0.30
TuneUp Limit
(dBm)
16.50
16.50
16.50
16.50
Meas.
SAR1g
(W/kg)
0.056
0.070
0.025
0.039
Scaling
Factor
D.C
Factor
1.094
1.094
1.094
1.094
1.01
1.01
1.01
1.01
Reporte
d SAR1g
(W/kg)
0.062
0.077
0.028
0.043
1.6 W/kg (mW/g)
Averaged over 1g
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 40 of 113
Report No: CCISE170501701
Note:
1.
2.
3.
4.
5.
6.
7.
Per KDB 447498 D01v06, for each exposure position, if the highest output channel Reported SAR ≤0.8W/kg,
otherchannels SAR testing is not necessary.
Additional WLAN SAR testing was performed for simultaneous transmission analysis.
For Hotspot SAR testing, per KDB 941225 D06v02r01, for EUT dimension ≥ 9cm*5cm, the test distance is 10mm. SAR
mustbe measured for all surfaces and sides with a transmitting antenna located within 2.5cm from that surface or edge.
Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA output power is <0.25dB
higher than RMC 12.2kbps, or Reported SAR with RMC 12.2kbps setting is ≤ 1.2W/kg, HSDPA SAR evaluationcan be
excluded.
Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required when the
measuredSAR is ≥0.8W/kg.
According toKDB 865664 D02v01r02, SAR plot is required for the highest measured SAR in each exposure
configuration, wireless mode and frequency band combination.
Highlight part of test data means repeated test.
15.4 Repeated SAR measurement
Band/ Mode
Test Position
CH.
Freq.
(MHz)
Original
Band II/RMC
GPRS850/4 slots
GPRS850/4 slots
GPRS1900/4 slots
Back
Front
Back
Back
9262
128
128
661
1852.4
824.2
824.2
1880.0
0.969
0.814
1.09
0.879
ANSI / IEEE C95.1 – SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population
Measured SAR (W/kg)
st
nd
1 Repeated
2 Repeated
Value
Ratio
Value
Ratio
0.925
1.05
0.811
1.00
1.01
1.08
0.822
1.07
1.6 W/kg (mW/g)
Averaged over 1g
Note:
1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when
themeasuredSAR is ≥0.8W/kg
2. Per KDB 865664 D01v01r04, if the ratio of original and repeated is ≤ 1.2and the measured SAR <1.45W/kg,only one
repeated measurement is required.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 41 of 113
Report No: CCISE170501701
15.5 Multi-Band Simultaneous Transmission Considerations
 Simultaneous Transmission Capabilities
According to FCC KDB Publication 447498 D01v06, transmitters are considered to be
transmittingsimultaneously when there is overlapping transmission, with the exception of transmissions
duringnetwork hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths
forthe EUT are shown in below Figure and are color-coded to indicate communication modes which share
thesame path. Modes which share the same transmission path cannot transmit simultaneously with oneanother.
Path 1
Path 2
GSM/WCDMA
Bluetooth/WLAN
Fig.15.1 Simultaneous Transmission Paths
 Simultaneous Transmission Procedures
This device contains transmitters that may operate simultaneously. Therefore simultaneous
transmissionanalysis is required. Per FCC KDB 447498 D01v06, simultaneous transmission SAR testexclusion
may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas ina specific a
physical test configuration is ≤1.6 W/kg. When standalone SAR is not required to bemeasured, per FCC KDB
447498 D01v06 4.3.2), the following equation must be used to estimate thestandalone 1g SAR for simultaneous
transmission assessment involving that transmitter.
Estimated SAR =
Mode
Bluetooth
Max. tune-up
Power (dBm)
6.0
f (GHz) Max. power of channel, mW

7.5
Min.Separation Distance, mm
Exposure Position
Test Distance (mm)
Estimated SAR (W/kg)
Head
0.166
Body
10
0.083
Hotspot
10
0.083
Note:
1.
When the minimum test separation distance is < 5 mm, a distance of 5 mm according is applied to determine estimated
SAR.

Multi-Band simultaneous Transmission Consideration
Position
Simultaneous
Transmission
Consideration
Head
Body
Hotspot
Applicable Combination
WWAN (Voice) + WLAN 2.4 GHz
WWAN (Voice) + Bluetooth
WWAN (Voice) + WLAN 2.4 GHz
WWAN (Voice) + Bluetooth
WWAN (Data) + WLAN 2.4 GHz
WWAN (Data) + Bluetooth
Note:
1.
2.
3.
4.
WLAN 2.4GHz Band and Bluetooth share the same antenna, and cannot transmit simultaneously.
GSM/WCDMA shares the same antenna, and cannot transmit simultaneously.
The Report SAR summation is calculated based on the same configuration and test position.
Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if,
i.
Scalar SAR summation < 1.6W/kg.
1.5
ii.
SPLSR = (SAR1+ SAR2)
/ (min. separation distance, mm), and the peak separation distance is
determinedfrom the square root of [(x1-x2) + (y1-y2) + (z1-z2) ], where (x1, y1, z1) and (x2, y2, z2) are the
coordinates of theextrapolated peak SAR locations in the zoom scanIf SPLSR ≤ 0.04, simultaneously
transmission SAR measurement is not necessary
iii.
Simultaneously transmission SAR measurement, and the Reported multi-band SAR < 1.6W/kg
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 42 of 113
Report No: CCISE170501701
15.6 SAR Simultaneous Transmission Analysis

Head Simultaneous Transmission
WWAN
Mode
GSM850
WWAN
Mode
GSM
1900
WWAN
Mode
WCDMA
Band V
WWAN
Mode
WCDMA
Band II
Position
WWAN
SAR1g(
W/kg)
WLAN
SAR1g
(W/kg)
ƩSAR
(W/kg)
Right Cheek
0.463
0.392
0.855
Right Tilted
0.362
0.527
0.889
Left Cheek
0.527
0.276
0.803
Left Tilted
0.385
0.181
0.566
Position
WWAN
SAR1g(
W/kg)
WLAN
SAR1g
(W/kg)
ƩSAR
(W/kg)
Right Cheek
0.450
0.392
0.842
Right Tilted
0.194
0.527
0.721
Left Cheek
0.639
0.276
0.915
Left Tilted
0.226
0.181
0.407
Position
WWAN
SAR1g(
W/kg)
WLAN
SAR1g
(W/kg)
ƩSAR
(W/kg)
Right Cheek
0.349
0.392
0.741
Right Tilted
0.207
0.527
0.734
Left Cheek
0.346
0.276
0.622
Left Tilted
0.241
0.181
0.422
Position
WWAN
SAR1g(
W/kg)
WLAN
SAR1g
(W/kg)
ƩSAR
(W/kg)
Right Cheek
WWAN
Mode
GSM850
WWAN
Mode
GSM
1900
WWAN
Mode
WCDMA
Band V
Position
WWAN
SAR1g(
W/kg)
Right Cheek
0.463
Bluetooth
Estimated
SAR1g(W/
kg)
0.166
Right Tilted
0.362
0.166
0.528
Left Cheek
0.527
0.166
0.693
Left Tilted
0.385
0.166
0.551
Position
WWAN
SAR1g(
W/kg)
Right Cheek
0.450
Bluetooth
Estimated
SAR1g
(W/kg)
0.166
Right Tilted
0.194
0.166
0.360
Left Cheek
0.639
0.166
0.805
Left Tilted
0.226
0.166
0.392
Position
WWAN
SAR1g(
W/kg)
Right Cheek
0.349
Bluetooth
Estimated
SAR1g(W/
kg)
0.166
Right Tilted
0.207
0.166
0.373
Left Cheek
0.346
0.166
0.512
Left Tilted
0.241
0.166
0.407
Position
WWAN
SAR1g(
W/kg)
ƩSAR
(W/kg)
0.629
ƩSAR
(W/kg)
0.616
ƩSAR
(W/kg)
0.515
0.728
0.392
1.120
Right Cheek
0.728
Bluetooth
Estimated
SAR1g(W/
kg)
0.166
Right Tilted
0.283
0.527
0.810
Right Tilted
0.283
0.166
0.449
Left Cheek
0.793
0.276
1.069
Left Cheek
0.793
0.166
0.959
Left Tilted
0.397
0.181
0.578
Left Tilted
0.397
0.166
0.563
WWAN
Mode
WCDMA
Band II
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
ƩSAR
(W/kg)
0.894
Project No.: CCISE1705017
Page 43 of 113
Report No: CCISE170501701

Body worn Simultaneous Transmission
WWAN
Mode
GSM850
WWAN
Mode
GSM
1900
WWAN
Mode
WCDMA
Band V
WWAN
Mode
WCDMA
Band II
Position
WWAN
SAR1g(
W/kg)
WLAN
SAR1g
(W/kg)
ƩSAR
(W/kg)
Front
0.598
0.062
0.660
Back
0.753
0.077
0.830
Position
WWAN
SAR1g(
W/kg)
WLAN
SAR1g
(W/kg)
ƩSAR
(W/kg)
WWAN
Mode
Front
0.444
0.062
0.506
Back
0.597
0.077
0.674
GSM
1900
Position
WWAN
SAR1g(
W/kg)
WLAN
SAR1g(
W/kg)
ƩSAR
(W/kg)
WWAN
Mode
Front
0.499
0.062
0.561
Back
0.629
0.077
0.706
WCDMA
Band V
Position
WWAN
SAR1g(
W/kg)
WLAN
SAR1g
(W/kg)
ƩSAR
(W/kg)
WWAN
Mode
Front
0.695
0.062
0.757
Back
1.034
0.077
1.111
WCDMA
Band II
WWAN
Mode
GSM850
Position
WWAN
SAR1g(
W/kg)
Front
0.598
Bluetooth
Estimated
SAR1g(W/
kg)
0.083
Back
0.753
0.083
Position
WWAN
SAR1g(
W/kg)
Front
0.444
Bluetooth
Estimated
SAR1g(W/
kg)
0.083
Back
0.597
0.083
Position
WWAN
SAR1g(
W/kg)
Front
0.499
Bluetooth
Estimated
SAR1g
(W/kg)
0.083
Back
0.629
0.083
Position
WWAN
SAR1g(
W/kg)
Front
0.695
Bluetooth
Estimated
SAR1g(W/
kg)
0.083
Back
1.034
0.083
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
ƩSAR
(W/kg)
0.681
0.836
ƩSAR
(W/kg)
0.527
0.68
ƩSAR
(W/kg)
0.582
0.712
ƩSAR
(W/kg)
0.778
1.117
Project No.: CCISE1705017
Page 44 of 113
Report No: CCISE170501701

Hotspot mode Simultaneous Transmission
WWAN
Mode
GSM850
WWAN
Mode
GSM
1900
WWAN
Mode
WCDMA
Band V
WWAN
Mode
WCDMA
Band II
Position
WWAN
SAR1g(
W/kg)
0.944
Front
0.882
Bluetooth
Estimated
SAR1g(W/
kg)
0.083
1.259
Back
1.182
0.083
1.265
Left
0.112
0.112
Right
0.229
0.083
0.312
Top
0.083
0.083
Bottom
0.115
0.115
Position
WWAN
SAR1g(
W/kg)
0.800
Front
0.738
Bluetooth
Estimated
SAR1g(W/
kg)
0.083
0.077
1.050
Back
0.973
0.083
1.056
0.242
Left
0.242
0.242
0.431
0.028
0.459
Right
0.431
0.083
0.514
Position
WWAN
SAR1g(
W/kg)
WLAN
SAR1g(
W/kg)
ƩSAR
(W/kg)
Front
0.882
0.062
Back
1.182
0.077
Left
0.112
0.112
Right
0.229
0.028
0.257
Top
0.043
0.043
Bottom
0.115
0.115
Position
WWAN
SAR1g(
W/kg)
WLAN
SAR1g
(W/kg)
ƩSAR
(W/kg)
Front
0.738
0.062
Back
0.973
Left
0.242
Right
WWAN
Mode
GSM850
WWAN
Mode
GSM
1900
ƩSAR
(W/kg)
0.965
ƩSAR
(W/kg)
0.821
Top
0.043
0.043
Top
0.083
0.083
Bottom
0.685
0.685
Bottom
0.685
0.685
Position
WWAN
SAR1g(
W/kg)
WLAN
SAR1g
(W/kg)
ƩSAR
(W/kg)
Position
WWAN
SAR1g(
W/kg)
Front
0.499
0.062
0.561
Front
0.499
Bluetooth
Estimated
SAR1g(W/
kg)
0.083
Back
0.629
0.077
0.706
Back
0.629
0.083
0.712
Left
0.089
0.089
Left
0.089
0.089
Right
0.105
0.028
0.133
Right
0.105
0.083
0.188
Top
0.043
0.043
Top
0.083
0.083
Bottom
0.078
0.078
Bottom
0.078
0.078
Position
WWAN
SAR1g(
W/kg)
WLAN
SAR1g
(W/kg)
ƩSAR
(W/kg)
Position
WWAN
SAR1g(
W/kg)
Front
0.695
0.062
0.757
Front
0.695
Bluetooth
Estimated
SAR1g(W/
kg)
0.083
Back
1.034
0.077
1.111
Back
1.034
0.083
1.117
Left
0.288
0.288
Left
0.288
0.288
0.406
0.461
0.043
0.043
Top
0.378
0.083
Top
0.378
0.028
0.083
0.083
Bottom
0.684
0.684
Bottom
0.684
0.684
Right
WWAN
Mode
WCDMA
Band V
WWAN
Mode
WCDMA
Band II
Right
ƩSAR
(W/kg)
0.582
ƩSAR
(W/kg)
0.778
 Simultaneous Transmission Conclusion
The above numerical summed SAR results for all the case simultaneous transmission conditions were below
the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneoustransmission cases will
not exceed the SAR limit and therefore no measured volumetric simultaneousSAR summation is required per
FCC KDB Publication 447498 D01v06.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 45 of 113
Report No: CCISE170501701
15.7 Measurement Uncertainty
The component of uncertainly may generally be categorized according to the methods used to evaluate them.
Theevaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation
ofuncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of
observation istermed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is
represented by anestimated standard deviation, termed standard uncertainty, which is determined by the
positive square root of theestimated variance.
A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data.
Thisincludes calculating the standard deviation of the mean of a series of independent observations; using the
method ofleast squares to fit a curve to the data in order to estimate the parameter of the curve and their
standard deviations; orcarrying out an analysis of variance in order to identify and quantify random effects in
certain kinds of measurement.
A Type B evaluation of standard uncertainty is typically based on scientific judgment using all of the
relevantinformation available. These may include previous measurement data, experience, and knowledge of
the behaviorand properties of relevant materials and instruments, manufacture’s specification, data provided in
calibration reportsand uncertainties assigned to reference data taken from handbooks. Broadly speaking, the
uncertainty is eitherobtained from an outdoor source or obtained from an assumed distribution, such as the
normal distribution,rectangular or triangular distributions indicated in below Table.
UncertaintyDistributions
Normal
Multi-plying Factor
1/k(b)
Rectangular
Triangular
U-Shape
1/ 3
1/ 6
1/ 2
Standard Uncertainty for Assumed Distribution
The combined standard uncertainty of the measurement result represents the estimated standard deviation of
theresult. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation
usingthe usual “root-sum-squares” (RSS) methods of combining standard deviations by taking the positive
square root ofthe estimated variances.
Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within
whichthe measured value is confidently believed to lie. It is obtained by multiplying the combined standard
uncertainty by acoverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor
allows the true value of ameasured quantity to be specified with a defined probability within the specified
uncertainty range. For purpose of thisdocument, a coverage factor two is used, which corresponds to
confidence interval of about 95 %. The DASYuncertainty Budget is shown in the following tables.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 46 of 113
Report No: CCISE170501701
Section
Uncert.
Value
Prob.
Dist.
Div.
(Ci)
(1 g)
(Ci)
(10 g)
Std. Unc.
(1 g)
Std. Unc.
(10 g)
Vi
Probe Calibration
E.2.1
±6.0%
±6.0%
±6.0%
∞
Axial Isotropy
E.2.2
±0.5%
0.7
0.7
±0.20%
±0.20%
∞
Hemispherical Isotropy
E.2.2
±2.6%
0.7
0.7
±1.05%
±1.05%
∞
Boundary Effects
E.2.3
±1.0%
±0.58%
±0.58%
∞
Linearity
E.2.4
±0.6%
±0.35%
±0.35%
∞
System Detection Limits
E.2.5
±0.25%
±0.14%
±0.14%
∞
Readout Electronics
E.2.6
±0.3%
±0.3%
±0.3%
∞
Response Time
E.2.7
±0.8%
±0.46%
±0.46%
∞
Integration Time
E.2.8
±2.6%
±1.5%
±1.5%
∞
RF Ambient Noise
E.6.1
±3.0%
±1.73%
±1.73%
∞
RF Ambient Reflections
E.6.1
±3.0%
±1.73%
±1.73%
∞
E.6.2
±0.4%
±0.23%
±0.23%
∞
E.6.3
±2.9%
±1.67%
±1.67%
∞
E.5
±1.0%
±0.58%
±0.58%
∞
Device Positioning
E.4.2
±4.6%
±4.6%
±4.6%
M-1
Device Holder
E.4.1
±5.2%
±5.2%
±5.2%
M-1
Power Drift
6.6.2
±5.0%
±2.89%
±2.89%
∞
Phantom Uncertainty
E.3.1
±4.0%
±2.31%
±2.31%
∞
Liquid Conductivity(Target)
E.3.2
±5.0%
0.64
0.43
±1.85%
±1.24%
∞
Liquid Conductivity(Meas.)
E.3.3
±2.5%
0.64
0.43
±1.64%
±1.08%
Liquid Permittivity(Target)
E.3.2
±5.0%
0.6
0.49
±1.73%
±1.41%
∞
Liquid Permittivity(Meas.)
E.3.3
±2.5%
0.6
0.49
±1.5%
±1.23%
±11.07%
±10.84%
Uncertainty Component
Measurement System
Probe positioner mechanical
tolerances
Probe positioning tolerance
with respect to the phantom
shell surface
Interpolation, extrapolation,
and integration algorithm
For max. SAR Evaluation.
Test Sample Related
Phantom and Setup
Combined Standard Uncertainty (RSS)
±22.2%
±21.7%
Expanded Uncertainty (95% Confidence Level, k = 2)
Uncertainty Budget for frequency range 300 MHz to 3 GHz according to IEEE1528-2013
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 47 of 113
Report No: CCISE170501701
15.8 Measurement Conclusion
The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and
Industry Canada, with respect to all parameters subject to this test. These measurements were taken to
simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken
to assure repeatability of the tests. The results and statements relate only to the item(s) tested. Please note that
the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend
on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the
electrical properties of both the body and the environment. Other variables that may play a substantial role in
possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity,
relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level,
debilitation, or disease). Because various factors may interact with one another to vary the specific biological
outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of
biological effects as a result of field-body interactions, environmental conditions, and physiological variables.
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 48 of 113
Report No: CCISE170501701
16 Reference
[1]. FCC 47 CFR Part 2 “Frequency Allocations and Radio Treaty Matters; General Rules andRegulations”
[2]. ANSI/IEEE Std. C95.1-2005, “IEEE Standard for Safety Levels with Respect to Human Exposureto Radio
Frequency Electromagnetic Fields, 3 kHz to 300 GHz”, September 1992
[3]. IEEE Std. 1528-2013, “Recommended Practice for Determining the Peak Spatial-AverageSpecific
Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:Measurement
Techniques”, September2013
[4]. SPEAG DASY52 System Handbook
[5]. FCC KDB 248227 D01 v02r02, “SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS”, October
2015
[6]. FCC KDB 447498 D01 v06, “RF EXPOSURE PROCEDURES AND EQUIPMENT AUTHORIZATION
POLICIES FOR MOBILE AND PORTABLE DEVICES”, October 2015
[7]. FCC KDB 648474 D04 v01r03, “SAR EVALUATION CONSIDERATIONS FOR WIRELESS HANDSETS”,
October 2015
[8]. FCC KDB 941225 D01 v03r01, “3G SAR MEAUREMENT PROCEDURES”, October 2015
[9]. FCC KDB 941225 D03 v01, “Recommended SAR Test Reduction Procedures for GSM / GPRS /EDGE”,
December 2008
[10]. FCC KDB 941225 D06 v02r01, "SAR EVALUATION PROCEDURES FOR PORTABLE DEVICES WITH
WIRELESS ROUTER CAPABILITIES", October 2015
[11]. FCC KDB 865664 D01 v01r04, “SAR MEASUREMENT REQUIREMENTS FOR 100 MHz TO 6 GHz”,
August2015
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 49 of 113
Report No: CCISE170501701
Appendix A: EUT Photos
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 50 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 51 of 113
Report No: CCISE170501701
Appendix B: TestSetup Photos
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 52 of 113
Report No: CCISE170501701
Head
Right Cheek
Right Tilted
Left Cheek
Left Tilted
Body
Front side (10mm)
Back side(10mm)
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 53 of 113
Report No: CCISE170501701
Top side(10mm)
Bottom side(10mm)
Left side(10mm)
Right side(10mm)
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 54 of 113
Report No: CCISE170501701
Appendix C: Plots of SAR System Check
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 55 of 113
Report No: CCISE170501701
Test Laboratory: CCIS
Date/Time: 05.12.2017 09:30:18
DUT: Dipole 835 MHz; Type: D835V2; Serial: SN:4d154
Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1
Medium parameters used: f = 835 MHz; σ = 0.911 S/m; εr = 41.320; ρ = 1000 kg/m3
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)
DASY Configuration:





Probe: EX3DV4 - SN3924; ConvF(9.46, 9.46, 9.46); Calibrated: 06.22.2016;
Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
Electronics: DAE4 Sn1373; Calibrated: 02.09.2017
Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)
System Performance Check at Frequency 835 MHz Head Tissue/d=15mm,
Pin=80 mW, dist=2.0mm (EX-Probe)/Area Scan (41x131x1): Interpolated grid:
dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.951 W/kg
System Performance Check at Frequency 835 MHz Head Tissue/d=15mm,
Pin=80 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (5x5x7)/Cube 0:
Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 33.58 V/m; Power Drift = -0.05 dB
Peak SAR (extrapolated) = 1.15 W/kg
SAR(1 g) = 0.748 W/kg; SAR(10 g) = 0.484 W/kg
Maximum value of SAR (measured) = 0.941 W/kg
0 dB = 0.941 W/kg = -0.26 dBW/kg
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 56 of 113
Report No: CCISE170501701
Test Laboratory: CCIS
Date/Time: 05.10.2017 15:00:19
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d175
Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1
Medium parameters used: f = 1900 MHz; σ = 1.419 S/m; εr = 40.162; ρ = 1000 kg/m3
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)
DASY Configuration:





Probe: EX3DV4 - SN3924; ConvF(7.94, 7.94, 7.94); Calibrated: 06.22.2016;
Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
Electronics: DAE4 Sn1373; Calibrated: 02.09.2017
Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)
System Performance Check at Frequency 1900MHz Head Tissue/d=10mm,
Pin=40 mW, dist=2.0mm (EX-Probe)/Area Scan (41x51x1): Interpolated grid:
dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 2.48 W/kg
System Performance Check at Frequency 1900MHz Head Tissue/d=10mm,
Pin=40 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (5x5x7)/Cube 0:
Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 40.87 V/m; Power Drift = -0.05 dB
Peak SAR (extrapolated) = 3.23 W/kg
SAR(1 g) = 1.65 W/kg; SAR(10 g) = 0.812 W/kg
Maximum value of SAR (measured) = 2.41 W/kg
0 dB = 2.41 W/kg = 3.82 dBW/kg
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 57 of 113
Report No: CCISE170501701
Test Laboratory: CCIS
Date/Time: 05.09.2017 07:39:20
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: SN:910
Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1
Medium parameters used: f = 2450 MHz; σ = 1.829 S/m; εr = 38.696; ρ = 1000 kg/m3
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)
DASY Configuration:





Probe: EX3DV4 - SN3924; ConvF(7.33, 7.33, 7.33); Calibrated: 06.22.2016;
Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 31.0
Electronics: DAE4 Sn1373; Calibrated: 02.09.2017
Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)
System Performance Check at Frequency 2450MHz Head Tissue/d=10mm,
Pin=40 mW, dist=2.0mm (EX-Probe)/Area Scan (51x61x1): Interpolated grid:
dx=1.200 mm, dy=1.200 mm
Maximum value of SAR (interpolated) = 3.41 W/kg
System Performance Check at Frequency 2450MHz Head Tissue/d=10mm,
Pin=40 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:
Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 39.01 V/m; Power Drift = 0.03 dB
Peak SAR (extrapolated) = 4.51 W/kg
SAR(1 g) = 2.04 W/kg; SAR(10 g) = 0.972 W/kg
Maximum value of SAR (measured) = 3.25 W/kg
0 dB = 3.25 W/kg = 5.12 dBW/kg
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 58 of 113
Report No: CCISE170501701
Test Laboratory: CCIS
Date/Time: 05.11.2017 17:12:30
DUT: Dipole 835 MHz; Type: D835V2; Serial: SN:4d154
Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): f = 835 MHz; σ = 0.984 S/m; εr = 55.061; ρ = 1000
kg/m3
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)
DASY Configuration:





Probe: EX3DV4 - SN3924; ConvF(9.88, 9.88, 9.88); Calibrated: 06.22.2016;
Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
Electronics: DAE4 Sn1373; Calibrated: 02.09.2017
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)
System Performance Check at Frequency 835 MHz Body Tissue/d=15mm,
Pin=80 mW, dist=2.0mm (EX-Probe)/Area Scan (41x131x1): Interpolated grid:
dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.983 W/kg
System Performance Check at Frequency 835 MHz Body Tissue/d=15mm,
Pin=80 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (5x5x7)/Cube 0:
Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 31.80 V/m; Power Drift = -0.04dB
Peak SAR (extrapolated) = 1.02 W/kg
SAR(1 g) = 0.790 W/kg; SAR(10 g) = 0.511 W/kg
Maximum value of SAR (measured) = 0.974 W/kg
0 dB = 0.974 W/kg = -0.11dBW/kg
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 59 of 113
Report No: CCISE170501701
Test Laboratory: CCIS
Date/Time: 05.09.2017 15:17:29
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d175
Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1
Medium parameters used: f = 1900 MHz; σ = 1.512 S/m; εr = 53.138; ρ = 1000 kg/m3
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)
DASY Configuration:





Probe: EX3DV4 - SN3924; ConvF(7.7, 7.7, 7.7); Calibrated: 06.22.2016;
Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
Electronics: DAE4 Sn1373; Calibrated: 02.09.2017
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)
System Performance Check at Frequency 1900MHz Body Tissue/d=10mm,
Pin=40 mW, dist=2.0mm (EX-Probe)/Area Scan (41x51x1): Interpolated grid:
dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 2.33 W/kg
System Performance Check at Frequency 1900MHz Body Tissue/d=10mm,
Pin=40 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (5x5x7)/Cube 0:
Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 37.86 V/m; Power Drift =0.12 dB
Peak SAR (extrapolated) = 2.67 W/kg
SAR(1 g) = 1.58 W/kg; SAR(10 g) = 0.813 W/kg
Maximum value of SAR (measured) = 2.16 W/kg
0 dB = 2.16 W/kg = 3.34 dBW/kg
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 60 of 113
Report No: CCISE170501701
Test Laboratory: CCIS
Date/Time: 05.16.2017 13:41:47
DUT: Dipole 2450 MHz ; Type: D2450V2; Serial: SN:910
Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1
Medium parameters used: f = 2450 MHz; σ = 1.934 S/m; εr = 52.494; ρ = 1000 kg/m3
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)
DASY Configuration:





Probe: EX3DV4 - SN3924; ConvF(7.13, 7.13, 7.13); Calibrated: 06.22.2016;
Sensor-Surface: 2mm (Mechanical Surface Detection), z = 31.0
Electronics: DAE4 Sn1373; Calibrated: 02.09.2017
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)
System Performance Check at Frequency 2450MHz Body Tissue/d=10mm,
Pin=40 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement
grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 35.19 V/m; Power Drift = -0.07 dB
Peak SAR (extrapolated) = 4.38 W/kg
SAR(1 g) = 2.10 W/kg; SAR(10 g) = 0.981 W/kg
Maximum value of SAR (measured) = 3.29 W/kg
System Performance Check at Frequency 2450MHz Body Tissue/d=10mm,
Pin=40 mW, dist=2.0mm (EX-Probe)/Area Scan (51x61x1): Interpolated grid:
dx=1.200 mm, dy=1.200 mm
Maximum value of SAR (interpolated) = 3.48 W/kg
0 dB = 3.48 W/kg = 5.42 dBW/kg
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 61 of 113
Report No: CCISE170501701
Appendix D: Plots of SAR Test Data
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 62 of 113
Report No: CCISE170501701
Test Laboratory: CCIS
Date/Time: 05.12.2017 11:38:14
DUT: Mobile Phone; Type: iris 30; Serial: 1#
Communication System: UID 0, GSM (0); Frequency: 824.2 MHz; Duty Cycle: 1:8.30042
Medium parameters used: f = 825 MHz; σ = 0.913 S/m; εr = 41.381; ρ = 1000 kg/m3
Phantom section: Left Section
DASY5 Configuration:





Probe: EX3DV4 - SN3924; ConvF(9.46, 9.46, 9.46); Calibrated: 06.22.2016;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1373; Calibrated: 02.09.2017
Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)
GSM 850 Left Cheek/Low Channel/Area Scan (41x61x1): Interpolated grid:
dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.598 W/kg
GSM 850 Left Cheek/Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement
grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 9.562 V/m; Power Drift = -0.09 dB
Peak SAR (extrapolated) = 0.651 W/kg
SAR(1 g) = 0.481 W/kg; SAR(10 g) = 0.357 W/kg
Maximum value of SAR (measured) = 0.587 W/kg
0 dB = 0.587 W/kg = -2.31 dBW/kg
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 63 of 113
Report No: CCISE170501701
Test Laboratory: CCIS
Date/Time: 05.10.2017 15:37:31
DUT: Mobile phone; Type: iris 30; Serial: 1#
Communication System: UID 0, GSM (0); Frequency: 1850.2 MHz; Duty Cycle: 1:8.30042
Medium parameters used: f = 1850.2 MHz; σ = 1.369 S/m; εr = 40.551; ρ = 1000 kg/m3
Phantom section: Left Section
DASY5 Configuration:





Probe: EX3DV4 - SN3924; ConvF(7.94, 7.94, 7.94); Calibrated: 06.22.2016;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1373; Calibrated: 02.09.2017
Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)
GSM 1900 Left Cheek/Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:
dx=8mm, dy=8mm, dz=5mm
Reference Value = 6.296 V/m; Power Drift = -0.00 dB
Peak SAR (extrapolated) = 1.01 W/kg
SAR(1 g) = 0.576 W/kg; SAR(10 g) = 0.315 W/kg
Maximum value of SAR (measured) = 0.797 W/kg
GSM 1900 Left Cheek/Low Channel/Area Scan (41x61x1): Interpolated grid:
dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.871 W/kg
0 dB = 0.871 W/kg = -0.60 dBW/kg
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 64 of 113
Report No: CCISE170501701
Test Laboratory: CCIS
Date/Time: 05.12.2017 10:50:04
DUT: Mobile Phone; Type: iris 30; Serial: 1#
Communication System: UID 0, UMTS-FDD(WCDMA) (0); Frequency: 826.4 MHz; Duty
Cycle: 1:1
Medium parameters used (interpolated): f = 826.4 MHz; σ = 0.913 S/m; εr = 41.529; ρ =
1000 kg/m3
Phantom section: Right Section
DASY5 Configuration:





Probe: EX3DV4 - SN3924; ConvF(9.46, 9.46, 9.46); Calibrated: 06.22.2016;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1373; Calibrated: 02.09.2017
Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)
WCDMA 850 Right Cheek/Low Channel/Area Scan (41x61x1): Interpolated
grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.421 W/kg
WCDMA 850 Right Cheek/Low Channel/Zoom Scan (5x5x7)/Cube 0:
Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 5.454 V/m; Power Drift = 0.16 dB
Peak SAR (extrapolated) = 0.440 W/kg
SAR(1 g) = 0.340 W/kg; SAR(10 g) = 0.256 W/kg
Maximum value of SAR (measured) = 0.401 W/kg
0 dB = 0.401 W/kg = -3.97 dBW/kg
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 65 of 113
Report No: CCISE170501701
Test Laboratory: CCIS
Date/Time: 05.10.2017 17:02:04
DUT: Mobile Phone; Type: iris 30; Serial: 1#
Communication System: UID 0, UMTS-FDD(WCDMA) (0); Frequency: 1852.4 MHz; Duty
Cycle: 1:1
Medium parameters used: f = 1852.4 MHz; σ = 1.369 S/m; εr = 40.547; ρ = 1000 kg/m3
Phantom section: Left Section
DASY5 Configuration:





Probe: EX3DV4 - SN3924; ConvF(7.94, 7.94, 7.94); Calibrated: 06.22.2016;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1373; Calibrated: 02.09.2017
Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)
WCDMA 1900 Left Cheek/Low Channel/Zoom Scan (5x5x7)/Cube 0:
Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 8.462 V/m; Power Drift = -0.13 dB
Peak SAR (extrapolated) = 1.29 W/kg
SAR(1 g) = 0.743 W/kg; SAR(10 g) = 0.419 W/kg
Maximum value of SAR (measured) = 1.03 W/kg
WCDMA 1900 Left Cheek/Low Channel/Area Scan (41x61x1): Interpolated grid:
dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 1.10 W/kg
0 dB = 1.10 W/kg = 0.41 dBW/kg
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 66 of 113
Report No: CCISE170501701
Test Laboratory: CCIS
Date/Time: 05.09.2017 08:37:53
DUT: Mobile Phone; Type: iris 30; Serial: 1#
Communication System: UID 0, IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) (0);
Frequency: 2462 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): f = 2462 MHz; σ = 1.834 S/m; εr = 38.445; ρ = 1000
kg/m3
Phantom section: Right Section
DASY5 Configuration:





Probe: EX3DV4 - SN3924; ConvF(7.33, 7.33, 7.33); Calibrated: 06.22.2016;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1373; Calibrated: 02.09.2017
Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)
WIFI Right Tilted/High Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:
dx=5mm, dy=5mm, dz=5mm
Reference Value = 10.80 V/m; Power Drift = 0.03 dB
Peak SAR (extrapolated) = 1.03 W/kg
SAR(1 g) = 0.477 W/kg; SAR(10 g) = 0.221 W/kg
Maximum value of SAR (measured) = 0.787 W/kg
WIFI Right Tilted/High Channel/Area Scan (41x61x1): Interpolated grid: dx=1.200
mm, dy=1.200 mm
Maximum value of SAR (interpolated) = 0.564 W/kg
0 dB = 0.564 W/kg = -2.49 dBW/kg
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 67 of 113
Report No: CCISE170501701
Test Laboratory: CCIS
Date/Time: 05.11.2017 18:26:14
DUT: Mobile Phone; Type: iris 30; Serial: 1#
Communication System: UID 0, GSM (0); Frequency: 824.2 MHz; Duty Cycle: 1:8.30042
Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.975 S/m; εr = 55.279; ρ = 1000
kg/m3
Phantom section: Flat Section
DASY5 Configuration:





Probe: EX3DV4 - SN3924; ConvF(9.88, 9.88, 9.88); Calibrated: 06.22.2016;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1373; Calibrated: 02.09.2017
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)
GSM 850 Body Back/Low Channel/Area Scan (41x61x1): Interpolated grid:
dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.880 W/kg
GSM 850 Body Back/Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement
grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 31.22 V/m; Power Drift = -0.19 dB
Peak SAR (extrapolated) = 0.969 W/kg
SAR(1 g) = 0.687 W/kg; SAR(10 g) = 0.493 W/kg
Maximum value of SAR (measured) = 0.854 W/kg
0 dB = 0.854 W/kg = -0.69 dBW/kg
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 68 of 113
Report No: CCISE170501701
Test Laboratory: CCIS
Date/Time: 05.09.2017 22:54:38
DUT: Mobile Phone; Type: iris 30; Serial: 1#
Communication System: UID 0, GSM (0); Frequency: 1850.2 MHz; Duty Cycle: 1:8.30042
Medium parameters used: f = 1850.2 MHz; σ = 1.495 S/m; εr = 53.519; ρ = 1000 kg/m3
Phantom section: Flat Section
DASY5 Configuration:





Probe: EX3DV4 - SN3924; ConvF(7.7, 7.7, 7.7); Calibrated: 06.22.2016;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1373; Calibrated: 02.09.2017
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)
GSM 1900 Body Back/Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement
grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 15.27 V/m; Power Drift = -0.02 dB
Peak SAR (extrapolated) = 0.925 W/kg
SAR(1 g) = 0.538 W/kg; SAR(10 g) = 0.319 W/kg
Maximum value of SAR (measured) = 0.781 W/kg
GSM 1900 Body Back/Low Channel/Area Scan (41x51x1): Interpolated grid:
dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.794 W/kg
0 dB = 0.794 W/kg = -1.00 dBW/kg
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 69 of 113
Report No: CCISE170501701
Test Laboratory: CCIS
Date/Time: 05.11.2017 17:58:27
DUT: Mobile Phone; Type: iris 30; Serial: 1#
Communication System: UID 0, UMTS-FDD(WCDMA) (0); Frequency: 826.4 MHz; Duty
Cycle: 1:1
Medium parameters used (interpolated): f = 826.4 MHz; σ = 0.975 S/m; εr = 55.213; ρ = 1000
kg/m3
Phantom section: Flat Section
DASY5 Configuration:





Probe: EX3DV4 - SN3924; ConvF(9.88, 9.88, 9.88); Calibrated: 06.22.2016;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1373; Calibrated: 02.09.2017
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)
WCDMA 850 Body Back/Low Channel/Area Scan (41x51x1): Interpolated grid:
dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.777 W/kg
WCDMA 850 Body Back/Low Channel/Zoom Scan (5x5x7)/Cube 0:
Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 26.96 V/m; Power Drift = -0.09 dB
Peak SAR (extrapolated) = 0.840 W/kg
SAR(1 g) = 0.613 W/kg; SAR(10 g) = 0.452 W/kg
Maximum value of SAR (measured) = 0.754 W/kg
0 dB = 0.754 W/kg = -1.23 dBW/kg
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 70 of 113
Report No: CCISE170501701
Test Laboratory: CCIS
Date/Time: 05.09.2017 17:33:12
DUT: Mobile Phone; Type: iris 30; Serial: 1#
Communication System: UID 0, UMTS-FDD(WCDMA) (0); Frequency: 1852.4 MHz; Duty
Cycle: 1:1
Medium parameters used (extrapolated): f = 1852.4 MHz; σ = 1.495 S/m; εr = 53.493; ρ =
1000 kg/m3
Phantom section: Flat Section
DASY5 Configuration:





Probe: EX3DV4 - SN3924; ConvF(7.7, 7.7, 7.7); Calibrated: 06.22.2016;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1373; Calibrated: 02.09.2017
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)
WCDMA 1900 Body Back/Low Channel/Zoom Scan (5x5x7)/Cube 0:
Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 24.55 V/m; Power Drift = -0.04 dB
Peak SAR (extrapolated) = 1.64 W/kg
SAR(1 g) = 0.969 W/kg; SAR(10 g) = 0.577 W/kg
Maximum value of SAR (measured) = 1.37 W/kg
WCDMA 1900 Body Back/Low Channel/Area Scan (31x51x1): Interpolated grid:
dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 1.62 W/kg
0 dB = 1.62 W/kg = 2.10 dBW/kg
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 71 of 113
Report No: CCISE170501701
Test Laboratory: CCIS
Date/Time: 05.16.2017 14:39:43
DUT: Mobile Phone; Type: iris 30; Serial: 1#
Communication System: UID 0, IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) (0);
Frequency: 2462 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): f = 2462 MHz; σ = 1.943 S/m; εr = 52.291; ρ = 1000
kg/m3
Phantom section: Flat Section
DASY5 Configuration:





Probe: EX3DV4 - SN3924; ConvF(7.3, 7.3, 7.3); Calibrated: 06.22.2016;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1373; Calibrated: 02.09.2017
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)
WIFI Body Back/High Channel/Area Scan (51x61x1): Interpolated grid: dx=1.200
mm, dy=1.200 mm
Maximum value of SAR (interpolated) = 0.144 W/kg
WIFI Body Back/High Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid:
dx=5mm, dy=5mm, dz=5mm
Reference Value = 4.997 V/m; Power Drift = 0.06 dB
Peak SAR (extrapolated) = 0.155 W/kg
SAR(1 g) = 0.070 W/kg; SAR(10 g) = 0.033 W/kg
Maximum value of SAR (measured) = 0.119 W/kg
0 dB = 0.119 W/kg = -9.24 dBW/kg
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 72 of 113
Report No: CCISE170501701
Test Laboratory: CCIS
Date/Time: 05.11.2017 18:52:53
DUT: Mobile Phone; Type: iris 30; Serial: 1#
Communication System: UID 0, GPRS(4 Slots) (0); Frequency: 824.2 MHz; Duty Cycle:
1:1.99986
Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.975 S/m; εr = 55.279; ρ = 1000
kg/m3
Phantom section: Flat Section
DASY5 Configuration:





Probe: EX3DV4 - SN3924; ConvF(9.88, 9.88, 9.88); Calibrated: 06.22.2016;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1373; Calibrated: 02.09.2017
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)
GPRS 850 4Slots Body Back/Low Channel/Area Scan (41x51x1): Interpolated
grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 1.36 W/kg
GPRS 850 4Slots Body Back/Low Channel/Zoom Scan (5x5x7)/Cube 0:
Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 36.52 V/m; Power Drift = -0.07 dB
Peak SAR (extrapolated) = 1.49 W/kg
SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.813 W/kg
Maximum value of SAR (measured) = 1.34 W/kg
0 dB = 1.34 W/kg = 1.27 dBW/kg
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 73 of 113
Report No: CCISE170501701
Test Laboratory: CCIS
Date/Time: 05.09.2017 22:27:44
DUT: Mobile Phone; Type: iris 30; Serial: 1#
Communication System: UID 0, GPRS(4 Slots) (0); Frequency: 1880 MHz; Duty Cycle:
1:1.99986
Medium parameters used: f = 1880 MHz; σ = 1.501 S/m; εr = 53.569; ρ = 1000 kg/m3
Phantom section: Flat Section
DASY5 Configuration:





Probe: EX3DV4 - SN3924; ConvF(7.7, 7.7, 7.7); Calibrated: 06.22.2016;
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1373; Calibrated: 02.09.2017
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)
GPRS 1900 4Slots Body Back/Middle Channel/Zoom Scan (5x5x7)/Cube 0:
Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 21.89 V/m; Power Drift = -0.16 dB
Peak SAR (extrapolated) = 1.50 W/kg
SAR(1 g) = 0.879 W/kg; SAR(10 g) = 0.510 W/kg
Maximum value of SAR (measured) = 1.27 W/kg
GPRS 1900 4Slots Body Back/Middle Channel/Area Scan (41x51x1):
Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 1.36 W/kg
0 dB = 1.36 W/kg = 1.34 dBW/kg
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 74 of 113
Report No: CCISE170501701
Appendix E: System Calibration Certificate
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 75 of 113
Report No: CCISE170501701
Calibration information for E-field probes
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 76 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 77 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 78 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 79 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 80 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 81 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 82 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 83 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 84 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 85 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 86 of 113
Report No: CCISE170501701
Calibration information for Dipole
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 87 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 88 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 89 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 90 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 91 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 92 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 93 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 94 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 95 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 96 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 97 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 98 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 99 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 100 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 101 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 102 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 103 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 104 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 105 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 106 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 107 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 108 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 109 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 110 of 113
Report No: CCISE170501701
Calibration information for DAE
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 111 of 113
Report No: CCISE170501701
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 112 of 113
Report No: CCISE170501701
------End of Report-----Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao’an District, Shenzhen, Guangdong,China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com
Project No.: CCISE1705017
Page 113 of 113
Download: LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Mirror Download [FCC.gov]LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
Document ID3420707
Application IDO38EjzvBJnK2Cksc/mPf/Q==
Document DescriptionRF Exposure info
Short Term ConfidentialNo
Permanent ConfidentialNo
SupercedeNo
Document TypeRF Exposure Info
Display FormatAdobe Acrobat PDF - pdf
Filesize309.24kB (3865471 bits)
Date Submitted2017-06-09 00:00:00
Date Available2017-06-12 00:00:00
Creation Date2017-06-01 11:44:17
Producing SoftwareMicrosoft® Word 2010
Document Lastmod2017-06-01 11:44:35
Document TitleHD 271 S1
Document CreatorMicrosoft® Word 2010
Document Author: LAB02

Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : Yes
Encryption                      : Standard V2.3 (128-bit)
User Access                     : Print, Extract, Print high-res
XMP Toolkit                     : Adobe XMP Core 4.0-c316 44.253921, Sun Oct 01 2006 17:14:39
Create Date                     : 2017:06:01 11:44:17+08:00
Creator Tool                    : Microsoft® Word 2010
Modify Date                     : 2017:06:01 11:44:35+08:00
Metadata Date                   : 2017:06:01 11:44:35+08:00
Format                          : application/pdf
Creator                         : LAB02
Title                           : HD 271 S1
Producer                        : Microsoft® Word 2010
Document ID                     : uuid:2250f9ba-be56-4630-93c9-f4bc93741b66
Instance ID                     : uuid:994c6be8-d228-49af-b623-6cbaa10e098b
Page Count                      : 113
Language                        : zh-CN
Author                          : LAB02
EXIF Metadata provided by EXIF.tools

Facebook Twitter Google+ RSS © FCCID.io 2018