A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.

Apple Inc. Tablet Device

Page 1 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 2 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 3 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 4 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 5 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 6 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 7 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 8 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 9 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 10 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 11 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 12 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 13 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 14 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 15 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 16 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 17 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 18 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 19 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 20 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 21 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 22 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 23 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 24 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 25 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 26 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 27 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 28 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 29 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 30 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 31 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 32 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Page 33 of A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 300‘ Zurichv Switzerland
schwelzerischer Kalibriardiensi
Service suisse d‘étalonnage
Servlzlo svizxero di lemma
Swiss Calibration Service
Accredited by me Swiss Accreditation Service (5A3)
The Swiss Aeoredimion service is one of ihe signatories to lhe EA
Muhllaieral Agreement for the recognltlon of callbrailon certificates
Client UL CCS USA
Accreditation No.2 SCS 108
c-nmwe No: EX3-3885_Sep14
CALIBRATION CERTIFICATE
Object EXSDV4 ~ SNI3885
Calibration prooedure(s)
QA CAL-01.v9, QA CAL-14.V4, QA CAL-23.v5, 0A CAL-25.v6
Calibration procedure for dosimetric E-field probes
Calibration date:
September 15, 2014
This oalibfalion certificate documents the lraceability to natlonal standards, thch reallze the physwal units of measurements (SI)
The messurernenls and the uncertainties with confidence probability are given on the lollowing pages and are part 01 lhe certificate.
All calibrations have been conducted in lhe closed laboratory facili
environment temperature (22 e arc and humldlly < 70%.
Calibration Equipment used [M&TE critical lur callbration)
anary Standards ID Cal Dare (Certificate No) Scheduled Caliblation
Power meter E44195 GB41293874 DCLApr-M (No. 217431911) Apr-15
Power sensor E4412A MY41498087 03—Apr-14 (Nov 217-01911) Apr-15
Relerence 3 dB Attenuator SN' 8505413)) 03-Apr-14 (No, 217-01915) Aprr15
Reference 20 dB Attenuator SN: S5277 (20x) 03~Apr—14 (Nov 217-01919) Apr-15
Reference 30 dB Attenuator SN: 55129 (30b) OSeAprr14(No 217-01920) Apr-15
Reference Probe ESSDVZ SN: 3013 30-Dec»13 (No, E53-30137Dec13) Deon“
DAEA SN: 660 13-Dec-13 (Nov DAE4-660 Dec13) Dec-14
Secondary Standards ID Check Date (in house) Scheduled Check
RF generator HP 8648C US3542U017DO A—Aug-QQ [in house check Apr-13) In house check: Apt-16
Network Analyzer HP B753E USS7390585 1&Oct701 (In house check Oct-13) In house check Oct-14
Name Function Slgnature
Calibrated by: lsree El-Neouq Laboratory Technician 0 4”]
Approved by: Katja Pokmlic Technical Manager
This callbration oerlilicate shall not be reproduced except in lull Wlthout written approval of the laboratory.
fléé
Issuedv September 15, 2014
Certificate No: EX3-388578ep14
Page 1 0111
Calibration Laboratory of 83;)? Schweizerischer Kalibrlerdlenst
Schmid 8r Partner “ V ’3. Service suissa d'étalonnege
Engineering AG ; fl 3 Servizio svizzoro dl taratura
Zeughausstrasse 43, 8004 Zurich, Witzerland €€//;\\\§ Swiss Calibration Service
"Ill‘tlh‘
Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 108
The Swiss Accreditation Service Is one omie signatories to the EA
Multilateral Agreement for the recognition of calibration certificatls
Glossary:
TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL i NORMx,y.z
DCP diode compression point
CF crest factor (1/duty_cycle) of the RF signal
A, B, C, D modulation dependent linearization parameters
Polarization q) in rotation around probe axis
Polarization 9 S rotation around an axis that is in the plane normal to probe axis (at measurement center),
i.e., S = 0 is normal to probe axis
Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system
Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, “IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific
Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
Techniques", June 2013
b) IEC 62209—1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
proximity to the ear (frequency range of 300 MHz to 3 GHz)”, February 2005
Methods Applied and Interpretation of Parameters:
- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f s 900 MHz in TEM-cell: f > 1800 MHz: R22 waveguide).
NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the Ez-field
uncertainty inside TSL (see below Com/F).
o NORM(flx,y,z = NORMXyZ ‘ fiequenchesponse (see Frequency Response Chart). This linearization is
implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
in the stated uncertainty of Com/F.
o DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW
signal (no uncertainty required). DCP does not depend on frequency nor media.
0 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
characteristics
0 Ax,y,z; Bx,y,z; CX,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on
the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
media. VR is the maximum calibration range expressed in RMS voltage across the diode.
o ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer
Standard for f s 800 MHz) and inside waveguide using analytical field distributions based on power
measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for
boundary compensation (alpha. depth) of which typical uncertainty values are given. These parameters are
used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds
to NORMX,y,z ‘ Com/F whereby the uncertainty corresponds to that given for ConvF. A frequency dependent
ConvF is used in DASY version 4.4 and higher which allows extending the validity from a: 50 MHz to 2 100
MHz.
u Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip
(on probe axis). No tolerance required,
c Connector Angle: The angle is assessed using the information gained by determining the NORMx (no
uncertainty required).
Certificate No: EX3-3835_Sep14 Page 2 of 11
EX3DV4 — SN:3885 September 15. 2014
Probe EX3DV4
SN:3885
Manufactured: April 30, 2012
Calibrated: September 15, 2014
Calibrated for DASY/EASY Systems
(Note: non-compatible with DASYZ syslem!)
Certificate No: EX3—3885, Sep14 Page 3 of 11
EXBDV4— SN:3885 September 15, 2014
DASYIEASY - Parameters of Probe: EX3DV4 - SN:3885
Basic Calibration Parameters
Sensorx SensorY Sensor Z Unc (k=2)
Norm LuV/(Vlm)2)1 0.42 0.41 0.28 i 10.1 %
DCP (mV)ti 101.7 98.1 102.2
Modulation Calibration Parameters
UlD Communication System Name A B c D VR um;h
dB dBi/uv dB mV lk=2)
0 cw x 0.0 0.0 1,0 000 147.5 13.5 %
Y 0.0 0.0 1.0 145.5
2 0.0 0.0 1.0 152.9
The reported uncertainty of measurement is sated as the standard uncertainty of measurement
multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage
probability of approximately 95%.
A The uncertainties of NormX,Y,Z do not affect the Ei-rield uncertainty rnsiue TSL (see Pages 5 and 6t
5 Numerical lineamation parameter: uncertalnty not required
‘ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed lor the square of the
field value
Certificate No: EX3-388548ep14 Page 4 of 11
EXSDV4— SNt3885 September 15. 2014
DASYIEASY - Parameters of Probe: EX3DV4 - SN:3885
Calibration Parameter Determined in Head Tissue Simulating Media
Relative Conductivity DamnG Unm.
l (MHzl ° Permittivity F (s/m) F ConvF x ConvF v ConvF 2 Alpha 6 (mm) (k=2)
750 41.9 0.89 9.58 9.58 9.58 0.13 1.61 112.0 %
835 41.5 0.90 9.26 9.26 9.26 0.16 1.65 212.0 %
900 41.5 0.97 9.07 9.07 9.07 0.22 1.16 a 12.0 %
1640 40.3 1.29 7.96 7.96 7.96 0.48 0.69 a 12.0 %
1750 40.1 1.37 7.89 7.89 7.89 0.76 0.58 112.0 %
1900 40.0 1.40 7.68 7.63 7.68 0.61 0.62 112.0 %
1950 40.0 1.40 7.42 7.42 7.42 0.64 0.62 a 12.0 %
2000 40.0 1.40 7.69 7.69 7.69 0,43 0.75 :12.0 %
2300 39.5 1.67 7.35 7.35 7.35 0.48 0.66 1 12.0 %
2450 39.2 1.80 7.06 7.06 7.06 0.23 1.12 2 12.0 %
2600 39.0 1.96 6.86 6.86 6.86 0.83 0.87 a 12.0 %
5200 36.0 4.66 4.95 4.95 4.95 0.35 1.80 213.1 %
5300 35.9 4.76 4.76 4.76 4.76 0.35 1.80 1 13.1 %
5500 35.6 4.96 4.73 4.73 4.73 0.35 1.80 s 13.1 %
5600 35.5 5.07 4.50 4.50 4.50 0.35 1.80 213.1 %
5800 35.3 5.27 4.48 4.48 4.48 0.40 1.80 2 13.1 %
5 Frequency validity above 300 MHZ of a 100 MHz only applies for DASY v4.4 and higher (see Page 2). else it is restricled to a 50 MHz, The
uncertainty is lhe RSS oi the Com/F uncertainty at calibration frequency and the uncertainty lor the indicated lrequency band. Frequency validity
below 300 MHz is a 10, 25, 40, 50 and 70 MHz lor Com/F assessments at 30, 54, 125, 150 and 220 MHz respectively. Above 5 GHz trequenoy
validity can be extended to a 110 MHz
’ At trequenciec below 3 GHz. the valrd'ny of tissue parameters (5 and a) can be relaxed lo e 10% ii liquid compensation formula is applied to
measured SAR values. Al liequencles above 3 GHz. lne validity olirssus parameters to and 0’) is restrioled to s 5%. The uncertainty is the RSS of
the ConvF uncertainty for rndreated target tissue parameters.
G Alpha/Depth are detelmlned durlng callbraiion. SPEAG warranls lhat the remarning deviation due to the boundary eltect atter compensation is
always less than 2 1% for llequencies below 3 GHz and below s 2% tor lrequencies between are GHz at any distance larger than hell lhe probe tip
diameter from the boundary.
Certificate No: EX3-388578ep14 Page 5 ol 11
EX3DV4— SN:3885 September 15. 2014
DASYIEASY - Parameters of Probe: EX3DV4 - SN:3885
Calibration Parameter Determined in Body Tissue Simulating Media
Relative Conductivity Depth“ Unct.
f (Mitzi c PermittlvltyF (Slm) F ConvF x ConvF Y ConvF z Alpha° tnnn; (k=2)
750 55.5 0.96 9.29 9.29 9.29 0.20 1.46 212.0 %
835 55.2 0.97 9.14 9.14 9.14 0.22 1.43 :120 %
900 55.0 1.05 8.86 8.86 8.86 0.16 1.32 a 12.0 %
1640 53.3 1.40 8.06 9.06 6.06 0.35 0.88 a 12.0 %
1750 53.4 1.49 7.61 7.61 7.61 0.42 0.81 112.0 %
1900 53.3 1.52 7.32 7.32 7.32 0.58 0.67 a 12.0 %
1950 53.3 1.52 7.59 7.59 7.59 0.22 1.13 112.0 %
2000 53.3 1.52 7.55 7.55 7.55 0.23 1.12 112.0 %
2300 52.9 1.81 7.17 7.17 7.17 0.75 0.58 112.0 %
2450 52.7 1.95 6.97 6.97 6.97 0.80 0.55 a 12.0 %
2600 52.5 2.16 6.87 6.87 6.87 0.74 0.60 1 12.0 %
5200 49.0 5.30 4.47 4.47 4.47 0.40 1.90 a 13.1 %
5300 48.9 5.42 4.29 4.29 4.29 0.40 1.90 a 13.1 %
5500 48.6 5.65 3.99 3.98 3.98 0.45 1.90 113.1 %
5600 48.5 5.77 3.81 3.31 3.81 0.45 1.90 a 13.1 %
5800 43.2 6.00 4.13 4.13 4.13 0.50 1.90 213.1 %
° Frequency validity above 300 MHz oi s 100 MHz only applies for DASY v4 4 and higher (see Page 2). else it re restricted to 2 50 MHz. The
uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty lor the indicated lrequency band. Frequency validity
below 300 MHz rs s 10. 25. 40, 50 and 70 MHz lcr ConvF assessments et 30. 64. 123, 150 and 220 MHz respectively. Abcwe 5 GHz lrequenoy
validity can be extended to s 110 MHz.
‘ At flequenoies below 3 GHz, the validity ct tissue parameters to and a) can be relaxed to s 10% if liduid compensation formula is applied to
measured SAR values. At irequencies above 3 GHz. the validity ct tissue parameters (5 and c) is restricted to e 5%. The uncertarnty is the RSS of
the ConvF uncertainty for rndrcated target tissue parameters.
‘3 Alpha/Depth are determined dunng calibration. SPEAG warrants that the remalning deviation due to the boundary etlect atter compensation is
always less than a 1% lor frequencies below 3 GHz and below a 2% lor lrequeneies between 3-6 GHz at any distance larger than hall the probe tip
diameter lrom the boundary.
Certificate No: EX3-3885789p14 Page 6 oi 11
EXSDV4— SNI3BB5 September 15, 2014
Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)
Frequency response (normalized)
Uncertainty of Frequency Response of E-field: t 6.3% (k=Z)
Certificate No: EX3-388578ep14 Page 7 of 11
EX3DV4— SN:3885
September 15, 2014
Receiving Pattern (¢), 9 = 0°
f=600 MHz,TEM
m .' '. u
use ..
L .,
\ ' i 4
2:5 ' . ‘ . ' 3‘5
f :15" fl
0 . I
Tot X Y
f=1800 MHZ,R22
«:15 .' '. 45
m:
225 ~ . . ' m
M o,
El
600 MHz
13 MHz
Uncenalnty of Axial Isotropy Assessment: 1: 0.5% (k=2)
Certificate No: EX3-388578ep14
Page 8 of 11
EX3DV4— SN:3885 Sep‘ember 15, 2014
Dynamic Range f(SARhead)
(TEM cell , faval= 1900 MHz)
‘ ‘ ‘
'3 10’2 10'1 10V 101 102 103
SAR [mW/om3]
105-}
i 1047
fi
.9
u)
‘3
E 1034
‘IU2 .
1’ WW I
104 10'2 10‘ 10D 101 1O2 103
SAR[mWIcm3]
noi compensated compensated
2‘ ._
a i
E.
x— O
w ‘L
.1
4.]
10
Ll
not compensated compensated
Uncertainty of Linearity Assessment: 1 0.6% (k=2)
Certificate No: EX3-3885,Sep14 Page 9 of 11
EXSDV4— SN:3885 September 15. 2014
Conversion Factor Assessment
f= 335 MH2.WGLS R9 (H‘convF) '= 1900 MHZ.WGLS R22 (H_convF)
«5.? 3°
an L\ .5 x, i
251 I
E i ‘ % ml
20 r » ‘ \
z E § ‘5 \.
w m: .
E ‘ o
‘ 0 i. \ \\ r 1
z \. ‘ .
my ‘ ‘ ._ s \\ ‘ 1
‘ t.‘ “ x” _ ‘ .7 .
W . , . ‘ ., .._,._s+u._,_..-.u_u_4u_;;;r
6 m m 30 40 so so a 5 m 15 2o 25 an as m
‘ Kim 1 L L Kim 1 JJ
arm/xii «ensured Maw-HI maniac!
Deviation from lsotropy in Liquid
Error (.1), 9), f = 900 MHz
Deviafion
-1.0 -0.8 -0,5 -0.4 43.2 0.0 0.2 0.4 0.5 0.8 1.0
Uncertainty of Spherical lsotropy Assessment: 1 2.6% (k=2)
Certificaie No: EX3—388575ep14 Page 10 of 11
EX3DV4— SN:3385 September 15. 2014
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3885
Other Probe Parameters
Sensor Arrangement Triangular
Connector Angle (°) -65.8
Mechanical Surface Detection Mode enabled
Optical Surface Detection Mode disabled
Probe Overall Length 337 mm
Probe Body Diameter 10 mm
Tip Length 9 mm
Tip Diameter 2.5 mm
Probe Tip to Sensor X Calibration Point 1 mm
Probe Tip to Sensor Y Calibration Point 1 mm
Probe Tip to Sensor 2 Calibration Point 1 mm
Recommended Measurement Distance from Surface 14 mm
Certificate No: EX3-388575ep14 Page 11 of 11
Calibration Laboratory of avg/,9,
. i 5 s Selvwelzarischer Kalihrierdienst
Schmld & Partner SEE/(RTE C Service suleee d'étalonnage
Engineering AG ? //—\\ 3 S Servlzlo svlnero di taratura
Zeughaueeuasse 43, 9004 Zurich, Switzerland 2 Q P swies callhratlon Service
Accredited by the Swiss Accreditation Service (5A8) Accreditation No.: SCS 0108
in Swiss Accredltatlon Servlce is one of the signatories to the EA
Multilateral Agreement lor the recognition of calibration certificates
Client UL CCS USA Certificate No: EX3-3772erb15
CALIBRATION CERTIFICATE
Object EX3DV4 - SN:3772
Calibration Procedurem QA CAL-01.v9, QA CAL-14.v4, QA CAL-23,v5, QA CAL-25.v6
Calibration procedure for dosimetric E-fleld probes
Calibration date: February 23, 2015
This calibration oenilioate documents the traceability to national standards. which realize the physical units of measurements (SI),
The measurements and lhe uncertainties with confidence probability are g’wen on the renewing pages and are part or the certilieate,
All caliblatlons have been conducted in the closed laboratory tacillty' environment temperature (22 2 3)°C and hurnldlty < 70%,
Calibration Equipment used (M&TE critical for calibration)
Primary Standards ID Cal Date (Certlllcale No I Scheduled Calibration
Power meter E44198 8341293874 03-Aprs14 (No 217-01911) Apr—15
Power sensor E4412A MV41498087 03-Apr-14 (Not 21701911) Aprr15
Reference 3 dB Attenuator SN' S5054 (3c) D3rApr-14 (No 217-01915) Apr-15
Relerenoe 20 dB Attenuator SN: 55277 (20X) 0&Apr-14 (No 217—01919) Apr-15
Relerence 30 dB Attenuator SN: S5129 (30b) 03rApr-14 (No. 217-01920) Apr-15
Reference Probe ESSDVZ SN: 3013 30-Dec-14 (No. ESB-3013, D2614) Deer15
DAE4 SN: 550 14-Janr15 (Nov DAE4-6607Jan15) Jan-16
Seoondalxstandards ID Check Date (In house) Scheduled Check
RF generator HP 8648C US$642U01700 A-Aug-BQ (in house check Apr-13) In house Check: Apr-16
Network Anal zer HP 8753E US37390535 18-Oct—01 (in house check Oct-14) In house check: Oct-15
Name Function Slgnature
Calibrated by Israe Elnaouq Laboratory Technitfian W 7
Approved by: Katja Pokovic Technical Manager flg
issueu: February 23. 2015
This calibration certificate shall not be reproduced except in tull without written approval or the laboratory
Certificate No: EX3-3772_Feb15 Page 1 of 11
Calibration Laboratory of
. S Schwaizerischer Kalibrlerdlenst
Schmld & Partner C Service sulsse d'étalonnage
Engineering AG S Servizlo svlzxero di taraIura
Zeughausstrasse 43, 8004 Zurich, Swltzerland Swiss Calibratlon Service
Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108
The swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the l'ecognltlon of calibration certificates
Glossary:
TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point
CF crest factor (1/duty_cycle) of the RF signal
A, B, C. D modulation dependent linearization parameters
Polarization (p (a rotation around probe axis
Polarization 9 S rotation around an axis that is in the plane normal to probe axis (at measurement center),
i.e.. S = 0 is normal to probe axis
Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system
Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, “IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific
Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
Techniques“, June 2013
b) IEC 62209-1, “Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
proximity to the ear (frequency range of 300 MHz to 3 GHZ)", February 2005
Methods Applied and Interpretation of Parameters:
- NORMx,y,z: Assessed for Evfield polarization 8 = 0 (f g 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the EZ-field
uncertainty inside TSL (see below Com/F).
o NORM(I)x,y,z = NORMX,y,z ’ frequencyiresponse (see Frequency Response Chart). This linearization is
implemented in DASY4 software versions later than 4.2‘ The uncertainty of the frequency response is included
in the stated uncertainty of ConvF.
. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW
signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
characteristics
a Ax,y,z; Bx,y,z,' Cx.y,z,' Dx.y,z,' VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on
the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
media. VR is the maximum calibration range expressed in RMS voltage across the diodet
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer
Standard for f s 800 MHZ) and inside waveguide using analytical field distributions based on power
measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for
boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are
used in DASYA software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds
to NORMx,y,z ‘ Cont/F whereby the uncertainty corresponds to that given for ConvF. A frequency dependent
ConvF is used in DASY version 4.4 and higher which allows extending the validity from t 50 MHz to a: 100
MHz.
0 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
exposed by a patch antenna.
a Sensor Offset The sensor offset corresponds to the offset of virtual measurement center from the probe tip
(on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no
uncertainty required).
Certificate No: EX3—3772_Feb15 Page 2 of 11
EXSDV4 — SN:3772 February 23. 2015
Probe EX3DV4
SN:3772
Manufactured: January 10, 2011
Calibrated: February 23, 2015
Calibrated for DASY/EASY Systems
(Note: non»compatible with DASYZ system!)
Certificate No: EX3«3772,Feb15 Page 3 of 11
EX3DV4— SN:3772 February 23. 2015
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3772
Basic Calibration Parameters
Sensor X Sensor Y Sensor 2 Unc (k=2)
Norm tnwtvmy’?‘ 0.50 0.55 0.54 1 10.1 %
DCP (mvf’ 93.7 99.9 102.2
Modulation Calibration Parameters
UID Communication System Name A 3 c D VR Um;t
dB de/uv 118 mV tk=2i
0 CW x 0,0 0.0 1.0 0.00 153.7 12.7 %
Y 0.0 0.0 1.0 151.6
Z 0.0 00 1.0 144.1
The reported uncertainty of measurement is stated as the standard uncertainty of measurement
multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage
probability of approximately 95%.
‘ The uncertainties or Nonnx.Y,z do not aflecl the E2-lleid unoenainty inside TSL (see Pages 5 and e).
5 Numerical lrnearization parameter: uncertainty not required
5 Uncertainty is determined using the max. deviation lrmrl linear response applying rectangular distribution and is expressed for the square ol the
field value.
Certificate No: EX3-3772~Feb15 Page 4 of 11
EX3DV4— 5N23772 February 23, 2015
DASYIEASY - Parameters of Probe: EX3DV4 - SN:3772
Calibration Parameter Determined in Head Tissue Simulating Media
Relative Conductivity Depth'r Unet.
i(lllllz)° l>emtittivityF (51"!) F ConvF x convF Y ConvF z Alpha° (mm) tk=2t
750 41.9 0.89 8.92 8.92 8.92 0.23 1.34 x 12.0 %
900 41.5 0.97 8.58 8.58 8.58 0.21 1.43 112.0 %
1750 40.1 1.37 7.64 7.64 7.64 0,51 0.72 a 12.0 %
1900 40.0 1.40 7.45 7.45 7.45 0.41 0.80 2 12.0 %
2450 39.2 1.80 6.74 6.74 6.74 0.42 0.79 2 12.0 %
2600 39.0 1.96 6.44 6.44 644 0.32 0.92 a 12.0 %
5250 35.9 4.71 4.82 4.82 4.82 0.35 1.80 113.1 %
5600 35.5 5.07 4.24 4.24 4.24 0.40 1.30 g 13.1 %
5750 35.4 5.22 4.55 4.55 4.55 0.45 1.80 1 13.1 %
9 Frequency validity above 300 MHz at a 100 MHz only applies ior DASY v4 4 and higher (see Page 2), else it is restricted to e 50 MHz. The
uncertainty is the RSS ot the ConvF uncertainty at calibration irequency and the uncertainty tor the indlcated lrequency band. Frequency validity
below 300 MHz is .2 10. 25, 40, so and 70 MHz for Convl: assessments at 30, 64, 125, 150 and 220 MHz respectively. Above 5 GHz lrequenby
validity can be extended to .2 110 MHz.
7 At frequencies below 3 GHz. the validity of tissue parameters (E and a) can be relaxed to z 10% it liquid compensation lormula is applied Io
measured SAR values. At lrequencies above 3 GHz. the validity of tissue parameters (a and a) is restricted to z 5%. The uncermmly is the RSS of
the ConvF uncertainty for indicated target tissue parameters.
G Alpha/Depth are deiemlined during calibration, SPEAG warrants that the remaining deviation due to the boundary ettect alter compensation is
always less than 2 1% ibr irequencies below 3 GHz and below 2 2% lor trequenetes between 3-6 GHz at any distance larger than halt the probe tip
diameter lrbm the boundary.
Cerflficate N0: EX3-3772_Feb15 Page 5 O! 11
EX3DV4— SN23772 February 23, 2015
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3772
Calibration Parameter Determined in Body Tissue Simulating Media
Relatlve Conductivity Deptha Unct.
6 (MHz) ° Permittivity F (Sim) ‘ ConvF x ConvF v ConvF 2 Alpha 6 (mm) (k=2)
750 55.5 0.96 8.32 8.82 8.82 0.55 0.74 a 12.0 %
900 55.0 1.05 8.46 8.46 8.46 0.35 0.97 112.0 %
1750 53.4 1.49 7.21 7.21 7.21 0.58 0.69 112.0 %
1900 53.3 1.52 7.03 7.03 7.03 0.28 1.09 112.0 %
2450 52.7 1.95 6.58 6.58 6.58 0.66 0.63 1:120 %
2600 52.5 2.16 6.35 6.35 6.35 0.80 0.50 212.0 %
5250 48.9 5.36 L 4.14 4.14 4.14 0.45 1.90 a 13.1 %
5600 43.5 5.77 3.60 3.60 3.60 0.50 1.90 113.1 %
5750 48.3 5.94 3.85 3.85 3.85 0.55 1.90 2 13.1 %
° Frequency validity above 300 MHz ol 2 100 MHz only applles ldr DASY v4.4 and higher (see Page 2), else it is restricted to a 50 MHz. The
uncertainty is the RSS oflhe ConvF uncenalnly at calibration irequenoy and the uncertainty for the indicated lrequency band Frequency validity
below 300 MHz is 2 lo, 25, 40, so and 70 MHzfor ConvF assessments at 30. 54, 123, 150 and 220 MHz respectively. Above 5 Griz irequency
validity can be extended lo .2 110 MHz.
‘ At lrequeneies below 3 GHZ, the validity oi tissue parameters is and 0') can he relaxed to 1 10% if liquid compensation tormuta is applied lo
measured SAR values. Al lrequencies above 3 GHZ, the validity oi llssue parameters (a and e) is restricted lo : 5%. The uncertainty is the RSS oi
the Com/F uncenainty for indicated target tissue parameters.
6 Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary elieei afler oempensation is
always less than t 1% for frequencies below 3 GHZ and below 1 2% for frequencies between 3—5 GHZ at any distance larger than hall the probe tip
diameter lrom the boundary.
Certificate No: EX3-3772_Feb15 Page 6 of 11
EXSDVA— SN:3772 February 23. 2015
Frequency Response of E-Field
(TEM-Cellzifi110 EXX, Waveguide: R22)
Frequency response (normalized)
Uncertalnty 0' Frequency Response of E-field: 1 6.3% (k=2)
Certificate No: EX3-3772‘Feb15 Page 7 of 11
EX3DV4— SN:3772
February 23. 2015
Receiving Pattern (4)), 8 = 0°
f=600 MHz,TEM f=1800 MHz,R22
. L . ,‘ ‘ . T ‘
ml . ‘ I , ,4 ~ I
\ ' » _ k (1.2 ‘m n}: 3e f . _ , . . .
a 0 A I ‘ :
Tat Tat V Z
Rol r1
0 u
600 Hz 1efiH2
Uncertainty of Axial Isotropy Assessment: 3 0.5% (k=2)
25EUWIHZ
Ceniflcme No: EX3—37727Feb15
Page Bof11
EX3DV4— SN23772
Input Signal [uV]
Dynamic Range f(SARhead)
(TEM cell , fem: 1900 MHz)
105-
10"
103
102
, ‘ . u . _ , I ‘
11]3 102 10" 10B ‘101 102 103
SAR [mWIcmS]
not compensated compensated
E 0
'2 ‘ ‘ 1 1 1 ‘ x
10-3 102 m4 10:7 101 102 1o:
SAR [mW/cmal
A a
not compensmed compensated
Uncertainty of Linearity Assessment: 1 0.6% (k=2)
Febmary 23, 2015
Certificate No: EX3-3772AFeb15 Page 9 of 11
EX3DV4— SN:3772
10
us
on:
February 23, 2015
Conversion Factor Assessment
f= 900 MHz,WGLS R9 (H_convF)
i= 1750 MHz,WGLS R22 (H_convF)
i 25‘“
E20
. S x
\ 1.5, \
fl '\
10 \\
5 \fi
v, “Hg,“ EMU .‘f
mm oswumfimgm
”m,
J. Li 3.1
mm. mm a...“
Deviation from Isotropy in Liquid
Error (4), 9), f = 900 MHz
Iafion
-1.0
-0.3
-D.6 -D.4 ~02 0.0 0.2 0,4 [16 0.8 1.0
Unceflalnty of Spherical Isotropy Assessment: 1: 2.6% (k=2)
Ceniflcate No: EX3»3772_Feb15
Page 10 of11
EX3DV4— SNt3772 February 23, 2015
DASYIEASY - Parameters of Probe: EX3DV4 - SN:3772
Other Probe Parameters
Sensor Arrangement Triangular
Connector Angle (°) 4013
Mechanical Surface Detection Mode enabled
Optical Surface Detection Mode disabled
Probe Overall Length 337 mm
Probe Body Diameter 10 mm
Tip Length 9 mm’
Tip Diameter 25 mm
Probe Tip to Sensor X Calibration Point 1 mm
Probe Tip to Sensor Y Calibration Point 1 mm
Probe Tip to Sensor Z Calibration Point 1 mm
Recommended Measurement Distance from Surface 1.4 mm
Certificate No: EX3-3772_Feb15 Page 11 ol 11
Calibration Laboratory of ~\\ \‘J m Schwelzerlscher Kalibrierdiensl
. 3‘ v "g S
Schmld & Partner SEE-4m; C Service sulsse d‘étalonnage
Engineering AG 2 7:\\ a S Servlzlo svlnero di Iaratura
Zeugheusstrasse 43, 3004 Zurich, Swiuertand Call/A‘N} Swiss Calibration service
"duh-It“
Accredited by the Swiss Accreditation Service (SAS) Accreditation Not: 868 0108
The SWISS Accreditatiml Service Is one o! the signatorles to the EA
Multilateral Agreement fertile recognition of callhrallon oerlificales
client UL (265 USA Ccniricm Mo: EX3-3929_Apr15
CALIBRATION CERTIFICATE
Object EX3DV4 - SN:3929
Calibration prooedurete) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5.
QA CAL-25.v6
Calibration procedure for dosimetric E-fieid probes
Calibration date: April 22, 2015
This calibration certificate documents the traceability to national standards. winch realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the lollowing pages and are pan oI the certificate.
All calibrations have been conducied in the closed labomtory faCIllIy: environment temperature (22 2 3)°C and humidity < 70%.
Calibration Equipment used (M&TE critical for calibration)
Primary Standards ID Cal Dale (Certflicate No) Scheduled Calibration
Power meter £44195 GB41293874 01-Apr~15 (No. 217—02125) Mar-16
Power sensor E4412A MY41498087 01»Apr-15 (Not 217432123) Manta
Reference 3 dB Attenuator SN: $5054 [30] 01-Apr-15 (Nov 217-02129) Mar»16
Reference 20 dB Attenuator SN: 55277 (20x) 01-Apr-15 (No. 217—02132) Mar-16
Reterenee so dB Attenuator SN: 35129 (Sun) 01rApr-15(No. 217—02133) Mar-16
Relerenoe Probe essnvz SN: 3013 30»Dec-14 (No. ESS—SO13_Dec14) neots
DAE4 SN: eeo 14~Jan-15 (Nov DAEweouantsl Jan—is
Secondary Standards ID Check Date (in house) Scheduled Check
RF generator HP 8648:: usaeazuonoo 4Augra9 (In house check Apr»13) In house check1Apr-16
Network Analyzer HP B753E usamoses “LOCI-01 (in house check Ora-14) in house check: cot-15
Name Function Signature
Calibrated by: terse Elnauuq Laboratory Technician / h I fly
Approved by: Katja Pokwic Technical Manager W
|ssusd: April 24, 2015
This calibration certificate shall not be reproduced except in full wIIhOuI written approval ol the laboratory.
Certificate No: EX3-3929_Apr15 Page 1 of 11
Calibration Laboratory of
_ S Sclvwelzerlsclier Kalihrierdienst
Schmld & Partner 0 Service sulsse d'étalonnage
Engineering AG 3 \3 s Servizio svluero di taratula
Zeughausstrasse 43, 8004 Zurich, Switzerland fiélmlmm‘s Swiss Calibration 5mm
Accredited by the Swiss Accreditation Service (SAS) Accreditation Not: SCS 0108
The Swiss Accreditation Service is cm of the signatories to the EA
Multilateral Agreement for the recognition of calibration cemllcates
Glossary:
TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y.z
DCP diode compression point
CF crest factor (1/duty_cycle) of the RF signal
A, B, C, D modulation dependent linearization parameters
Polarization q) to rotation around probe axis
Polarization 3 9 rotation around an axis that is in the plane normal to probe axis (at measurement center).
i.e., 8 = 0 is normal to probe axis
Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system
Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, “IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific
Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
Techniques", June 2013
b) IEC 62209-1, “Procedure to measure the Specific Absorption Rate (SAR) for handheld devices used in close
proximity to the ear (frequency range of 300 MHz to 3 GHZ)", February 2005
Methods Applied and interpretation of Parameters:
- NORMx,y.z: Assessed for E-field polarization 8 = 0 (f s 900 MHz in TEM»cell; f > 1800 MHz: R22 waveguide).
NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the EZ-field
uncertainty inside TSL (see below ConvF).
- NORM(0X,y,z = NORMx,y,z " frequenchesponse (see Frequency Response Chart). This linearization is
implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
in the stated uncertainty of ConvF.
o DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW
signal (no uncenainty required). DCP does not depend on frequency nor media.
0 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
characteristics
- Ax,y.z; Bx,y,z; Cx,y,z; Dx,y,z,' VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on
the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
media. VR is the maximum calibration range expressed in RMS voltage across the diode.
o ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer
Standard for f s 800 MHZ) and inside waveguide using analytical field distributions based on power
measurements for f > 800 MHz, The same setups are used for assessment of the parameters applied for
boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are
used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds
to NORMX,y.z ‘ ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent
ConvF is used in DASY version 4.4 and higher which allows extending the validity from t 50 MHz to t 100
MHZ.
- Spherical isotropy (SD deviation from isotropy): in a field of low gradients realized using a flat phantom
exposed by a patch antenna.
. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip
(on probe axis). No tolerance required.
0 Connector Angle: The angle is assessed using the information gained by determining the NORMX (no
uncertainty required).
Certificate No: EX3-39297Apr15 Page 2 of 11
EX3DV4 — SNISQZS April 22, 2015
Probe EX3DV4
SN:3929
Manufactured: March 8, 2013
Calibrated: April 22, 2015
Calibrated for DASY/EASY Systems
(Note: non»compatible with DASYZ system!)
Ceniflcate No: EX3-3929_Apr15 Page 3 o! 11
EX3DV4» SN:3929
April 22, 2015
DASYIEASY - Parameters of Probe: EX3DV4 - SN:3929
Basic Calibration Parameters
Sensor X Sensor V Sensor Z Uni: (k=2)
Norm (uV/(V/m) ) 0.55 0.50 0.40 210.1 %
DCP (mVY’ 102.1 99.5 100.2
Modulation Calibration Parameters
UID Communication System Name A a c D VR Um:t
dB dBVuv 63 mV lk=2l
0 CW X 0.0 0.0 1.0 0.00 199.8 12.5 °/e
Y 0.0 0.0 1.0 181.6
2 0,0 0.0 1.0 187.4
probability of approximately 95%.
The reported uncertainty of measuremen
is stated as the standard uncertainty of measurement
multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage
‘ The uncertainties of NormX.Y,Z do not aifecl the EZ-field uncertainty inside TSL (see Pages 5 and e).
5 Numerical linearization parameien uncertainty not required.
i Uncertainty is delerm med using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the
tield value.
Certificate No: EX3-39297Apr15
Page 4 of 11
EX3DV4— 5N13929 April 22, 2015
DASYIEASY - Parameters of Probe: EX3DV4 - SN:3929
Calibration Parameter Determined in Head Tissue Simulating Media
Relative Conductivity Depth 5 Unct.
f (MHz) ° Permlttlvity F (Slm) F ConvF x ConvF v ConvF z Alpha 5 (mm) (k=2)
450 43.5 0.67 9.85 9.35 9.85 0.15 1.70 e 13.3 %
750 41.9 0.89 9.35 9.35 9.35 0.31 1.07 112.0 %
900 41.5 0.97 8.67 8.67 8.67 0.36 0.96 a 12.0 %
1450 40.5 1.20 7.93 7.93 7.93 0.37 0.64 112.0 %
1750 40.1 1.37 7.73 7.73 7.73 0.38 0.80 $12.0 %
1900 40.0 1.40 7.53 7.53 7.53 0.33 0.89 212.0 %
2450 39.2 1.30 6.86 6.86 6.86 0.37 0.83 112.0 %
2600 39.0 1.96 6.68 6.68 6.68 0.35 0.89 a 12.0 %
3500 37.9 2.91 6.55 6.55 6.55 0.40 1.05 a 13.1 %
3700 37.7 3.12 6.38 6.33 6.38 0.38 1.05 213.1 %
4950 36.3 4.40 5.25 5.25 5.25 0.30 1.80 213.1 %
5250 35.9 4.71 4.93 4.93 4.93 0.30 1.30 113.1 %
5600 35.5 5.07 4.53 4.53 4.53 0.30 1.80 :13.1 %
5750 35.4 5.22 4.52 4.52 4.52 0.35 1.90 1 13.1 %
° Frequency validity above 300 MHz ci a 100 MHz only applies tor DAsv v4.4 and higher (see Page 2), else it is restricted to t 50 MHz. The
unoertainty is the R56 otthe ConvF uncertainty at calibration iiequency and the uncertainty tor the indicated trequency band. Frequency validity
belaw 300 MHz is 1 10. 25, 40, 50 and 70 MHz for ConvF assessments at at). $4, 123, 150 and 220 MHz respectively. Above 5 GHz frequency
validity can be extended to a 110 MHz.
’ At irequencies below 3 GHz, the vatidrty oi tissue parameters (e and a) can be relaxed to : tow/u if liquid compensation tormute is applied to
measured SAR values. At trequencies above 3 GHz. the validity ot tissue parameters (a and e) is restricted to a 5%. The uncertainty is the RSS of
the ConvF uncertainty icr indicated target tissue parameleis.
G Alpha/Depth are determined dunng calibration. SPEAG warrants that the remerning deviation due to the boundary etiect after ccrnpensatron is
always less than 3 1% ior irequencies below 3 GHz and below a 2% tor irequencres between 36 GHz at any distance larger than trait the probe tip
dremeter from the boundary.
Certificate No: EX3-39297Apr15 Page 5 of 11
EX3DV4— SN:3929
April 22. 2015
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3929
Calibration Parameter Determined in Body Tissue Simulating Media
Relative Conducflvlty neplfi Unct.
r (MHz) ° Psrmittivity F (Sim) F ConvF x ConvF Y ConvF z Alpha G (mm) gk=2)
450 56.7 0.94 9.89 9.89 9.89 0.10 1.20 113.3 %
750 55.5 0.96 8.86 8.86 8.86 0.25 1.33 1 12.0 %
900 55.0 1.05 8.57 8.57 8.57 0.24 1.42 112.0 %
1450 54.0 1.30 7,73 7.73 7.73 0.37 0.94 112.0 %
1750 53.4 1.49 7.47 7.47 7.47 0.39 0.80 1 12.0 %
1900 53.3 1.52 7.26 7.26 7.26 0.43 0.84 112.0 %
2450 52.7 1.95 7.01 7.01 7.01 0.38 0.90 1 12.0 %
2600 52.5 2.16 6.72 6.72 6.72 0.29 0.80 112.0 %
3500 51.3 3.31 6.11 6.11 6.11 0.21 2.13 113.1 %
3700 51.0 3.55 6.03 6.03 6.03 0.23 2.15 113.1 %
4950 49.4 5.01 4.62 4.62 4.62 0.40 1.90 113.1 %
5250 48.9 5.36 4.41 4.41 4,41 0.40 1.90 113.1 %
5600 48.5 5.77 3.63 3.63 3.63 0.50 1.90 1 13.1 %
5750 48.3 5.94 4.00 4.00 4.00 0.50 1.90 1 13.1 %
6 Frequency validlly above 300 MHz of t 100 MHz only applies tor DASY v4.4 and higher [see Page 2), else it is restricted to 1 50 MHz, The
uncenainly is the RSS of the ConvF uncertainty at calibration lrequency and the uncertainty tor the Indicated frequency band. Frequency validity
below 300 MHz is t 10. 25. 40, 50 and 70 MHz tor ConvF assessments at 30. 64. 123. 150 and 220 MHZ respectively. Above 5 GHz lrequency
Validlty can be extended to t 110 MHz,
‘ At lrequencies below 3 GHz, the valldily of lissue parameters (a and a) can be relaxed to 1 10% ll liquid compensation lorrnula 1e spplled to
measured SAR values. Al 1requencres above 3 GHz. me validity ol tissue parameters is and a) is restricted to 1 5%. The uncertainty is the RSS ol
the 00er uncertainty ior indicated larget lissue parameters.
5 Alpha/Depth are determined during calibraliarr. SPEAG warranls that the remainlng deviation due lo the boundary eftect ailer compensation is
always less than 1 t% for frequencies below 3 GHZ and below 1 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip
diameter irom the boundary.
Certificate No: EX3-3929_Apr15
Page 6 of 11
EX30V4— SN:3929 April 22, 2015
Frequency Response of E-Field
(TEM-Cellzifi110 EXX, Waveguide: R22)
Frequency response (normalized)
Uncertainty of Frequency Response of E-field: 1 63% (k=2)
Certificate No: EX3—39297Apr15 Page 7 o! 11
EX3DV4— SN:3929 April 22. 2015
Receiving Pattern (4’), S = 0°
f=1800 MHz,R22
Roll ['1
fingz WEEflHZ figmHz
Uncenalnly of Axial Isotropy Assessment: 2 0.5% (k=2)
Cenifica‘e No: EX3-3929_Apr15 Page 8 of 11
EXSDV4— SN:3929
Dynamic Range f(SARhead)
(TEM cell , fwal= 1900 MHz)
106+
105
i 10‘L
‘9
(D
‘5
Cl
- 103—
1a2 -
103 ‘10'2 101 10° 10‘ 102 1O3
SAR [mW/cm3]
not compensated compensated
2 L
a .
._ o »
9 W
m r
.1 A
’2 w ' ' I x
10“ 101 10“ 1|)u 101 102 1OJ
SAR [mW/cmS]
1|
not compensated comp nsated
Uncertainty of Linearity Assessment: 1 0.6% (k=2)
April 22, 2015
Cemfica‘e No: EX3v39297Apr15
PagerlH
EX3DV4— SN:3929 April 22, 2015
Conversion Factor Assessment
r: 900 MHz WGLS R9 (H_convF) f= 1900 MHz.WGLS R22 (H_con\/F)
W, , y , ,,, _
,5, I
\ x
in x r i
3 ' ‘ 3%
.s \ r
\ w,
‘0 ‘ \
5 \\_ J ‘ ‘
u .
1‘ \‘V . L m ‘
no: 7 7,, V A, T Dino 7sd_‘._ flown. .
a m an no to so an a f w u m 25 w 35 to
h mm, . “M. 5
mm: mafia 15%! mime
Deviation from lsotropy in Liquid
Error (tr, 9), f = 900 MHz
-1,0 -D.B -D.6 -D.4 -0.2 0.0 02 0.4 0.6 0,8 1.0
Uncertainty of Spherioal Isotropy Assessment: 1: 2.6% (k=2)
Certificate No: EX3-3929_Apr15 Page 10 of 11
EXSDV4— SNz3929 April 22, 2015
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3929
Other Probe Parameters
Sensor Arrangement Triangular
Connector Angle (°) >1 38
Mechanical Surface Detection Mode enabled
Optical Surface Detection Mode disabled
Probe Overall Length 337 mm
Probe Body Diameter 10 mm
Tip Length 9 mm
Tip Diameter 2.5 mm
Probe Tip to Sensor X Calibration Point 1 mm
Probe Tip to Sensor Y Calibration Point 1 mm
Probe Tip to Sensor Z Calibration Point 1 mm
Recommended Measurement Distance from Surface 1.4 mm
Certificate No: EX3-39297Apr15 Page 11 of 11
Download: A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Mirror Download [FCC.gov]A1652 Tablet Device RF Exposure Info SAR Appendix E 1 Apple Inc.
Document ID2754555
Application IDy9IrhRcTJMHuReL1NjtYHA==
Document DescriptionSAR Appendix E 1
Short Term ConfidentialNo
Permanent ConfidentialNo
SupercedeNo
Document TypeRF Exposure Info
Display FormatAdobe Acrobat PDF - pdf
Filesize271.91kB (3398916 bits)
Date Submitted2015-09-19 00:00:00
Date Available2015-10-15 00:00:00
Creation Date2015-08-12 15:06:57
Producing SoftwareAdobe Acrobat 10.1.2
Document Lastmod2015-08-12 15:06:57
Document TitleSAR Appendix E 1
Document CreatorAdobe Acrobat 10.1.2

Source Exif Data [exif.tools]:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : Yes
Create Date                     : 2015:08:12 15:06:57-07:00
Creator                         : Adobe Acrobat 10.1.2
Modify Date                     : 2015:08:12 15:06:57-07:00
Title                           : 
XMP Toolkit                     : Adobe XMP Core 5.2-c001 63.139439, 2010/09/27-13:37:26
Metadata Date                   : 2015:08:12 15:06:57-07:00
Creator Tool                    : Adobe Acrobat 10.1.2
Format                          : application/pdf
Document ID                     : uuid:85a6f403-332e-4ea0-965f-bfcc6bef0fa2
Instance ID                     : uuid:6267d1f0-e5bb-4385-aca2-70092b309448
Producer                        : Adobe Acrobat 10.1.2
Page Count                      : 33