LAVAIRIS30 Mobile Phone RF Exposure Info HD 271 S1 LAVA INTERNATIONAL (H.K) LIMITED
LAVA INTERNATIONAL (H.K) LIMITED Mobile Phone
Shenzhen Zhongjian Nanfang Testing Co.,Ltd. Report No: CCISE170501701 Cover Page FCC SAR REPORT Applicant: LAVA INTERNATIONAL (H.K) LIMITED Address of Applicant: UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST, JORDAN KL, HK Equipment Under Test (EUT) Product Name: Mobile Phone Model No.: iris 30 Trade mark: LAVA FCC ID: 2AEE8LAVAIRIS30 Applicable standards: FCC 47 CFR Part 2.1093 Date of Test: 09 May., 2017~16 May., 2017 Test Result: Maximum Reported1-g SAR (W/kg) Head: 0.793 Body: 1.034 Hotspot: 1.182 Authorized Signature: Bruce Zhang Laboratory Manager This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of theCCISproduct certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. Report No: CCISE170501701 Version Version No. Date Description 00 01 Jun., 2017 Original Prepared by: Date: 01 Jun., 2017 Date: 01 Jun., 2017 Report Clerk Reviewed by: Project Engineer Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 2 of 113 Report No: CCISE170501701 Contents COVER PAGE ....................................................................................................................................................... 1 VERSION ............................................................................................................................................................... 2 CONTENTS ........................................................................................................................................................... 3 SAR RESULTS SUMMARY................................................................................................................................. 5 GENERAL INFORMATION .................................................................................................................................. 6 5.1 5.2 5.3 5.4 5.5 INTRODUCTION ................................................................................................................................................... 8 6.1 6.2 INTRODUCTION ............................................................................................................................................................................... 8 SAR DEFINITION ............................................................................................................................................................................ 8 RF EXPOSURE LIMITS ....................................................................................................................................... 9 7.1 7.2 7.3 CLIENT INFORMATION ..................................................................................................................................................................... 6 GENERAL DESCRIPTION OF EUT ................................................................................................................................................... 6 MAXIMUM RF OUTPUT POWER ...................................................................................................................................................... 7 ENVIRONMENT OF TEST SITE ......................................................................................................................................................... 7 TEST LOCATION ............................................................................................................................................................................. 7 UNCONTROLLED ENVIRONMENT ..................................................................................................................................................... 9 CONTROLLED ENVIRONMENT ......................................................................................................................................................... 9 RF EXPOSURE LIMITS .................................................................................................................................................................... 9 SAR MEASUREMENT SYSTEM....................................................................................................................... 10 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 E-FIELD PROBE............................................................................................................................................................................ 11 DATA ACQUISITION ELECTRONICS (DAE) .................................................................................................................................... 11 ROBOT ......................................................................................................................................................................................... 12 MEASUREMENT SERVER .............................................................................................................................................................. 12 LIGHT BEAM UNIT ......................................................................................................................................................................... 12 PHANTOM ..................................................................................................................................................................................... 13 DEVICE HOLDER........................................................................................................................................................................... 14 DATA STORAGE AND EVALUATION ................................................................................................................................................ 15 TEST EQUIPMENT LIST ................................................................................................................................................................. 17 TISSUE SIMULATING LIQUIDS ....................................................................................................................... 18 10 SAR SYSTEM VERIFICATION.......................................................................................................................... 21 11 EUT TESTING POSITION .................................................................................................................................. 23 11.1 11.2 11.3 11.4 11.5 11.6 12 MEASUREMENT PROCEDURES .................................................................................................................... 27 12.1 12.2 12.3 12.4 12.5 12.6 13 GSM CONDUCTED POWER .................................................................................................................................................... 30 WCDMA CONDUCTED POWER .............................................................................................................................................. 32 WLAN 2.4 GHZ BAND CONDUCTED POWER ......................................................................................................................... 35 BLUETOOTH CONDUCTED POWER .......................................................................................................................................... 36 EXPOSURE POSITIONS CONSIDERATION .................................................................................................. 37 14.1 14.2 15 SPATIAL PEAK SAR EVALUATION ........................................................................................................................................... 27 POWER REFERENCE MEASUREMENT...................................................................................................................................... 28 AREA & ZOOM SCAN PROCEDURES........................................................................................................................................ 28 VOLUME SCAN PROCEDURES ................................................................................................................................................. 29 SAR AVERAGED METHODS .................................................................................................................................................... 29 POWER DRIFT MONITORING ................................................................................................................................................... 29 CONDUCTED RF OUTPUT POWER................................................................................................................ 30 13.1 13.2 13.3 13.4 14 HANDSET REFERENCE POINTS ............................................................................................................................................... 23 POSITIONING FOR CHEEK / TOUCH ......................................................................................................................................... 24 POSITIONING FOR EAR / 15ºTILT ............................................................................................................................................ 24 SAR EVALUATIONS NEAR THE MOUTH/JAW REGIONS OF THE SAM PHANTOM ..................................................................... 25 BODY W ORN ACCESSORY CONFIGURATIONS ......................................................................................................................... 25 W IRELESS ROUTER (HOTSPOT) CONFIGURATIONS ................................................................................................................ 26 EUT ANTENNA LOCATIONS..................................................................................................................................................... 37 TEST POSITIONS CONSIDERATION .......................................................................................................................................... 37 SAR TEST RESULTS SUMMARY .................................................................................................................... 38 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 3 of 113 Report No: CCISE170501701 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 16 STANDALONE HEAD SAR DATA.............................................................................................................................................. 38 STANDALONE BODY SAR ....................................................................................................................................................... 39 BODY SAR IN HOTSPOT MODE .............................................................................................................................................. 40 REPEATED SAR MEASUREMENT ............................................................................................................................................. 41 MULTI-BAND SIMULTANEOUS TRANSMISSION CONSIDERATIONS ............................................................................................ 42 SAR SIMULTANEOUS TRANSMISSION ANALYSIS ..................................................................................................................... 43 MEASUREMENT UNCERTAINTY ................................................................................................................................................ 46 MEASUREMENT CONCLUSION ................................................................................................................................................. 48 REFERENCE....................................................................................................................................................... 49 APPENDIX A: EUT PHOTOS ..................................................................................................................................... 50 APPENDIX B: TESTSETUP PHOTOS ...................................................................................................................... 52 APPENDIX C: PLOTS OF SAR SYSTEM CHECK .................................................................................................. 55 APPENDIX D: PLOTS OF SAR TEST DATA ........................................................................................................... 62 APPENDIX E: SYSTEM CALIBRATION CERTIFICATE ......................................................................................... 75 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 4 of 113 Report No: CCISE170501701 SAR Results Summary The maximum results of Specific Absorption Rate (SAR) found during test as bellows:Reported 1-g SAR Exposure Position Frequency Band (W/kg) GSM 850 0.527 GSM 1900 0.639 Head WCDMA Band V 0.349 WCDMA Band II 0.793 WLAN 2.4GHz 0.527 GSM 850 0.753 GSM 1900 0.597 Body WCDMA Band V 0.629 (10 mm Gap) WCDMA Band II 1.034 WLAN 2.4GHz 0.077 GSM 850 1.182 GSM 1900 0.973 Hotspot WCDMA Band V 0.629 (10 mm Gap) WCDMA Band II 1.034 WLAN 2.4GHz 0.077 Equipment Class PCE Highest Reported 1-g SAR (W/kg) 0.793 DTS PCE 1.034 DTS PCE 1.182 DTS Exposure Position Frequency Band Reported 1-g SAR (W/kg) Back GPRS 850 4Slots WLAN 2.4GHz 1.182 0.077 Equipment Class Highest ReportedSimultaneous Transmission 1-g SAR (W/kg) PCE DTS 1.259 Note: 1. 2. The highest simultaneous transmission is scalar summation of Reported standalone SAR per FCCKDB 690783 D01 v01r03, and scalar SAR summation of all possible simultaneous transmission scenarios are< 1.6W/kg. This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolledexposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and hadbeen tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 5 of 113 Report No: CCISE170501701 General Information 5.1 Client Information Applicant: LAVA INTERNATIONAL (H.K) LIMITED Address of Applicant: UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST, JORDAN KL, HK Manufacturer: LAVA INTERNATIONAL (H.K) LIMITED Address of Manufacturer: UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST, JORDAN KL, HK 5.2 General Description of EUT Product Name: Mobile Phone Model No.: iris 30 Category of device Portable device Operation Frequency: GSM850: 824.2 ~ 848.8 MHz PCS 1900: 1850.2 ~ 1909.8 MHz WCDMA Band V: 826.4 ~ 846.6 MHz WCDMA Band II: 1852.4 ~ 1907.6 MHz Bluetooth: 2402 MHz ~ 2480 MHz Wi-Fi: 802.11b/g/n-HT20: 2412MHz ~ 2462 MHz 802.11n-HT40 :2422MHz~2452MHz Modulation technology: GSM/GPRS:GMSK,EGPRS: 8PSK,WCDMA/HSDPA/HSUPA: BPSK Bluetooth: GFSK/π/4DQPSK/8DPSK Wi-Fi: 802.11b: DSSS, 802.11g/n: OFDM Antenna Type: Internal Antenna Antenna Gain: GSM 850: 0.6 dBi, PCS 1900: 0.7 dBi WCDMA Band V: 0.6 dBi, WCDMA Band II: 0.7 dBi WIFI/BT: 0dBi Release Version: R99 for GSM, R6 for WCDMA (E)GPRS Class: (E)GPRS Class: 12 Dimensions (L*W*H): 122mm (L)× 63mm (W)× 10mm (H) Accessories information: Adapter: Model: CLV-3 Input: AC100-300V 50/60Hz 0.15A Output: DC 5.0V, 500mA Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Battery: Rechargeable Li-ion Battery 3.8V/1400mAh Headset: Support headset Project No.: CCISE1705017 Page 6 of 113 Report No: CCISE170501701 5.3 Maximum RF Output Power Average Power (dBm) Mode GSM 850 33.10 32.93 32.13 30.30 29.15 27.96 26.83 24.64 23.48 GSM (Voice) GPRS (1TX Slot) GPRS (2TX Slots) GPRS (3TX Slots) GPRS (4TX Slots) EGPRS (1 TX Slot) EGPRS (2 TX Slots) EGPRS (3 TX Slots) EGPRS (4 TX Slots) GSM 1900 29.55 29.44 28.70 26.89 25.82 26.63 25.42 23.37 21.86 Average Power (dBm) WCDMA Band V WCDMA Band II 22.19 22.95 22.39 23.22 21.38 22.03 20.93 21.98 19.56 20.07 19.42 19.98 21.30 21.93 21.36 21.98 19.51 20.06 21.36 22.03 20.45 22.02 Mode AMR 12.2 kbps RMC 12.2 kbps HSDPA Sub-test 1 HSDPA Sub-test 2 HSDPA Sub-test 3 HSDPA Sub-test 4 HSUPA Sub-test 1 HSUPA Sub-test 2 HSUPA Sub-test 3 HSUPA Sub-test 4 HSUPA Sub-test 5 Mode/Band WLAN 2.4GHz WLAN 2.4 GHz Band Average Power (dBm) n (HT-20) 16.11 17.19 15.23 n (HT-40) 14.84 Mode/Band Bluetooth 2.4 GHz Bluetooth Average Power (dBm) 1 Mbps(GFSK) 2 Mbps(π/4DQPSK) 3 Mbps (8DPSK) 5.81 5.33 5.36 LE (BT 4.0) -1.49 5.4 Environment of Test Site Temperature: 18C ~25C Humidity: 35%~75% RH Atmospheric Pressure: 1010 mbar 5.5 Test Location Shenzhen Zhongjian Nanfang Testing Co., Ltd. Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong, China Tel: +86-755-23118282 Fax: +86-755-23116366 E-mail:info@ccis-cb.com Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 7 of 113 Report No: CCISE170501701 Introduction 6.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SARdistribution in a biological body is complicated and is usually carried out by experimental techniques or numericalmodeling. The standard recommends limits for two tiers of groups, occupational/controlled and generalpopulation/uncontrolled, based on a person’s awareness and ability to exercise control over his or her exposure. Ingeneral, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. 6.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) anincremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is asbelow: SAR d dU d dU dt dm dt dv SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by Where: C is the specific heat capacity, theelectrical field in the tissue by T T SAR C t is the temperature rise and t is the exposure duration, or related to E2 SAR Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.However for evaluating SAR of low power transmitter, electrical field measurement is typically applied. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 8 of 113 Report No: CCISE170501701 RF Exposure Limits 7.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individualswho have no knowledge or control of their exposure. The general population/uncontrolled exposure limitsare applicable to situations in which the general public may be exposed or in which persons who areexposed as a consequence of their employment may not be made fully aware of the potential forexposure or cannot exercise control over their exposure. Members of the general public would comeunder this category when exposure is not employment-related; for example, in the case of a wirelesstransmitter that exposes persons in its vicinity. 7.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurredby persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). Ingeneral, occupational/controlled exposure limits are applicable to situations in which persons are exposedas a consequence of their employment, who have been made fully aware of the potential for exposureand can exercise control over their exposure. This exposure category is also applicable when theexposure is of a transient nature due to incidental passage through a location where the exposure levelsmay be higher than the general population/uncontrolled limits, but the exposed person is fully aware ofthe potential for exposure and can exercise control over his or her exposure by leaving the area or bysome other appropriate means. 7.3 RF Exposure Limits Note: 1. 2. 3. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube)and over the appropriate averaging time. The Spatial Average value of the SAR averaged over the whole body. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of acube) and over the appropriate averaging time. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 9 of 113 Report No: CCISE170501701 SAR Measurement System Fig.8.1 SPEAG DASY System Configurations The DASY system for performance compliance tests is illustrated above graphically. This system consists of thefollowing items: A standard high precision 6-axis robot with controller, a teach pendant and software A data acquisition electronic (DAE) attached to the robot arm extension A dosimetric probe equipped with an optical surface detector system The electro-optical converter (EOC) performs the conversion between optical and electrical signals A measurement server performs the time critical tasks such as signal filtering, control of the robot operationand fast movement interrupts. A probe alignment unit which improves the accuracy of the probe positioning A computer operating Windows XP DASY software Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc. The SAM twin phantom A device holder Tissue simulating liquid Dipole for evaluating the proper functioning of the system Component details are described in the following sub-sections. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 10 of 113 Report No: CCISE170501701 8.1 E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. E-Field Probe Specification Construction Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) Frequency 10MHz to 6 GHz; Linearity: ± 0.2 dB Directivity ± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis) Dynamic Range 10 µW/g to 100 mW/g; Linearity: ± 0.2 dB (noise: typically < 1 µW/g) Dimensions Overall length: 330 mm (Tip: 20mm) Tip diameter: 2.5 mm (Body: 12mm) Typical distance from probe tip to dipole centers: 1 mm Fig.8.2 Photo of E-Field Probe E-Field Probe Calibration Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than ±10%. The spherical isotropy shall be evaluated and within ±0.25 dB. The sensitivity parameters (Norm X, Norm Y and Norm Z), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix E of this report. 8.2 Data Acquisition Electronics (DAE) The Data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. Fig. 8.3 Photo of DAE Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 11 of 113 Report No: CCISE170501701 8.3 Robot The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubliis used. The Stäublirobot series have many features that are important for our application: High precision (repeatability 0.02 mm) High reliability (industrial design) Low maintenance costs (virtually maintenance free due to direct drive gears; nobelt drives) Jerk-free straight movements Low ELF interference (motor control fields shielded via the closed metallic constructionshields) Fig. 8.4 Photo of Robot 8.4 Measurement Server The measurement server is based on a PC/104 CPU board with CPU (DASY 5: 400MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations. Fig. 8.5 Photo of Server for DASY5 8.5 Light Beam Unit The light beam switch allows automatic "tooling" of the probe. During the process, the actualposition of the probe tip with respect to the robot arm is measured, as well as the probe lengthand the horizontal probe offset. The software then corrects all movements, such that the robotcoordinates are valid for the probe tip. The repeatability of this process is better than0.1 mm. If a position has been taught with analigned probe, the same position will be reachedwith another aligned probe within 0.1 mm, even ifthe other probe has different dimensions. Duringprobe rotations, the probe tip will keep its actualposition. Fig. 8.6 Photo of Light Beam Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 12 of 113 Report No: CCISE170501701 8.6 Phantom Shell Thickness 2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm Filling Volume Approx. 25 liters Dimensions Length: 1000mm; Width: 500mm; Height: adjustable feet Measurement Left Head, Right Head, Flat phantom Areas Fig. 8.7Photo of SAM Twin Phantom The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209-2 and all known tissue simulating liquids. ELI4 has been optimized regarding its performance and can be integrated into a SPEAG standardphantom table. A cover prevents evaporation of the liquid. Reference markings on the phantom allowinstallation of the complete setup, including all predefined phantom positions and measurementgrids, by teaching three points The phantom can be used with the following tissue simulating liquids: Water-sugar based liquids can be left permanently in the phantom. Always cover the liquid if the system is not in use; otherwise the parameters will change due to water evaporation. DGBE based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom and the phantom should be dried when the system is not in use (desirable at least once a week). Do not use other organic solvents without previously testing the phantom resistiveness. Fig.8.8 Photo of ELI4 Phantom Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 13 of 113 Report No: CCISE170501701 8.7 Device Holder The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of ± 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-low POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. Fig. 8.9Photo of Device Holder Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 14 of 113 Report No: CCISE170501701 8.8 Data storage and Evaluation Data Storage The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verifications of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages. Data Evaluation The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: Probe Parameters: Device Parameters: Media Parameters: - Sensitivity - Conversion - Diode compression point - Frequency - Crest - Conductivity - Density Normi, ai0, ai1, ai2 ConvFi dcpi cf σ ρ These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 15 of 113 Report No: CCISE170501701 The formula for each channel can be given as: cf Vi = U i + U i2 · dcpi WithVi = compensated signal of channel i, (i = x, y, z) Ui= input signal of channel i, (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp = diode compression point (DASY parameter) From the compensated input signals, the primary field data for each channel can be evaluated: vi Normi ConvF E- Field Probes: Ei = H-Field Probes: H i = Vi ai 0 ai1 f ai 2 f 2 WithVi = compensated signal of channel i, (i = x, y, z) Normi= senor sensitivity of channel i, (i = x, y, z), µV/ (V/m) ConvF = sensitivity enhancement in solution aij= sensor sensitivity factors for H-field probes f = carrier frequency (GHz) Ei = electric field strength of channel i in V/m Hi = magnetic field strength of channel i in A/m The RSS value of the field components gives the total field strength (Hermitian magnitude): Etot= Ex2 E y2 Ez2 The primary field data are used to calculate the derived field units. SAR = Etot 1000 With SAR = local specific absorption rate in mW/g Etot= total field strength in V/m σ = conductivity in (mho/m) or (Siemens/m) ρ= equipment tissue density in g/cm Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 16 of 113 Report No: CCISE170501701 8.9 Test Equipment List Manufacturer Equipment Description Model S/N Cal. Information Last Cal. Due Date SPEAG 835MHz System Validation Kit D835V2 4d154 06.16.2016 06.15.2019 SPEAG 1900MHz System Validation Kit D1900V2 5d175 06.15.2016 06.14.2019 SPEAG 2450MHz System Validation Kit D2450V2 910 06.15.2016 06.14.2019 SPEAG Data Acquisition Electronics DAE4 1373 02.09.2017 02.08.2018 SPEAG Dosimetric E-Field Probe EX3DV4 3924 06.22.2016 06.21.2017 SPEAG Phantom Twin Phantom 1765 N.C.R N.C.R SPEAG Phantom ELI V5.0 1208 N.C.R N.C.R SPEAG Phone Positioner N/A N/A N.C.R N.C.R Stäubli Robot TX60L F13/5P6VB1/A/01 N.C.R N.C.R R&S Universal Radio Communication Tester CMU200 117042 02.25.2017 02.24.2018 HP Network Analyzer 8753D 3410A06291 02.25.2017 02.24.2018 Agilent EPM Series Power Meter E4418B GB39512692 02.25.2017 02.24.2018 Agilent MAX Signal Analyzer N9020A MY50510123 02.25.2017 02.24.2018 Agilent Power Sensor 8481A MY41090341 02.25.2017 02.24.2018 R&S Power Sensor URV5-Z2 SEL0071 02.25.2017 02.24.2018 R&S Signal Generator SMX 835457/016 02.25.2017 02.24.2018 R&S Signal Generator SMR20 10080050 02.25.2017 02.24.2018 Huber Suhner RF Cable SUCOFLEX 12341 See Note 3 Huber Suhner RF Cable SUCOFLEX 17268 See Note 3 Huber Suhner RF Cable SUCOFLEX 2080 See Note 3 Weinschel Attenuator 23-3-34 BL5513 See Note 3 Anritsu Directional Coupler MP654A 100217491 See Note 3 SPEAG Dielectric Assessment Kit 3.5 Probe 1119 See Note 4 Mini-circuits Power amplifier ZHL-42W SC609401309 See Note 5 Note: 1. 2. 3. 4. 5. 6. 7. The calibration certificate of DASY can be referred to appendix C of this report. Referring to KDB 865664 D01v01r04, the dipole calibration interval can be extended to 3 years with justification. Thedipoles are also not physically damaged, or repaired during the interval. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the networkanalyzer and compensated during system check. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in purewater) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure andcalibration kit are provided by Speag. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to haveprecise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not criticallyrequired for correct measurement; the power meter is critical and we do have calibration for it Attenuator insertion loss is calibrated by the network Analyzer, which the calibration is valid, before systemcheck. N.C.R means No Calibration Requirement. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 17 of 113 Report No: CCISE170501701 Tissue Simulating Liquids For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 9.1, for body SAR testing, the liquid height from the center of the flat phantom to liquid top surface is larger than 15 cm, which is shown in Fig. 9.2. Fig. 9.1 Photo of Liquid Height for Head SAR Fig. 9.2 Photo of Liquid Height for Body SAR of (850MHz) (depth>15cm) ELI V5.0 (850MHz) (depth>15cm) Fig. 9.3 Photo of Liquid Height for Head SAR Fig. 9.4 Photo of Liquid Height for Body SAR of (1900MHz) (depth>15cm) ELI V5.0 (1900MHz) (depth>15cm) Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 18 of 113 Report No: CCISE170501701 Fig. 9.6 Photo of Liquid Height for Body SAR of Fig. 9.5 Photo of Liquid Height for Head SAR (2450MHz) (depth>15cm) Twin Phantom (2450MHz) (depth>15cm) The relative permittivity and conductivity of the tissue material should be within±5% of the values given in the table below recommended by the FCC OET 65supplement C and RSS 102 Issue 5. Target Frequency Head Body (MHz) εr σ(S/m) εr σ(S/m) 150 52.3 0.76 61.9 0.80 300 45.3 0.87 58.2 0.92 450 43.5 0.87 56.7 0.94 835 41.5 0.90 55.2 0.97 900 41.5 0.97 55.0 1.05 915 41.5 0.98 55.0 1.06 1450 40.5 1.20 54.0 1.30 1610 40.3 1.29 53.8 1.40 1800-2000 40.0 1.40 53.3 1.52 2450 39.2 1.80 52.7 1.95 3000 38.5 2.40 52.0 2.73 35.3 5.27 48.2 5800 6.00 ( εr = relative permittivity, σ = conductivity and ρ = 1000 kg/m ) Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 19 of 113 Report No: CCISE170501701 The dielectric parameters of liquids were verified prior to the SAR evaluation using a SpeagDielectric Probe Kit and an Agilent Network Analyzer. The following table shows the measuring results for simulating liquid. Frequency (MHz) Liquid Type Liquid Temp. (℃) Conductivity (σ) Permittivity (εr) Conductivity Target(σ) Permittivity Target(εr) Delta (σ)% Delta (εr)% Limit (%) Date (mm/dd/yy) 835 Head 21.5 0.91 41.32 0.9 41.5 1.11 -0.43 ±5 05.12.2017 1900 Head 21.3 1.42 40.16 1.4 40.0 1.43 0.40 ±5 05.10.2017 2450 Head 21.6 1.83 38.70 1.8 39.2 1.67 -1.28 ±5 05.09.2017 835 Body 21.4 0.98 55.06 0.97 55.2 1.03 -0.25 ±5 05.11.2017 1900 Body 21.6 1.51 53.14 1.52 53.3 -0.66 -0.30 ±5 05.09.2017 2450 Body 21.7 1.93 52.49 1.95 52.7 -1.03 -0.40 ±5 05.16.2017 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 20 of 113 Report No: CCISE170501701 10 SAR System Verification Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder. Purpose of System Performance check The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure. System Setup In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below: Fig.10.1 System Verification Setup Diagram Fig.10.2 Photo of Dipole setup Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 21 of 113 Report No: CCISE170501701 System Verification Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table as below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix C of this report. Date (mm/dd/yy) Frequency (MHz) Liquid Type Power fed onto dipole (mW) Measured 1g SAR (W/kg) 05.12.2017 05.10.2017 05.09.2017 05.11.2017 05.09.2017 05.16.2017 835 1900 2450 835 1900 2450 Head Head Head Body Body Body 80 40 40 80 40 40 0.748 1.65 2.04 0.790 1.58 2.10 Normalized to250 mW 1g SAR (W/kg) 2.34 10.31 12.75 2.47 9.88 13.13 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com 250 mW Target 1g SAR (W/kg) 2.30 9.99 13.0 2.43 10.1 13.0 Deviation (%) 1.74 3.20 -1.92 1.65 -2.18 1.00 Project No.: CCISE1705017 Page 22 of 113 Report No: CCISE170501701 11 EUT Testing Position This EUT was tested in ten different positions. They are right cheek/right tilted/left cheek/left tilted for head, Front/Back/Right Side/Top Side/Bottom Side of the EUT with phantom 1 cm gap, as illustrated below, please refer to Appendix B for the test setup photos. 11.1 Handset Reference Points The vertical centreline passes through two points on the front side of the handset – the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the bottom of the handset. The horizontal line is perpendicular to the vertical centreline and passes the center of the acoustic output. The horizontal line is also tangential to the handset at point A. The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centreline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets. Fig.11.1 Illustration for Front, Back and Side of SAM Phantom Fig. 11.2Illustration for Handset Vertical and Horizontal Reference Lines Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 23 of 113 Report No: CCISE170501701 11.2 Positioning for Cheek / Touch To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear and LE: Left Ear) and align the center of the ear piece with the line RE-LE. To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see below figure) Fig. 11.3 Illustration for Cheek Position 11.3 Positioning for Ear / 15ºTilt To position the device in the “cheek” position described above. While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see figure below). Fig.11.4 Illustration for Tilted Position Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 24 of 113 Report No: CCISE170501701 11.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom Antennas located near the bottom of a phone may require SAR measurements around the mouth and jawregions of the SAM head phantom. This typically applies to clam-shell style phones that are generallylonger in the unfolded normal use positions or to certain older style long rectangular phones. Under these circumstances, the following procedures apply, adopted from the FCC guidance on SARhandsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAMshould be measured using a flat phantom. The phone should be positioned with a separation distance of4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. Whilemaintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered fromthe phantom to establish the same separation distance between the peak SAR locations identified by thetruncated partial SAR distribution measured with the SAM phantom. The distance from the peak SARlocation to the phone is determined by the straight line passing perpendicularly through the phantomsurface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing therequired separation at the peak SAR location, the top edge of the phone will be allowed to touch thephantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right whileplaced in this inclined position to the flat phantom. 11.5 Body Worn Accessory Configurations To position the device parallel to the phantom surface with either keypad up or down. To adjust the device parallel to the flat phantom. To adjust the distance between the device surface and the flat phantom to 1.5 cm or holster surface and the flat phantom to 0 cm. Fig.11.5 Illustration for Body Worn Position Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 25 of 113 Report No: CCISE170501701 11.6 Wireless Router (Hotspot) Configurations Some battery-operated handsets have the capability to transmit and receive internet connectivity throughsimultaneous transmission of WIFI in conjunction with a separate licensed transmitter. The FCC hasprovided guidance in KDB Publication 941225 D06 where SAR test considerations for handsets (L x W ≥ 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edgesof the device with antennas 2.5 cm or closer to the edge of the device, determined from general mixeduse conditions for this type of devices. Since the hotspot SAR results may overlap with the body-wornaccessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests. When the user enables the personal wireless router functions for the handset, actual operations includesimultaneous transmission of both the WIFI transmitter and another licensed transmitter. Bothtransmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated forSAR under actual use conditions. Therefore, SAR must be evaluated for each frequency transmissionand mode separately and summed with the WIFI transmitter according to KDB 648474 publicationprocedures. The “Portable Hotspot” feature on the handset was NOT activated, to ensure the SARmeasurements were evaluated for a single transmission frequency RF signal. Fig.11.6 Illustration for Hotspot Position Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 26 of 113 Report No: CCISE170501701 12 Measurement Procedures The measurement procedures are as bellows: For WWAN power measurement, use base station simulator to configure EUT WWAN transition in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. Read the WWAN RF power level from the base station simulator. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band. Connect EUT RF port through RF cable to the power meter or spectrum analyzer, and measure WLAN/BT output power. Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. Place the EUT in positions as Appendix B demonstrates. Set scan area, grid size and other setting on the DASY software. Measure SAR results for the highest power channel on each testing position. Find out the largest SAR result on these testing positions of each band. Measure SAR results for other channels in worst SAR testing position if the Reported SAR or highest power channel is larger than 0.8 W/kg. According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: Power reference measurement Area scan Zoom scan Power drift measurement 12.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a “cube” measurement. The measured volume must include the 1g and 10 g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: Extraction of the measured data (grid and values) from the Zoom Scan. Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters). Generation of a high-resolution mesh within the measured volume. Interpolation of all measured values form the measurement grid to the high-resolution grid Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface Calculation of the averaged SAR within masses of 1g and 10g. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 27 of 113 Report No: CCISE170501701 12.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. 12.3 Area & Zoom Scan Procedures First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r04 quoted below. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 28 of 113 Report No: CCISE170501701 12.4 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD post-processor scan combine and subsequently superpose these measurement data to calculating the multiband SAR. 12.5 SAR Averaged Methods In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard’s method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1g and 10g cubes, the extrapolation distance should not be larger than 5 mm. 12.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 29 of 113 Report No: CCISE170501701 13 Conducted RF Output Power 13.1 GSM Conducted Power Band: GSM 850 Channel Frequency (MHz) GSM (GMSK, Voice) GPRS (GMSK, 1 TX slot) GPRS (GMSK, 2 TX slots) GPRS (GMSK, 3 TX slots) GPRS (GMSK, 4 TX slots) EGPRS (8PSK, 1 TX slot) EGPRS (8PSK, 2 TX slots) EGPRS (8PSK, 3 TX slots) EGPRS (8PSK, 4 TX slots) Burst Average Power (dBm) 128 190 251 824.2 836.6 848.8 33.10 33.08 32.95 32.93 32.86 32.73 32.13 32.07 31.96 30.30 30.26 30.15 29.15 29.11 29.01 27.96 27.81 27.64 26.83 26.70 26.51 24.64 24.50 24.26 23.48 23.32 23.16 Frame-Average Power(dBm) 128 190 251 824.2 836.6 848.8 24.07 24.05 23.92 23.90 23.83 23.70 26.11 26.05 25.94 26.04 26.00 25.89 26.14 26.10 26.00 18.93 18.78 18.61 20.81 20.68 20.49 20.38 20.24 20.00 20.47 20.31 20.15 Remark: 1. 2. The frame-averaged power is linearly reported the maximum burst averaged power over 8 time slots. The calculated method are shown as below: The duty cycle “x” of different time slots as below: 1 TX slot is 1/8, 2 TX slots is 2/8, 3 TX slots is 3/8 and 4 TX slots is 4/8 Based on the calculation formula: Frame-averaged power = Burst averaged power + 10 1og (x) So, Frame-averaged power (1 TX slot) = Burst averaged power (1 TX slot)– 9.03 Frame-averaged power (2 TX slots) = Burst averaged power (2 TX slots)– 6.02 Frame-averaged power (3 TX slots) = Burst averaged power (3 TX slots)– 4.26 Frame-averaged power (4 TX slots) = Burst averaged power (4 TX slots) – 3.01 CS1 coding scheme was used in GPRS conducted power measurements and SAR testing, MCS5 coding scheme was used in EGPRS conducted power measurements and SAR testing (if necessary). Note: 1. 2. 3. 4. 5. For Head SAR testing, GSM Voice mode should be evaluated, therefore the EUT was set in GSM 850 Voice mode. For Body worn SAR testing, GSM Voice mode should be evaluated, therefore the EUT was set in GSM 850 Voice mode. For Hotspot mode SAR testing, GPRS and EGPRS mode should be evaluated, therefore the EUT was set in GPRS 4 TX slots mode due to the highest frame-averaged power. Per KDB447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test reduction. The EUT do not support DTM and VoIP function. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 30 of 113 Report No: CCISE170501701 Band: GSM 1900 Channel Frequency (MHz) GSM (GMSK, Voice) GPRS (GMSK, 1 TX slot) GPRS (GMSK, 2 TX slots) GPRS (GMSK, 3 TX slots) GPRS (GMSK, 4 TX slots) EGPRS (8PSK, 1 TX slot) EGPRS (8PSK, 2 TX slots) EGPRS (8PSK, 3 TX slots) EGPRS (8PSK, 4 TX slots) Burst Average Power (dBm) 512 661 810 1850.2 1880.0 1909.8 29.55 29.24 28.94 29.44 29.15 28.85 28.70 28.40 28.11 26.89 26.70 26.44 25.82 25.56 25.31 26.63 26.26 25.87 25.42 25.11 24.65 23.37 22.99 22.47 21.86 21.44 20.94 Frame-Average Power(dBm) 512 661 810 1850.2 1880.0 1909.8 20.52 20.21 19.91 20.41 20.12 19.82 22.68 22.38 22.09 22.63 22.44 22.18 22.81 22.55 22.30 17.60 17.23 16.84 19.40 19.09 18.63 19.11 18.73 18.21 18.85 18.43 17.93 Remark: 1. 2. The frame-averaged power is linearly reported the maximum burst averaged power over 8 time slots. The calculated method are shown as below: The duty cycle “x” of different time slots as below: 1 TX slot is 1/8, 2 TX slots is 2/8, 3 TX slots is 3/8 and 4 TX slots is 4/8 Based on the calculation formula: Frame-averaged power = Burst averaged power + 10 1og (x) So, Frame-averaged power (1 TX slot) = Burst averaged power (1 TX slot) – 9.03 Frame-averaged power (2 TX slots) = Burst averaged power (2 TX slots) – 6.02 Frame-averaged power (3 TX slots) = Burst averaged power (3 TX slots) – 4.26 Frame-averaged power (4 TX slots) = Burst averaged power (4 TX slots) – 3.01 CS1 coding scheme was used in GPRS conducted power measurements and SAR testing, MCS5 coding scheme was used in EGPRS conducted power measurements and SAR testing (if necessary). Note: 1. 2. 3. 4. 5. For Head SAR testing, GSM Voice mode should be evaluated, therefore the EUT was set in GSM 1900 Voice mode. For Body worn SAR testing, GSM Voice mode should be evaluated, therefore the EUT was set in GSM Voice 1900 mode. For Hotspot mode SAR testing, GPRS and EGPRS mode should be evaluated, therefore the EUT was set in GPRS 4 TX slots mode due to the highest frame-averaged power. Per KDB447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test reduction. The EUT do not support DTM and VoIP function. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 31 of 113 Report No: CCISE170501701 13.2 WCDMA Conducted Power The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below: HSDPA Setup Configuration: a. The EUT was connected to Base Station Rohde & Schwarz CMU200 referred to the SetupConfiguration. b. The RF path losses were compensated into the measurements. c. A call was established between EUT and Base Station with following setting: i. ii. iii. iv. v. vi. vii. viii. ix. x. xi. Set Gain Factors (βc and βd) and parameters were set according to each Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121 Set RMC 12.2kbps + HSDPA mode. Set Cell Power = -86 dBm Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK) Select HSDPA Uplink Parameters Set Delta ACK, Delta NACK and Delta CQI = 8 Set Ack-Nack Repetition Factor to 3 Set CQI Feedback Cycle (k) to 4 ms Set CQI Repetition Factor to 2 Power Ctrl Mode = All Up bits d. The transmitted maximum output power was recorded. HSDPA Sub-test setup configuration Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 32 of 113 Report No: CCISE170501701 HSUPA Setup Configuration: a. The EUT was connected to Base Station Rohde & Schwarz CMU200referred to the SetupConfiguration. b. The RF path losses were compensated into the measurements. c. A call was established between EUT and Base Station with following setting * : i. ii. iii. iv. v. vi. vii. viii. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK Set the Gain Factors (βc and βd) and parameters (AG Index) were set according to each specific sub-test inthe following table, C11.1.3, quoted from the TS 34.121 Set Cell Power = -86 dBm Set Channel Type = 12.2k + HSPA Set UE Target Power Power Ctrl Mode= Alternating bits Set and observe the E-TFCI Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest’s E-TFCI d. The transmitted maximum output power was recorded. HSUPA Sub-test setup configuration Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 33 of 113 Report No: CCISE170501701 WCDMA Conducted Power: Band Channel Frequency (MHz) AMR 12.2 kbps RMC 12.2 kbps HSDPA Sub-test 1 HSDPA Sub-test 2 HSDPA Sub-test 3 HSDPA Sub-test 4 HSUPA Sub-test 1 HSUPA Sub-test 2 HSUPA Sub-test 3 HSUPA Sub-test 4 HSUPA Sub-test 5 4132 826.4 22.19 22.39 21.38 20.93 19.56 19.42 21.30 21.36 19.51 21.36 20.45 WCDMA Average power (dBm) WCDMA Band V 4183 4233 9262 836.6 846.6 1852.4 22.08 21.69 22.92 23.22 22.21 21.90 21.21 20.89 22.01 20.84 20.52 21.98 19.07 19.06 20.07 19.10 18.93 19.98 21.08 20.77 21.92 21.20 20.87 21.96 19.17 18.81 19.93 21.18 20.86 22.00 20.25 19.82 22.01 WCDMA Band II 9400 1880.0 22.84 23.10 22.00 21.57 19.94 19.93 21.93 21.98 19.94 22.03 22.01 9538 1907.6 22.95 23.07 22.03 21.59 20.01 19.97 21.92 21.94 20.06 21.96 21.95 Note: 1. 2. 3. Applying the subtest setup in Table C.11.1.3 of 3GPP TS 34.121-1 Per KDB 941225 D01, RMC 12.2kbps mode is used to evaluate SAR due the highest output power. If AMR 12.2kbps power is < 0.25dB higherthan RMC 12.2kbps, SAR tests with AMR 12.2kbps can be excluded. AMR, HSDPA RF power will not be larger than RMC 12.2kbps, detailed information is included inTune-up Procure exhibit. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 34 of 113 Report No: CCISE170501701 13.3 WLAN 2.4 GHz Band Conducted Power Channel CH 01 CH 06 CH 11 Frequency (MHz) 2412 2437 2462 Channel CH 03 CH 06 CH 09 Average Power (dBm) 802.11 b 15.77 15.75 16.11 Average Power (dBm) Frequency (MHz) 2422 2437 2452 802.11 g 14.91 17.19 15.27 802.11n (HT20) 15.40 15.05 15.23 802.11n (HT40) 13.17 14.84 13.06 Note: 1. 2. 3. 4. 5. 6. Per KDB 447498 D01v06, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm)] ·[√f(GHz)] ≤ 3.0 for1-g SAR, where f(GHz) is the RF channel transmit frequency in GHz Power and distance are rounded to the nearest mW and mm before calculation The result is rounded to one decimal place for comparison exclusion Frequency Max. Tune-up Max. Power Test distance Channel Result thresholds for (GHz) Power (dBm) (mW) (mm) 1-g SAR b/CH 11 2.462 16.50 44.67 14.03 3.0 g/CH 06 2.437 17.50 56.23 17.54 3.0 Base on the result of note1, RF exposure evaluation of 802.11 b mode is required. Per KDB 248227 D01v02r02, choose the highest output power channel to test SAR and determine further SAR exclusion. Per KDB 248227 D01v02r02, In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements.SAR is not required for the following 2.4 GHz OFDM conditions: 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration. 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. The output power of all data rate were pre-scan, just the worst case (the lowest data rate) of all mode were shown in report. Per KDB 248227 D01V02r02 section 2.2, when the EUT in continuously transmitting mode, the actual duty cycle is 99.46%, so the duty cycle factor is 1.01. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 35 of 113 Report No: CCISE170501701 13.4 Bluetooth Conducted Power Channel CH 01 CH 39 CH 78 Average Power (dBm)(Bluetooth) Frequency (MHz) GFSK π/4-DQPSK 2402 5.72 5.24 5.81 2441 5.33 2480 5.58 4.99 Channel CH 00 CH 20 CH 39 Average Power (dBm) Frequency (MHz) 2402 2442 2480 8DPSK 5.24 5.36 5.05 BLE -1.49 -1.61 -2.22 Note: 1. 2. 3. 4. Per KDB 447498 D01v06, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm)] ·[√f(GHz)] ≤ 3.0 for1-g SAR, where f(GHz) is the RF channel transmit frequency in GHz Power and distance are rounded to the nearest mW and mm before calculation The result is rounded to one decimal place for comparison exclusion Frequency Max. tune-up Max. Power Test distance thresholds Channel Result (GHz) Power (dBm) (mW) (mm) for 1-g SAR CH 39 2.441 6.0 3.98 1.24 3.0 The max. tune-up power was provided by manufacturer, base on the result of note 1, RF exposure evaluation is not required. The output power of all data rate were pre-scan, just the worst case of all mode were shown in report. When the minimum test separation distance is < 5 mm, a distance of 5 mm according is applied to determine SAR test exclusion. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 36 of 113 Report No: CCISE170501701 14 Exposure Positions Consideration 14.1 EUT Antenna Locations Fig.14.1 EUT Antenna Locations 14.2 Test Positions Consideration Antennas WWAN WLAN & Bluetooth Distance of Antennas to EUT edge/surface Test distance: 10mm Top Bottom Back Front Side Side <25mm <25mm 107mm <25mm <25mm <25mm <25mm 105mm Antennas Back WWAN WLAN & Bluetooth Yes Yes Test Positions Test distance: 10mm Top Front Side Yes No Yes Yes Bottom Side Yes No Right Side <25mm <25mm Left Side <25mm 52mm Right Side Yes Yes Left Side Yes No Note: 1. 2. 3. Head/Body-worn/Hotspot mode SAR assessments are required. Referring to KDB 941225 D06v02r01, when the overall device length and width are ≥ 9cm * 5cm, the test distance is 10mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge. Per KDB 447498 D01v06, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user, which is 0 mm for head SAR, 10 mm for hotspot SAR, and 10 mm for bodyworn SAR. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 37 of 113 Report No: CCISE170501701 15 SAR Test Results Summary 15.1 Standalone Head SAR Data GSM Head SAR Plot No. Band/Mode Test Position CH. Freq. (MHz) GSM850/Voice GSM850/Voice GSM850/Voice GSM850/Voice GSM1900/Voice GSM1900/Voice GSM1900/Voice GSM1900/Voice Right Cheek Right Tilted Left Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Tilted 128 128 128 128 512 512 512 512 824.2 824.2 824.2 824.2 1850.2 1850.2 1850.2 1850.2 Ave. Power (dBm) 33.10 33.10 33.10 33.10 29.55 29.55 29.55 29.55 Power Drift (dB) 0.03 0.10 -0.09 -0.01 -0.06 0.08 -0.00 0.03 ANSI / IEEE C95.1 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Tune-Up Limit (dBm) 33.50 33.50 33.50 33.50 30.00 30.00 30.00 30.00 Meas. SAR1g (W/kg) 0.422 0.330 0.481 0.351 0.406 0.175 0.576 0.204 Scaling Factor 1.096 1.096 1.096 1.096 1.109 1.109 1.109 1.109 Reported SAR1g (W/kg) 0.463 0.362 0.527 0.385 0.450 0.194 0.639 0.226 1.6 W/kg (mW/g) Averaged over 1g WCDMA Head SAR Plot No. Band/Mode Test Position CH. Freq. (MHz) Band V/RMC Band V/RMC Band V/RMC Band V/RMC Band II/RMC Band II/RMC Band II/RMC Band II/RMC Right Cheek Right Tilted Left Cheek Left Tilted Right Cheek Right Tilted Left Cheek Left Tilted 4132 4132 4132 4132 9262 9262 9262 9262 826.4 826.4 826.4 826.4 1852.4 1852.4 1852.4 1852.4 Ave. Power (dBm) 22.39 22.39 22.39 22.39 23.22 23.22 23.22 23.22 Power Drift (dB) 0.16 0.11 -0.04 0.20 -0.15 0.07 -0.13 -0.00 ANSI / IEEE C95.1 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Tune-Up Limit (dBm) 22.50 22.50 22.50 22.50 23.50 23.50 23.50 23.50 Meas. SAR1g (W/kg) 0.340 0.202 0.337 0.235 0.682 0.265 0.743 0.372 Scaling Factor 1.026 1.026 1.026 1.026 1.067 1.067 1.067 1.067 Reported SAR1g (W/kg) 0.349 0.207 0.346 0.241 0.728 0.283 0.793 0.397 1.6 W/kg (mW/g) Averaged over 1g WLAN 2.4 GHz Head SAR Plot No. Band/Mode Test Position CH. Freq. (MHz) 2.4GHz/802.11b 2.4GHz/802.11b 2.4GHz/802.11b 2.4GHz/802.11b Right Cheek Right Tilted Left Cheek Left Tilted 11 11 11 11 2462 2462 2462 2462 ANSI / IEEE C95.1 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Ave. Power Power Drift (dBm) (dB) 16.11 0.02 16.11 0.03 16.11 0.31 16.11 0.08 Tune-Up Limit (dBm) 16.50 16.50 16.50 16.50 Meas. SAR1g (W/kg) 0.355 0.477 0.250 0.164 Scaling D.C Factor Factor 1.094 1.094 1.094 1.094 1.01 1.01 1.01 1.01 Reported SAR1g (W/kg) 0.392 0.527 0.276 0.181 1.6 W/kg (mW/g) Averaged over 1g Note: 1. 2. 3. 4. 5. Per KDB 447498 D01v06, for each exposure position, if the highest output power channel Reported SAR ≤0.8W/kg, other channels SAR testing is not necessary. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required when the measuredSAR is ≥0.8W/kg. PerKDB248227 D01v02r02, for 802.11b DSSS , when the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required in that exposure configuration. Per KDB248227 D01v02r02, OFDM SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.Cuz the maximum output power specified for OFDM and DSSS are 56.23mW(17.19dBm) and 44.67mW(16.11dBm), the scaled SAR would be 0.527×(56.23/44.67)=0.676W/Kg﹤1.2 W/kg, therefore, SAR is not required for OFDM. According toKDB 865664 D02v01r02, SAR plot is required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 38 of 113 Report No: CCISE170501701 15.2 Standalone Body SAR GSM Body SAR Plot No. Band/Mode Test Position CH. Freq. (MHz) GSM850/Voice GSM850/Voice GSM1900/Voice GSM1900/Voice Front Back Front Back 128 128 512 512 824.2 824.2 1850.2 1850.2 Ave. Power (dBm) 33.10 33.10 29.55 29.55 Power Drift (dB) 0.14 -0.19 0.07 -0.02 ANSI / IEEE C95.1 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Tune-Up Limit (dBm) 33.50 33.50 30.00 30.00 Meas. SAR1g (W/kg) 0.546 0.687 0.400 0.538 Scaling Factor 1.096 1.096 1.109 1.109 Reported SAR1g (W/kg) 0.598 0.753 0.444 0.597 1.6 W/kg (mW/g) Averaged over 1g WCDMA Body SAR Plot No. Band/Mode Test Position CH. Freq. (MHz) Band V/RMC Band V/RMC Band II/RMC Band II/RMC Band II/RMC Band II/RMC Band II/RMC Front Back Front Back Back Back Back 4132 4132 9262 9262 9262 9400 9538 826.4 826.4 1852.4 1852.4 1852.4 1880.0 1907.6 Ave. Power (dBm) 22.39 22.39 23.22 23.22 23.22 23.10 23.07 Power Drift (dB) 0.01 -0.09 -0.07 -0.04 -0.07 -0.17 -0.09 ANSI / IEEE C95.1 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Tune-Up Limit (dBm) 22.50 22.50 23.50 23.50 23.50 23.50 23.50 Meas. SAR1g (W/kg) 0.486 0.613 0.651 0.969 0.925 0.899 0.736 Scaling Factor 1.026 1.026 1.067 1.067 1.067 1.096 1.104 Reported SAR1g (W/kg) 0.499 0.629 0.695 1.034 0.987 0.985 0.813 1.6 W/kg (mW/g) Averaged over 1g WLAN 2.4 GHz Body SAR Plot No. 10 Band/Mode Test Position CH. Freq. (MHz) 2.4GHz/802.11b 2.4GHz/802.11b Front Back 11 11 2462 2462 Ave. Power (dBm) 16.11 16.11 ANSI / IEEE C95.1 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Power Drift (dB) -0.05 0.06 Tune-Up Limit (dBm) 16.50 16.50 Meas. SAR1g (W/kg) 0.056 0.070 Scaling D.C Factor Factor 1.094 1.094 1.01 1.01 Reported SAR1g (W/kg) 0.062 0.077 1.6 W/kg (mW/g) Averaged over 1g Note: 1. 2. 3. 4. 5. 6. 7. 8. 9. Body-worn SAR testing was performed at 10mm separation, and this distance is determined by the handsetmanufacturer that there will be body-worn accessories that users may acquire at the time of equipment certification,to enable users to purchase aftermarket body-worn accessories with the required minimum separation. Per KDB 941225 D06v02r01, when the same wireless modes and device transmission configurations are required for testingbody-worn accessories and hotspot mode, it is not necessary to test body-worn accessory SAR for the same deviceorientation if the test separation distance for hotspot mode is more conservative than that used for bodywornaccessories. Body-worn exposure conditions are intended to voice call operations, therefore GSM voice call is selected to betested. Per KDB 648474 D04v01r03, when the ReportedSAR for a body-worn accessory measured without a headset connectedto the handset is ≤ 1.2 W/kg, SAR testing with a headset connected to the handset is not required. The WLAN SAR perform the front and back position, due considered the simultaneous SAR for body-worn. Per KDB 447498 D01v06, for each exposure position, if the highest output channel Reported SAR ≤0.8W/kg, other channels SAR testing is not necessary. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required when the measuredSAR is ≥0.8W/kg. According toKDB 865664 D02v01r02, SAR plot is required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination. Highlight part of test data means repeated test. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 39 of 113 Report No: CCISE170501701 15.3 Body SAR in Hotspot Mode GSM Body SAR in Hotspot mode Plot No. 11 12 Band/Mode Test Position CH. Freq. (MHz) GPRS850/4 slots GPRS850/4 slots GPRS850/4 slots GPRS850/4 slots GPRS850/4 slots GPRS850/4 slots GPRS850/4 slots GPRS850/4 slots GPRS850/4 slots GPRS850/4 slots GPRS850/4 slots GPRS1900/4 slots GPRS1900/4 slots GPRS1900/4 slots GPRS1900/4 slots GPRS1900/4 slots GPRS1900/4 slots GPRS1900/4 slots GPRS1900/4 slots Front Front Front Front Back Back Back Back Left Right Bottom Front Back Back Back Back Left Right Bottom 128 128 190 251 128 128 190 251 128 128 128 512 512 661 661 810 512 512 512 824.2 824.2 836.6 848.8 824.2 824.2 836.6 848.8 824.2 824.2 824.2 1850.2 1850.2 1880.0 1880.0 1909.8 1850.2 1850.2 1850.2 Ave. Power (dBm) 29.15 29.15 29.11 29.01 29.15 29.15 29.11 29.01 29.15 29.15 29.15 25.82 25.82 25.56 25.56 25.31 25.82 25.82 25.82 Power Drift (dB) 0.02 0.10 -0.31 0.22 -0.07 -0.21 -0.01 0.02 0.01 -0.32 -0.20 0.01 -0.08 -0.16 -0.21 -0.21 0.20 -0.16 -0.07 ANSI / IEEE C95.1 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Plot No. 10 Scaling Factor 1.084 1.084 1.094 1.119 1.084 1.084 1.094 1.119 1.084 1.084 1.084 1.042 1.042 1.107 1.107 1.172 1.042 1.042 1.042 Reported SAR1g (W/kg) 0.882 0.879 0.863 0.852 1.182 1.160 1.127 1.119 0.112 0.229 0.115 0.738 0.883 0.973 0.910 0.939 0.242 0.431 0.685 1.6 W/kg (mW/g) Averaged over 1g Band/Mode Test Position CH. Freq. (MHz) Band V/RMC Band V/RMC Band V/RMC Band V/RMC Band V/RMC Band II/RMC Band II/RMC Band II/RMC Band II/RMC Band II/RMC Band II/RMC Band II/RMC Band II/RMC Front Back Left Right Bottom Front Back Back Back Back Left Right Bottom 4132 4132 4132 4132 4132 9262 9262 9262 9400 9538 9262 9262 9262 826.4 826.4 826.4 826.4 826.4 1852.4 1852.4 1852.4 1880.0 1907.6 1852.4 1852.4 1852.4 Ave. Power (dBm) 22.39 22.39 22.39 22.39 22.39 23.22 23.22 23.22 23.10 23.07 23.22 23.22 23.22 ANSI / IEEE C95.1 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Meas. SAR1g (W/kg) 0.814 0.811 0.789 0.761 1.090 1.070 1.030 1.000 0.103 0.211 0.106 0.708 0.847 0.879 0.822 0.801 0.232 0.414 0.657 WCDMA Body SAR in Hotspot mode Plot No. Tune-Up Limit (dBm) 29.50 29.50 29.50 29.50 29.50 29.50 29.50 29.50 29.50 29.50 29.50 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 Power Drift (dB) 0.01 -0.09 -0.14 0.19 0.28 -0.07 -0.04 -0.07 -0.17 -0.09 -0.17 0.25 0.28 Tune-Up Limit (dBm) 22.50 22.50 22.50 22.50 22.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 Meas. SAR1g (W/kg) 0.486 0.613 0.087 0.102 0.076 0.651 0.969 0.925 0.899 0.736 0.270 0.354 0.641 Scaling Factor 1.026 1.026 1.026 1.026 1.026 1.067 1.067 1.067 1.096 1.104 1.067 1.067 1.067 Reported SAR1g (W/kg) 0.499 0.629 0.089 0.105 0.078 0.695 1.034 0.987 0.985 0.813 0.288 0.378 0.684 1.6 W/kg (mW/g) Averaged over 1g WLAN 2.4GHz Body SAR in Hotspot mode Band/Mode Test Position CH. Freq. (MHz) 2.4GHz/802.11b 2.4GHz/802.11b 2.4GHz/802.11b 2.4GHz/802.11b Front Back Right Top 11 11 11 11 2462 2462 2462 2462 Ave. Power (dBm) 16.11 16.11 16.11 16.11 ANSI / IEEE C95.1 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Power Drift (dB) -0.05 0.06 -0.31 -0.30 TuneUp Limit (dBm) 16.50 16.50 16.50 16.50 Meas. SAR1g (W/kg) 0.056 0.070 0.025 0.039 Scaling Factor D.C Factor 1.094 1.094 1.094 1.094 1.01 1.01 1.01 1.01 Reporte d SAR1g (W/kg) 0.062 0.077 0.028 0.043 1.6 W/kg (mW/g) Averaged over 1g Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 40 of 113 Report No: CCISE170501701 Note: 1. 2. 3. 4. 5. 6. 7. Per KDB 447498 D01v06, for each exposure position, if the highest output channel Reported SAR ≤0.8W/kg, otherchannels SAR testing is not necessary. Additional WLAN SAR testing was performed for simultaneous transmission analysis. For Hotspot SAR testing, per KDB 941225 D06v02r01, for EUT dimension ≥ 9cm*5cm, the test distance is 10mm. SAR mustbe measured for all surfaces and sides with a transmitting antenna located within 2.5cm from that surface or edge. Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA output power is <0.25dB higher than RMC 12.2kbps, or Reported SAR with RMC 12.2kbps setting is ≤ 1.2W/kg, HSDPA SAR evaluationcan be excluded. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required when the measuredSAR is ≥0.8W/kg. According toKDB 865664 D02v01r02, SAR plot is required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination. Highlight part of test data means repeated test. 15.4 Repeated SAR measurement Band/ Mode Test Position CH. Freq. (MHz) Original Band II/RMC GPRS850/4 slots GPRS850/4 slots GPRS1900/4 slots Back Front Back Back 9262 128 128 661 1852.4 824.2 824.2 1880.0 0.969 0.814 1.09 0.879 ANSI / IEEE C95.1 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Measured SAR (W/kg) st nd 1 Repeated 2 Repeated Value Ratio Value Ratio 0.925 1.05 0.811 1.00 1.01 1.08 0.822 1.07 1.6 W/kg (mW/g) Averaged over 1g Note: 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when themeasuredSAR is ≥0.8W/kg 2. Per KDB 865664 D01v01r04, if the ratio of original and repeated is ≤ 1.2and the measured SAR <1.45W/kg,only one repeated measurement is required. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 41 of 113 Report No: CCISE170501701 15.5 Multi-Band Simultaneous Transmission Considerations Simultaneous Transmission Capabilities According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmittingsimultaneously when there is overlapping transmission, with the exception of transmissions duringnetwork hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths forthe EUT are shown in below Figure and are color-coded to indicate communication modes which share thesame path. Modes which share the same transmission path cannot transmit simultaneously with oneanother. Path 1 Path 2 GSM/WCDMA Bluetooth/WLAN Fig.15.1 Simultaneous Transmission Paths Simultaneous Transmission Procedures This device contains transmitters that may operate simultaneously. Therefore simultaneous transmissionanalysis is required. Per FCC KDB 447498 D01v06, simultaneous transmission SAR testexclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas ina specific a physical test configuration is ≤1.6 W/kg. When standalone SAR is not required to bemeasured, per FCC KDB 447498 D01v06 4.3.2), the following equation must be used to estimate thestandalone 1g SAR for simultaneous transmission assessment involving that transmitter. Estimated SAR = Mode Bluetooth Max. tune-up Power (dBm) 6.0 f (GHz) Max. power of channel, mW 7.5 Min.Separation Distance, mm Exposure Position Test Distance (mm) Estimated SAR (W/kg) Head 0.166 Body 10 0.083 Hotspot 10 0.083 Note: 1. When the minimum test separation distance is < 5 mm, a distance of 5 mm according is applied to determine estimated SAR. Multi-Band simultaneous Transmission Consideration Position Simultaneous Transmission Consideration Head Body Hotspot Applicable Combination WWAN (Voice) + WLAN 2.4 GHz WWAN (Voice) + Bluetooth WWAN (Voice) + WLAN 2.4 GHz WWAN (Voice) + Bluetooth WWAN (Data) + WLAN 2.4 GHz WWAN (Data) + Bluetooth Note: 1. 2. 3. 4. WLAN 2.4GHz Band and Bluetooth share the same antenna, and cannot transmit simultaneously. GSM/WCDMA shares the same antenna, and cannot transmit simultaneously. The Report SAR summation is calculated based on the same configuration and test position. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if, i. Scalar SAR summation < 1.6W/kg. 1.5 ii. SPLSR = (SAR1+ SAR2) / (min. separation distance, mm), and the peak separation distance is determinedfrom the square root of [(x1-x2) + (y1-y2) + (z1-z2) ], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of theextrapolated peak SAR locations in the zoom scanIf SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary iii. Simultaneously transmission SAR measurement, and the Reported multi-band SAR < 1.6W/kg Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 42 of 113 Report No: CCISE170501701 15.6 SAR Simultaneous Transmission Analysis Head Simultaneous Transmission WWAN Mode GSM850 WWAN Mode GSM 1900 WWAN Mode WCDMA Band V WWAN Mode WCDMA Band II Position WWAN SAR1g( W/kg) WLAN SAR1g (W/kg) ƩSAR (W/kg) Right Cheek 0.463 0.392 0.855 Right Tilted 0.362 0.527 0.889 Left Cheek 0.527 0.276 0.803 Left Tilted 0.385 0.181 0.566 Position WWAN SAR1g( W/kg) WLAN SAR1g (W/kg) ƩSAR (W/kg) Right Cheek 0.450 0.392 0.842 Right Tilted 0.194 0.527 0.721 Left Cheek 0.639 0.276 0.915 Left Tilted 0.226 0.181 0.407 Position WWAN SAR1g( W/kg) WLAN SAR1g (W/kg) ƩSAR (W/kg) Right Cheek 0.349 0.392 0.741 Right Tilted 0.207 0.527 0.734 Left Cheek 0.346 0.276 0.622 Left Tilted 0.241 0.181 0.422 Position WWAN SAR1g( W/kg) WLAN SAR1g (W/kg) ƩSAR (W/kg) Right Cheek WWAN Mode GSM850 WWAN Mode GSM 1900 WWAN Mode WCDMA Band V Position WWAN SAR1g( W/kg) Right Cheek 0.463 Bluetooth Estimated SAR1g(W/ kg) 0.166 Right Tilted 0.362 0.166 0.528 Left Cheek 0.527 0.166 0.693 Left Tilted 0.385 0.166 0.551 Position WWAN SAR1g( W/kg) Right Cheek 0.450 Bluetooth Estimated SAR1g (W/kg) 0.166 Right Tilted 0.194 0.166 0.360 Left Cheek 0.639 0.166 0.805 Left Tilted 0.226 0.166 0.392 Position WWAN SAR1g( W/kg) Right Cheek 0.349 Bluetooth Estimated SAR1g(W/ kg) 0.166 Right Tilted 0.207 0.166 0.373 Left Cheek 0.346 0.166 0.512 Left Tilted 0.241 0.166 0.407 Position WWAN SAR1g( W/kg) ƩSAR (W/kg) 0.629 ƩSAR (W/kg) 0.616 ƩSAR (W/kg) 0.515 0.728 0.392 1.120 Right Cheek 0.728 Bluetooth Estimated SAR1g(W/ kg) 0.166 Right Tilted 0.283 0.527 0.810 Right Tilted 0.283 0.166 0.449 Left Cheek 0.793 0.276 1.069 Left Cheek 0.793 0.166 0.959 Left Tilted 0.397 0.181 0.578 Left Tilted 0.397 0.166 0.563 WWAN Mode WCDMA Band II Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com ƩSAR (W/kg) 0.894 Project No.: CCISE1705017 Page 43 of 113 Report No: CCISE170501701 Body worn Simultaneous Transmission WWAN Mode GSM850 WWAN Mode GSM 1900 WWAN Mode WCDMA Band V WWAN Mode WCDMA Band II Position WWAN SAR1g( W/kg) WLAN SAR1g (W/kg) ƩSAR (W/kg) Front 0.598 0.062 0.660 Back 0.753 0.077 0.830 Position WWAN SAR1g( W/kg) WLAN SAR1g (W/kg) ƩSAR (W/kg) WWAN Mode Front 0.444 0.062 0.506 Back 0.597 0.077 0.674 GSM 1900 Position WWAN SAR1g( W/kg) WLAN SAR1g( W/kg) ƩSAR (W/kg) WWAN Mode Front 0.499 0.062 0.561 Back 0.629 0.077 0.706 WCDMA Band V Position WWAN SAR1g( W/kg) WLAN SAR1g (W/kg) ƩSAR (W/kg) WWAN Mode Front 0.695 0.062 0.757 Back 1.034 0.077 1.111 WCDMA Band II WWAN Mode GSM850 Position WWAN SAR1g( W/kg) Front 0.598 Bluetooth Estimated SAR1g(W/ kg) 0.083 Back 0.753 0.083 Position WWAN SAR1g( W/kg) Front 0.444 Bluetooth Estimated SAR1g(W/ kg) 0.083 Back 0.597 0.083 Position WWAN SAR1g( W/kg) Front 0.499 Bluetooth Estimated SAR1g (W/kg) 0.083 Back 0.629 0.083 Position WWAN SAR1g( W/kg) Front 0.695 Bluetooth Estimated SAR1g(W/ kg) 0.083 Back 1.034 0.083 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com ƩSAR (W/kg) 0.681 0.836 ƩSAR (W/kg) 0.527 0.68 ƩSAR (W/kg) 0.582 0.712 ƩSAR (W/kg) 0.778 1.117 Project No.: CCISE1705017 Page 44 of 113 Report No: CCISE170501701 Hotspot mode Simultaneous Transmission WWAN Mode GSM850 WWAN Mode GSM 1900 WWAN Mode WCDMA Band V WWAN Mode WCDMA Band II Position WWAN SAR1g( W/kg) 0.944 Front 0.882 Bluetooth Estimated SAR1g(W/ kg) 0.083 1.259 Back 1.182 0.083 1.265 Left 0.112 0.112 Right 0.229 0.083 0.312 Top 0.083 0.083 Bottom 0.115 0.115 Position WWAN SAR1g( W/kg) 0.800 Front 0.738 Bluetooth Estimated SAR1g(W/ kg) 0.083 0.077 1.050 Back 0.973 0.083 1.056 0.242 Left 0.242 0.242 0.431 0.028 0.459 Right 0.431 0.083 0.514 Position WWAN SAR1g( W/kg) WLAN SAR1g( W/kg) ƩSAR (W/kg) Front 0.882 0.062 Back 1.182 0.077 Left 0.112 0.112 Right 0.229 0.028 0.257 Top 0.043 0.043 Bottom 0.115 0.115 Position WWAN SAR1g( W/kg) WLAN SAR1g (W/kg) ƩSAR (W/kg) Front 0.738 0.062 Back 0.973 Left 0.242 Right WWAN Mode GSM850 WWAN Mode GSM 1900 ƩSAR (W/kg) 0.965 ƩSAR (W/kg) 0.821 Top 0.043 0.043 Top 0.083 0.083 Bottom 0.685 0.685 Bottom 0.685 0.685 Position WWAN SAR1g( W/kg) WLAN SAR1g (W/kg) ƩSAR (W/kg) Position WWAN SAR1g( W/kg) Front 0.499 0.062 0.561 Front 0.499 Bluetooth Estimated SAR1g(W/ kg) 0.083 Back 0.629 0.077 0.706 Back 0.629 0.083 0.712 Left 0.089 0.089 Left 0.089 0.089 Right 0.105 0.028 0.133 Right 0.105 0.083 0.188 Top 0.043 0.043 Top 0.083 0.083 Bottom 0.078 0.078 Bottom 0.078 0.078 Position WWAN SAR1g( W/kg) WLAN SAR1g (W/kg) ƩSAR (W/kg) Position WWAN SAR1g( W/kg) Front 0.695 0.062 0.757 Front 0.695 Bluetooth Estimated SAR1g(W/ kg) 0.083 Back 1.034 0.077 1.111 Back 1.034 0.083 1.117 Left 0.288 0.288 Left 0.288 0.288 0.406 0.461 0.043 0.043 Top 0.378 0.083 Top 0.378 0.028 0.083 0.083 Bottom 0.684 0.684 Bottom 0.684 0.684 Right WWAN Mode WCDMA Band V WWAN Mode WCDMA Band II Right ƩSAR (W/kg) 0.582 ƩSAR (W/kg) 0.778 Simultaneous Transmission Conclusion The above numerical summed SAR results for all the case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneoustransmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneousSAR summation is required per FCC KDB Publication 447498 D01v06. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 45 of 113 Report No: CCISE170501701 15.7 Measurement Uncertainty The component of uncertainly may generally be categorized according to the methods used to evaluate them. Theevaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation ofuncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation istermed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by anestimated standard deviation, termed standard uncertainty, which is determined by the positive square root of theestimated variance. A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. Thisincludes calculating the standard deviation of the mean of a series of independent observations; using the method ofleast squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; orcarrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement. A Type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevantinformation available. These may include previous measurement data, experience, and knowledge of the behaviorand properties of relevant materials and instruments, manufacture’s specification, data provided in calibration reportsand uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is eitherobtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution,rectangular or triangular distributions indicated in below Table. UncertaintyDistributions Normal Multi-plying Factor 1/k(b) Rectangular Triangular U-Shape 1/ 3 1/ 6 1/ 2 Standard Uncertainty for Assumed Distribution The combined standard uncertainty of the measurement result represents the estimated standard deviation of theresult. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation usingthe usual “root-sum-squares” (RSS) methods of combining standard deviations by taking the positive square root ofthe estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within whichthe measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by acoverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of ameasured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of thisdocument, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASYuncertainty Budget is shown in the following tables. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 46 of 113 Report No: CCISE170501701 Section Uncert. Value Prob. Dist. Div. (Ci) (1 g) (Ci) (10 g) Std. Unc. (1 g) Std. Unc. (10 g) Vi Probe Calibration E.2.1 ±6.0% ±6.0% ±6.0% ∞ Axial Isotropy E.2.2 ±0.5% 0.7 0.7 ±0.20% ±0.20% ∞ Hemispherical Isotropy E.2.2 ±2.6% 0.7 0.7 ±1.05% ±1.05% ∞ Boundary Effects E.2.3 ±1.0% ±0.58% ±0.58% ∞ Linearity E.2.4 ±0.6% ±0.35% ±0.35% ∞ System Detection Limits E.2.5 ±0.25% ±0.14% ±0.14% ∞ Readout Electronics E.2.6 ±0.3% ±0.3% ±0.3% ∞ Response Time E.2.7 ±0.8% ±0.46% ±0.46% ∞ Integration Time E.2.8 ±2.6% ±1.5% ±1.5% ∞ RF Ambient Noise E.6.1 ±3.0% ±1.73% ±1.73% ∞ RF Ambient Reflections E.6.1 ±3.0% ±1.73% ±1.73% ∞ E.6.2 ±0.4% ±0.23% ±0.23% ∞ E.6.3 ±2.9% ±1.67% ±1.67% ∞ E.5 ±1.0% ±0.58% ±0.58% ∞ Device Positioning E.4.2 ±4.6% ±4.6% ±4.6% M-1 Device Holder E.4.1 ±5.2% ±5.2% ±5.2% M-1 Power Drift 6.6.2 ±5.0% ±2.89% ±2.89% ∞ Phantom Uncertainty E.3.1 ±4.0% ±2.31% ±2.31% ∞ Liquid Conductivity(Target) E.3.2 ±5.0% 0.64 0.43 ±1.85% ±1.24% ∞ Liquid Conductivity(Meas.) E.3.3 ±2.5% 0.64 0.43 ±1.64% ±1.08% Liquid Permittivity(Target) E.3.2 ±5.0% 0.6 0.49 ±1.73% ±1.41% ∞ Liquid Permittivity(Meas.) E.3.3 ±2.5% 0.6 0.49 ±1.5% ±1.23% ±11.07% ±10.84% Uncertainty Component Measurement System Probe positioner mechanical tolerances Probe positioning tolerance with respect to the phantom shell surface Interpolation, extrapolation, and integration algorithm For max. SAR Evaluation. Test Sample Related Phantom and Setup Combined Standard Uncertainty (RSS) ±22.2% ±21.7% Expanded Uncertainty (95% Confidence Level, k = 2) Uncertainty Budget for frequency range 300 MHz to 3 GHz according to IEEE1528-2013 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 47 of 113 Report No: CCISE170501701 15.8 Measurement Conclusion The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested. Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 48 of 113 Report No: CCISE170501701 16 Reference [1]. FCC 47 CFR Part 2 “Frequency Allocations and Radio Treaty Matters; General Rules andRegulations” [2]. ANSI/IEEE Std. C95.1-2005, “IEEE Standard for Safety Levels with Respect to Human Exposureto Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz”, September 1992 [3]. IEEE Std. 1528-2013, “Recommended Practice for Determining the Peak Spatial-AverageSpecific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:Measurement Techniques”, September2013 [4]. SPEAG DASY52 System Handbook [5]. FCC KDB 248227 D01 v02r02, “SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS”, October 2015 [6]. FCC KDB 447498 D01 v06, “RF EXPOSURE PROCEDURES AND EQUIPMENT AUTHORIZATION POLICIES FOR MOBILE AND PORTABLE DEVICES”, October 2015 [7]. FCC KDB 648474 D04 v01r03, “SAR EVALUATION CONSIDERATIONS FOR WIRELESS HANDSETS”, October 2015 [8]. FCC KDB 941225 D01 v03r01, “3G SAR MEAUREMENT PROCEDURES”, October 2015 [9]. FCC KDB 941225 D03 v01, “Recommended SAR Test Reduction Procedures for GSM / GPRS /EDGE”, December 2008 [10]. FCC KDB 941225 D06 v02r01, "SAR EVALUATION PROCEDURES FOR PORTABLE DEVICES WITH WIRELESS ROUTER CAPABILITIES", October 2015 [11]. FCC KDB 865664 D01 v01r04, “SAR MEASUREMENT REQUIREMENTS FOR 100 MHz TO 6 GHz”, August2015 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 49 of 113 Report No: CCISE170501701 Appendix A: EUT Photos Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 50 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 51 of 113 Report No: CCISE170501701 Appendix B: TestSetup Photos Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 52 of 113 Report No: CCISE170501701 Head Right Cheek Right Tilted Left Cheek Left Tilted Body Front side (10mm) Back side(10mm) Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 53 of 113 Report No: CCISE170501701 Top side(10mm) Bottom side(10mm) Left side(10mm) Right side(10mm) Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 54 of 113 Report No: CCISE170501701 Appendix C: Plots of SAR System Check Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 55 of 113 Report No: CCISE170501701 Test Laboratory: CCIS Date/Time: 05.12.2017 09:30:18 DUT: Dipole 835 MHz; Type: D835V2; Serial: SN:4d154 Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.911 S/m; εr = 41.320; ρ = 1000 kg/m3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY Configuration: Probe: EX3DV4 - SN3924; ConvF(9.46, 9.46, 9.46); Calibrated: 06.22.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 Electronics: DAE4 Sn1373; Calibrated: 02.09.2017 Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) System Performance Check at Frequency 835 MHz Head Tissue/d=15mm, Pin=80 mW, dist=2.0mm (EX-Probe)/Area Scan (41x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.951 W/kg System Performance Check at Frequency 835 MHz Head Tissue/d=15mm, Pin=80 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 33.58 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.15 W/kg SAR(1 g) = 0.748 W/kg; SAR(10 g) = 0.484 W/kg Maximum value of SAR (measured) = 0.941 W/kg 0 dB = 0.941 W/kg = -0.26 dBW/kg Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 56 of 113 Report No: CCISE170501701 Test Laboratory: CCIS Date/Time: 05.10.2017 15:00:19 DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d175 Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.419 S/m; εr = 40.162; ρ = 1000 kg/m3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY Configuration: Probe: EX3DV4 - SN3924; ConvF(7.94, 7.94, 7.94); Calibrated: 06.22.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 Electronics: DAE4 Sn1373; Calibrated: 02.09.2017 Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) System Performance Check at Frequency 1900MHz Head Tissue/d=10mm, Pin=40 mW, dist=2.0mm (EX-Probe)/Area Scan (41x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.48 W/kg System Performance Check at Frequency 1900MHz Head Tissue/d=10mm, Pin=40 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 40.87 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 3.23 W/kg SAR(1 g) = 1.65 W/kg; SAR(10 g) = 0.812 W/kg Maximum value of SAR (measured) = 2.41 W/kg 0 dB = 2.41 W/kg = 3.82 dBW/kg Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 57 of 113 Report No: CCISE170501701 Test Laboratory: CCIS Date/Time: 05.09.2017 07:39:20 DUT: Dipole 2450 MHz; Type: D2450V2; Serial: SN:910 Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.829 S/m; εr = 38.696; ρ = 1000 kg/m3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY Configuration: Probe: EX3DV4 - SN3924; ConvF(7.33, 7.33, 7.33); Calibrated: 06.22.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 31.0 Electronics: DAE4 Sn1373; Calibrated: 02.09.2017 Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) System Performance Check at Frequency 2450MHz Head Tissue/d=10mm, Pin=40 mW, dist=2.0mm (EX-Probe)/Area Scan (51x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 3.41 W/kg System Performance Check at Frequency 2450MHz Head Tissue/d=10mm, Pin=40 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.01 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 4.51 W/kg SAR(1 g) = 2.04 W/kg; SAR(10 g) = 0.972 W/kg Maximum value of SAR (measured) = 3.25 W/kg 0 dB = 3.25 W/kg = 5.12 dBW/kg Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 58 of 113 Report No: CCISE170501701 Test Laboratory: CCIS Date/Time: 05.11.2017 17:12:30 DUT: Dipole 835 MHz; Type: D835V2; Serial: SN:4d154 Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 835 MHz; σ = 0.984 S/m; εr = 55.061; ρ = 1000 kg/m3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY Configuration: Probe: EX3DV4 - SN3924; ConvF(9.88, 9.88, 9.88); Calibrated: 06.22.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 Electronics: DAE4 Sn1373; Calibrated: 02.09.2017 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) System Performance Check at Frequency 835 MHz Body Tissue/d=15mm, Pin=80 mW, dist=2.0mm (EX-Probe)/Area Scan (41x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.983 W/kg System Performance Check at Frequency 835 MHz Body Tissue/d=15mm, Pin=80 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.80 V/m; Power Drift = -0.04dB Peak SAR (extrapolated) = 1.02 W/kg SAR(1 g) = 0.790 W/kg; SAR(10 g) = 0.511 W/kg Maximum value of SAR (measured) = 0.974 W/kg 0 dB = 0.974 W/kg = -0.11dBW/kg Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 59 of 113 Report No: CCISE170501701 Test Laboratory: CCIS Date/Time: 05.09.2017 15:17:29 DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d175 Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.512 S/m; εr = 53.138; ρ = 1000 kg/m3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY Configuration: Probe: EX3DV4 - SN3924; ConvF(7.7, 7.7, 7.7); Calibrated: 06.22.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 Electronics: DAE4 Sn1373; Calibrated: 02.09.2017 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) System Performance Check at Frequency 1900MHz Body Tissue/d=10mm, Pin=40 mW, dist=2.0mm (EX-Probe)/Area Scan (41x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.33 W/kg System Performance Check at Frequency 1900MHz Body Tissue/d=10mm, Pin=40 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 37.86 V/m; Power Drift =0.12 dB Peak SAR (extrapolated) = 2.67 W/kg SAR(1 g) = 1.58 W/kg; SAR(10 g) = 0.813 W/kg Maximum value of SAR (measured) = 2.16 W/kg 0 dB = 2.16 W/kg = 3.34 dBW/kg Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 60 of 113 Report No: CCISE170501701 Test Laboratory: CCIS Date/Time: 05.16.2017 13:41:47 DUT: Dipole 2450 MHz ; Type: D2450V2; Serial: SN:910 Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.934 S/m; εr = 52.494; ρ = 1000 kg/m3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY Configuration: Probe: EX3DV4 - SN3924; ConvF(7.13, 7.13, 7.13); Calibrated: 06.22.2016; Sensor-Surface: 2mm (Mechanical Surface Detection), z = 31.0 Electronics: DAE4 Sn1373; Calibrated: 02.09.2017 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) System Performance Check at Frequency 2450MHz Body Tissue/d=10mm, Pin=40 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 35.19 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 4.38 W/kg SAR(1 g) = 2.10 W/kg; SAR(10 g) = 0.981 W/kg Maximum value of SAR (measured) = 3.29 W/kg System Performance Check at Frequency 2450MHz Body Tissue/d=10mm, Pin=40 mW, dist=2.0mm (EX-Probe)/Area Scan (51x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 3.48 W/kg 0 dB = 3.48 W/kg = 5.42 dBW/kg Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 61 of 113 Report No: CCISE170501701 Appendix D: Plots of SAR Test Data Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 62 of 113 Report No: CCISE170501701 Test Laboratory: CCIS Date/Time: 05.12.2017 11:38:14 DUT: Mobile Phone; Type: iris 30; Serial: 1# Communication System: UID 0, GSM (0); Frequency: 824.2 MHz; Duty Cycle: 1:8.30042 Medium parameters used: f = 825 MHz; σ = 0.913 S/m; εr = 41.381; ρ = 1000 kg/m3 Phantom section: Left Section DASY5 Configuration: Probe: EX3DV4 - SN3924; ConvF(9.46, 9.46, 9.46); Calibrated: 06.22.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1373; Calibrated: 02.09.2017 Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) GSM 850 Left Cheek/Low Channel/Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.598 W/kg GSM 850 Left Cheek/Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.562 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.651 W/kg SAR(1 g) = 0.481 W/kg; SAR(10 g) = 0.357 W/kg Maximum value of SAR (measured) = 0.587 W/kg 0 dB = 0.587 W/kg = -2.31 dBW/kg Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 63 of 113 Report No: CCISE170501701 Test Laboratory: CCIS Date/Time: 05.10.2017 15:37:31 DUT: Mobile phone; Type: iris 30; Serial: 1# Communication System: UID 0, GSM (0); Frequency: 1850.2 MHz; Duty Cycle: 1:8.30042 Medium parameters used: f = 1850.2 MHz; σ = 1.369 S/m; εr = 40.551; ρ = 1000 kg/m3 Phantom section: Left Section DASY5 Configuration: Probe: EX3DV4 - SN3924; ConvF(7.94, 7.94, 7.94); Calibrated: 06.22.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1373; Calibrated: 02.09.2017 Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) GSM 1900 Left Cheek/Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.296 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 1.01 W/kg SAR(1 g) = 0.576 W/kg; SAR(10 g) = 0.315 W/kg Maximum value of SAR (measured) = 0.797 W/kg GSM 1900 Left Cheek/Low Channel/Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.871 W/kg 0 dB = 0.871 W/kg = -0.60 dBW/kg Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 64 of 113 Report No: CCISE170501701 Test Laboratory: CCIS Date/Time: 05.12.2017 10:50:04 DUT: Mobile Phone; Type: iris 30; Serial: 1# Communication System: UID 0, UMTS-FDD(WCDMA) (0); Frequency: 826.4 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 826.4 MHz; σ = 0.913 S/m; εr = 41.529; ρ = 1000 kg/m3 Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3924; ConvF(9.46, 9.46, 9.46); Calibrated: 06.22.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1373; Calibrated: 02.09.2017 Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) WCDMA 850 Right Cheek/Low Channel/Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.421 W/kg WCDMA 850 Right Cheek/Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.454 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 0.440 W/kg SAR(1 g) = 0.340 W/kg; SAR(10 g) = 0.256 W/kg Maximum value of SAR (measured) = 0.401 W/kg 0 dB = 0.401 W/kg = -3.97 dBW/kg Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 65 of 113 Report No: CCISE170501701 Test Laboratory: CCIS Date/Time: 05.10.2017 17:02:04 DUT: Mobile Phone; Type: iris 30; Serial: 1# Communication System: UID 0, UMTS-FDD(WCDMA) (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1852.4 MHz; σ = 1.369 S/m; εr = 40.547; ρ = 1000 kg/m3 Phantom section: Left Section DASY5 Configuration: Probe: EX3DV4 - SN3924; ConvF(7.94, 7.94, 7.94); Calibrated: 06.22.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1373; Calibrated: 02.09.2017 Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) WCDMA 1900 Left Cheek/Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.462 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 1.29 W/kg SAR(1 g) = 0.743 W/kg; SAR(10 g) = 0.419 W/kg Maximum value of SAR (measured) = 1.03 W/kg WCDMA 1900 Left Cheek/Low Channel/Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.10 W/kg 0 dB = 1.10 W/kg = 0.41 dBW/kg Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 66 of 113 Report No: CCISE170501701 Test Laboratory: CCIS Date/Time: 05.09.2017 08:37:53 DUT: Mobile Phone; Type: iris 30; Serial: 1# Communication System: UID 0, IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) (0); Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 1.834 S/m; εr = 38.445; ρ = 1000 kg/m3 Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3924; ConvF(7.33, 7.33, 7.33); Calibrated: 06.22.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1373; Calibrated: 02.09.2017 Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) WIFI Right Tilted/High Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.80 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.03 W/kg SAR(1 g) = 0.477 W/kg; SAR(10 g) = 0.221 W/kg Maximum value of SAR (measured) = 0.787 W/kg WIFI Right Tilted/High Channel/Area Scan (41x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.564 W/kg 0 dB = 0.564 W/kg = -2.49 dBW/kg Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 67 of 113 Report No: CCISE170501701 Test Laboratory: CCIS Date/Time: 05.11.2017 18:26:14 DUT: Mobile Phone; Type: iris 30; Serial: 1# Communication System: UID 0, GSM (0); Frequency: 824.2 MHz; Duty Cycle: 1:8.30042 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.975 S/m; εr = 55.279; ρ = 1000 kg/m3 Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3924; ConvF(9.88, 9.88, 9.88); Calibrated: 06.22.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1373; Calibrated: 02.09.2017 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) GSM 850 Body Back/Low Channel/Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.880 W/kg GSM 850 Body Back/Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.22 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 0.969 W/kg SAR(1 g) = 0.687 W/kg; SAR(10 g) = 0.493 W/kg Maximum value of SAR (measured) = 0.854 W/kg 0 dB = 0.854 W/kg = -0.69 dBW/kg Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 68 of 113 Report No: CCISE170501701 Test Laboratory: CCIS Date/Time: 05.09.2017 22:54:38 DUT: Mobile Phone; Type: iris 30; Serial: 1# Communication System: UID 0, GSM (0); Frequency: 1850.2 MHz; Duty Cycle: 1:8.30042 Medium parameters used: f = 1850.2 MHz; σ = 1.495 S/m; εr = 53.519; ρ = 1000 kg/m3 Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3924; ConvF(7.7, 7.7, 7.7); Calibrated: 06.22.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1373; Calibrated: 02.09.2017 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) GSM 1900 Body Back/Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.27 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.925 W/kg SAR(1 g) = 0.538 W/kg; SAR(10 g) = 0.319 W/kg Maximum value of SAR (measured) = 0.781 W/kg GSM 1900 Body Back/Low Channel/Area Scan (41x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.794 W/kg 0 dB = 0.794 W/kg = -1.00 dBW/kg Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 69 of 113 Report No: CCISE170501701 Test Laboratory: CCIS Date/Time: 05.11.2017 17:58:27 DUT: Mobile Phone; Type: iris 30; Serial: 1# Communication System: UID 0, UMTS-FDD(WCDMA) (0); Frequency: 826.4 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 826.4 MHz; σ = 0.975 S/m; εr = 55.213; ρ = 1000 kg/m3 Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3924; ConvF(9.88, 9.88, 9.88); Calibrated: 06.22.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1373; Calibrated: 02.09.2017 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) WCDMA 850 Body Back/Low Channel/Area Scan (41x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.777 W/kg WCDMA 850 Body Back/Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.96 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.840 W/kg SAR(1 g) = 0.613 W/kg; SAR(10 g) = 0.452 W/kg Maximum value of SAR (measured) = 0.754 W/kg 0 dB = 0.754 W/kg = -1.23 dBW/kg Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 70 of 113 Report No: CCISE170501701 Test Laboratory: CCIS Date/Time: 05.09.2017 17:33:12 DUT: Mobile Phone; Type: iris 30; Serial: 1# Communication System: UID 0, UMTS-FDD(WCDMA) (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium parameters used (extrapolated): f = 1852.4 MHz; σ = 1.495 S/m; εr = 53.493; ρ = 1000 kg/m3 Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3924; ConvF(7.7, 7.7, 7.7); Calibrated: 06.22.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1373; Calibrated: 02.09.2017 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) WCDMA 1900 Body Back/Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.55 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.64 W/kg SAR(1 g) = 0.969 W/kg; SAR(10 g) = 0.577 W/kg Maximum value of SAR (measured) = 1.37 W/kg WCDMA 1900 Body Back/Low Channel/Area Scan (31x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.62 W/kg 0 dB = 1.62 W/kg = 2.10 dBW/kg Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 71 of 113 Report No: CCISE170501701 Test Laboratory: CCIS Date/Time: 05.16.2017 14:39:43 DUT: Mobile Phone; Type: iris 30; Serial: 1# Communication System: UID 0, IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) (0); Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 1.943 S/m; εr = 52.291; ρ = 1000 kg/m3 Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3924; ConvF(7.3, 7.3, 7.3); Calibrated: 06.22.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1373; Calibrated: 02.09.2017 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) WIFI Body Back/High Channel/Area Scan (51x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.144 W/kg WIFI Body Back/High Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.997 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.155 W/kg SAR(1 g) = 0.070 W/kg; SAR(10 g) = 0.033 W/kg Maximum value of SAR (measured) = 0.119 W/kg 0 dB = 0.119 W/kg = -9.24 dBW/kg Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 72 of 113 Report No: CCISE170501701 Test Laboratory: CCIS Date/Time: 05.11.2017 18:52:53 DUT: Mobile Phone; Type: iris 30; Serial: 1# Communication System: UID 0, GPRS(4 Slots) (0); Frequency: 824.2 MHz; Duty Cycle: 1:1.99986 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.975 S/m; εr = 55.279; ρ = 1000 kg/m3 Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3924; ConvF(9.88, 9.88, 9.88); Calibrated: 06.22.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1373; Calibrated: 02.09.2017 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) GPRS 850 4Slots Body Back/Low Channel/Area Scan (41x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.36 W/kg GPRS 850 4Slots Body Back/Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 36.52 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 1.49 W/kg SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.813 W/kg Maximum value of SAR (measured) = 1.34 W/kg 0 dB = 1.34 W/kg = 1.27 dBW/kg Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 73 of 113 Report No: CCISE170501701 Test Laboratory: CCIS Date/Time: 05.09.2017 22:27:44 DUT: Mobile Phone; Type: iris 30; Serial: 1# Communication System: UID 0, GPRS(4 Slots) (0); Frequency: 1880 MHz; Duty Cycle: 1:1.99986 Medium parameters used: f = 1880 MHz; σ = 1.501 S/m; εr = 53.569; ρ = 1000 kg/m3 Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3924; ConvF(7.7, 7.7, 7.7); Calibrated: 06.22.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1373; Calibrated: 02.09.2017 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1208 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) GPRS 1900 4Slots Body Back/Middle Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.89 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 1.50 W/kg SAR(1 g) = 0.879 W/kg; SAR(10 g) = 0.510 W/kg Maximum value of SAR (measured) = 1.27 W/kg GPRS 1900 4Slots Body Back/Middle Channel/Area Scan (41x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.36 W/kg 0 dB = 1.36 W/kg = 1.34 dBW/kg Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 74 of 113 Report No: CCISE170501701 Appendix E: System Calibration Certificate Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 75 of 113 Report No: CCISE170501701 Calibration information for E-field probes Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 76 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 77 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 78 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 79 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 80 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 81 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 82 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 83 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 84 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 85 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 86 of 113 Report No: CCISE170501701 Calibration information for Dipole Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 87 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 88 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 89 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 90 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 91 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 92 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 93 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 94 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 95 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 96 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 97 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 98 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 99 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 100 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 101 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 102 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 103 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 104 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 105 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 106 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 107 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 108 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 109 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 110 of 113 Report No: CCISE170501701 Calibration information for DAE Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 111 of 113 Report No: CCISE170501701 Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 112 of 113 Report No: CCISE170501701 ------End of Report-----Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao’an District, Shenzhen, Guangdong,China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail:info@ccis-cb.com Project No.: CCISE1705017 Page 113 of 113
Source Exif Data [exif.tools]:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.6 Linearized : Yes Encryption : Standard V2.3 (128-bit) User Access : Print, Extract, Print high-res XMP Toolkit : Adobe XMP Core 4.0-c316 44.253921, Sun Oct 01 2006 17:14:39 Create Date : 2017:06:01 11:44:17+08:00 Creator Tool : Microsoft® Word 2010 Modify Date : 2017:06:01 11:44:35+08:00 Metadata Date : 2017:06:01 11:44:35+08:00 Format : application/pdf Creator : LAB02 Title : HD 271 S1 Producer : Microsoft® Word 2010 Document ID : uuid:2250f9ba-be56-4630-93c9-f4bc93741b66 Instance ID : uuid:994c6be8-d228-49af-b623-6cbaa10e098b Page Count : 113 Language : zh-CN Author : LAB02