Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation

ZTE Corporation LTE OBDII Hotspot

FCC ID Filing: SRQ-Z6200CA
Purchase on Amazon: LTE OBDII Hotspot

Trouble Viewing? See the or view the HTML Version or PDF in frame
Page 1 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 2 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 3 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 4 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 5 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 6 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 7 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 8 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 9 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 10 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 11 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 12 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 13 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 14 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 15 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 16 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 17 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 18 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 19 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 20 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 21 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 22 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 23 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 24 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 25 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 26 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 27 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 28 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 29 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 30 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 31 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 32 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 33 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 34 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 35 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 36 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 37 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 38 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 39 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 40 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 41 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 42 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 43 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 44 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 45 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 46 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 47 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 48 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 49 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 50 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 51 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 52 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 53 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 54 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 55 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 56 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 57 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 58 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 59 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 60 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 61 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 62 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 63 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 64 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 65 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 66 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 67 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 68 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 69 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 70 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 71 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 72 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 73 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 74 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 75 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 76 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 77 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 78 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 79 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 80 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 81 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 82 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Page 83 of Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation

FCC SAR Test Report
Appendix C. Calibration Certificate for Probe and Dipole
The SPEAG calibration certificates are shown as follows.
Report Format Version 5.0.0
Report No. : SA170512W003
Issued Date
: May 22, 2017
Calibration Laboratory of
Schmid & Partner
Engineering AG
Schweizerischer Kalibrierdienst
Service suisse d'etalonnage
Servizio svizzero di taratura
Zeughausstrasse 43, 8004 Zurich, Switzerland
Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.:
Swiss Calibration Service
SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client
BV ADT CN (Auden)
Certificate No:
D750V3-1067_A ug16
!CALIBRATION CERTIFICATE
Object
D750V3 - SN:1067
Calibration procedure(s)
QA CAL-05.v9
Calibration procedure for dipole validation kits above 700 MHz
Calibration date:
August30, 2016
T his calibration certificate documents the traceability to national standards, which realize the physical units of m easurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conducted in the closed laboratory facility: environment tem perature (22 ± 3)°C and humidity < 70% .
Calibration Equipment used (M&TE c ritical for calibration)
Primary Standards
ID #
Cal Date (Certificate No.)
Scheduled Calibration
Power meter NRP
SN: 104778
06-Apr-1 6 (No. 217-02288/02289)
Apr- 17
Power sensor NRP-Z91
SN: 103244
06-Apr-16 (No. 217-02288)
Apr-17
Power sensor NRP-Z91
SN: 103245
06-Apr-16 (No. 217-02289)
Apr-17
Reference 20 dB Attenuator
SN: 5058 (20k)
05-Apr-1 6 (No. 217-02292)
Apr-1 7
Type-N m ismatch com bination
SN: 5047.2 / 06327
05-Apr-16 (No. 217-02295)
Apr-17
Reference Probe EX3DV4
SN: 7349
15-Jun-16 (No. EX3-7349_Jun16)
Jun- 17
DAE4
SN: 601
30-Dec-15 (No. DAE4-601_Dec15)
Dec-16
Secondary Standards
ID#
Check Date (in house)
Scheduled Check
Power meter EPM-442A
SN: GB37480704
07-0ct-1 5 (No. 21 7-02222)
In house check: Oct-16
Power sensor HP 8481A
SN: US37292783
07-0ct-15 (No. 217-02222)
In house check: Oct-1 6
Power sensor HP 8481A
SN: MY41092317
07-0ct-15 (No. 217-02223)
In house check: Oct-16
RF generator R&S SMT-06
SN: 100972
15-J un-15 (in house check Jun-15)
In house check: Oct-1 6
Network Analyzer HP 8753E
SN: US37390585
18-0ct-01 (in house check Oct-15)
In house check: Oct-16
Name
Function
Calibrated by:
Michael Weber
Laboratory Technician
Approved by:
Katja Pokovic
Technical Manager
Signature
i/lf,ks~~
Issued: August 30, 2016
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.
Ce rtificate No: D750V3-1067_ Aug 16
Page 1 of 8
Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
Schweizerischer Kalibrierdienst
Service suisse d'etalonnage
Servizio svizzero di taratura
Swiss Calibration Service
Accreditation No.:
Accredited by the Swiss Accreditation Service (SAS)
SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL
ConvF
N/A
tissue simulating liquid
sensitivity in TSL / NORM x,y,z
not applicable or not measured
Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless
Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held
devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)",
February 2005
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless
communication devices used in close proximity to the human body (frequency range of 30
MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
Additional Documentation:
e) DASY 4/5 System Handbook
Methods Applied and Interpretation of Parameters:
• Measurement Conditions: Further details are available from the Validation Report at the end
of the certificate. All figures stated in the certificate are valid at the frequency indicated.
• Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
point exactly below the center marking of the flat phantom section, with the arms oriented
parallel to the body axis.
• Feed Point Impedance and Return Loss: These parameters are measured with the dipole
positioned under the liquid filled phantom. The impedance stated is transformed from the
measurement at the SMA connector to the feed point. The Return Loss ensures low
reflected power. No uncertainty required.
• Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
No uncertainty required.
• SAR measured: SAR measured at the stated antenna input power.
• SAR normalized: SAR as measured, normalized to an input power of 1 Wat the antenna
connector.
• SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the
nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement
multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage
probability of approximately 95%.
Certificate No: D750V3-1067 _Aug1 6
Page 2 of 8
Measurement Conditions
DASY system conf1gurat1on, as ar as not ~ 1ven on page 1.
DASY Version
DASY5
Extrapolation
Advanced Extrapolation
Phantom
V52.8.8
Modular Flat Phantom
Distance Dipole Center - TSL
15 mm
Zoom Scan Resolution
dx, dy, dz = 5 mm
Frequency
750 MHz ± 1 MHz
with Spacer
Head TSL parameters
The fo II owing
. parameters an d ca Icu Iat1ons
were app I'1e d
Nominal Head TSL parameters
Measured Head TSL parameters
Head TSL temperature change during test
Temperature
Permittivity
Conductivity
22.0 °c
41.9
0.89 mho/m
(22.0 ± 0.2) °C
42.4 ± 6 %
0.91 mho/m ± 6 %
< 0.5 °C
----
----
SAR result with Head TSL
SAR averaged over 1 cm3 (1 g) of Head TSL
SAR measured
Condition
250 mW input power
2.09 W/kg
normalized to 1W
8.24 W/kg ± 17.0 % (k=2)
SAR for nominal Head TSL parameters
SAR averaged over 10 cm3 (10 g) of Head TSL
SAR measured
condition
250 mW input power
1.36 W/kg
normalized to 1W
5.37 W/kg ± 16.5 % (k=2)
SAR for nominal Head TSL parameters
Body TSL parameters
The fo II owing
. parameters an d ca Icu Iat1ons
were appr1ed .
Nominal Body TSL parameters
Measured Body TSL parameters
Body TSL temperature change during test
Temperature
Permittivity
Conductivity
22.0 °C
55.5
0.96 mho/m
(22.0 ± 0.2) °C
54.9 ±6 %
0.99 mho/m ± 6 %
< 0.5 °C
........
----
SAR result with Body TSL
SAR averaged over 1 cm 3 (1 g) of Body TSL
SAR measured
SAR for nominal Body TSL parameters
SAR averaged over 1O cm3 (1 O g) of Body TSL
SAR measured
SAR for nominal Body TSL parameters
Certificate No: D750V3-1067_Aug16
Condition
250 mW input power
2.25 W/kg
normalized to 1W
8.77 W/kg ± 17.0 % (k=2)
condition
250 mW input power
1.47 W/kg
normalized to 1W
5.76 W/kg ± 16.5 % (k=2)
Page 3 of 8
Appendix (Additional assessments outside the scope of SCS 0108)
Antenna Parameters with Head TSL
Impedance, transformed to feed point
54.8 Q - 0.3 jQ
Return Loss
- 26.8 dB
Antenna Parameters with Body TSL
Impedance, transformed to feed point
50.0 Q - 2.8 jQ
Return Loss
- 31.0 dB
General Antenna Parameters and Design
Electrical Delay (one direction)
1.033 ns
After long term use with 1OOW radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the
second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps
are added to the dipole arms in order to improve matching when loaded according to the position as explained in the
"Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still
according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the
feedpoint may be damaged.
Additional EUT Data
Manufactured by
SPEAG
Manufactured on
May 10, 2012
Certificate No: D750V3-1067_Aug16
Page 4 of 8
DASY5 Validation Report for Head TSL
Date: 30.08.2016
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1067
Communication System: UID O - CW; Frequency: 750 MHz
Medium parameters used: f = 750 MHz; cr = 0.91 Sim; er = 42.4; p = 1000 kg/m3
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:
•
Probe: EX3DV4 - SN7349; ConvF(l0.07, 10.07, 10.07); Calibrated: 15.06.2016;
•
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
•
Electronics: DAE4 Sn601; Calibrated: 30.12.2015
•
Phantom: Flat Phantom 4 .9L; Type: QDOOOP49AA; Serial: 1001
•
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value= 57.93 V/m; Power Drift= 0.01 dB
Peak SAR (extrapolated)= 3.12 W/kg
SAR(l g) =2.09 W /kg; SAR(lO g) = 1.36 W /kg
Maximum value of SAR (measured) = 2.77 W/kg
dB
-2.40
-4.8 0
-7.20
-9 .60
-12.00
0 dB= 2.77 W/kg = 4.42 dBW/kg
Certificate No: D750V3-1067_ Aug16
Page 5 of 8
Impedance Measurement Plot for Head TSL
~ S11
1 U FS
1: 54. 807
-310.55
~-- r --.. . .
I ' ,,.--..
,<,"
Del
',
12:10: 42
750.000 000 MHz
\_ - - ~'.....
',
Ct,.
30 Au9 2016
683.33 pF
mn
i' ,.\
...,. -\ -. , '\
" . / ' .......
1 ,
\ ...,. - ' '
Hld
CH2
S11
LOG
5 dB/ REF -20 dB
---
1 :- 26 755 dB
750 000 000 MHz
~,-
'\
\ '\. :/
Hld
START 550.000 000 MHz
Certificate No: D750V3-1067_A ug16
S TOP 950.0 00 000 MHz
Page 6 of 8
DASYS Validation Report for Body TSL
Date: 30.08.2016
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1067
Communication System: UID O - CW; Frequency: 750 MHz
Medium parameters used: f = 750 MHz; cr = 0.99 Sim; er= 54.9; p = 1000 kg/m3
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:
•
Probe: EX3DV4 - SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 15.06.2016;
•
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
•
Electronics: DAE4 Sn601; Calibrated: 30.12.2015
•
Phantom: Flat Phantom 4.9L; Type: QDOOOP49AA; Serial: 1001
•
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)
Dipole Calibration for Body Tissue/Pin=250 mW, d=l5mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value= 57.54 V/m; Power Drift= 0.01 dB
Peak SAR (extrapolated)= 3.38 W/kg
SAR(l g) = 2.25 W /kg; SAR(lO g) = 1.47 W /kg
Maximum value of SAR (measured)= 2.97 W/kg
dB
-2.20
-4 .40
-6 .60
-8.80
-11 .00
0 dB= 2.97 W/kg = 4.73 dBW/kg
Certificate No: D750V3-1067_Aug16
Page 7 of 8
Impedance Measurement Plot for Body TSL
[BIi S11
1: 50. 000 s'l
1 U FS
,,,.-----r---.._,
<'
'\_, - -.. -~''/ .
Del
I/
'>
,.
\ /
, - -- ..,...v
.. /
-----1-----'
5 d Bi REF - 20 dB
--~ ----
· \
'..._
Hld
LOG
',.. •/ -\ -.. ._,\:\
...,.
S11
11:03: 35
750.000 000 MHz
'"
,,. "'·'
Cl!.
CH2
30 Au9 2016
75. 190 pF
-2.8223 s'l
Cl!.
1:-3 0. 988 d B
-..._
'-.....
750. 000 000 MH z
---
..--
C:
\ 7 /
Hld
STOP 950.000 000 MHz
START 550.000 000 MHz
Certificate No: D750V3-1067_Aug16
Page 8 of 8
Calibration Laboratory of
Schmid & Partner
Engineering AG
Schweizerischer Kalibrierdienst
Service suisse d'etalonnage
Servizio svizzero di taratura
Zeughausstrasse 43, 8004 Zurich, Switzerland
Swiss Calibration Service
Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.:
SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client
Auden
Certificate No:
D750V3-1078_Jun16
!CALIBRATION CERTIFICATE
Object
D750V3 - SN: 1078
Calibration procedure(s)
QA CAL-05.v9
Calibration procedure· tor dipole validation kits above 700 MHz
Calibration date:
June 22, 2016
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conducted in the closed laboratory facrnity: environment temperature (22 ± 3)°C and humidity < 70%.
Calibration Equipment used (M&TE critical for calibration)
Primary Standards
ID #
Cal Date (Certificate No.)
Scheduled Calibration
Apr-17
Power meter NAP
SN: 104778
06-Apr-16 (No. 217-02288/02289)
Power sensor NRP-Z91
SN: 103244
06-Apr-16 (No. 217-02288)
Apr-1 7
Apr-17
Power sensor NRP-Z91
SN: 103245
06-Apr-16 (No. 217-02289)
Reference 20 dB Attenuator
SN: 5058 (20k)
05-Apr-16 (No. 217-02292)
Apr-17
Apr-1 7
Type-N mismatch combination
SN: 5047.2 I 06327
05-Apr- 16 (No. 217-02295)
Reference Probe EX3DV4
SN: 7349
15-Jun-16 (No. EX3-7349_Jun16)
Jun-17
DAE4
SN: 601
30-Dec-15 (No. DAE4-601 _Dec15)
Dec-16
Secondary Standards
ID#
Ch,eck Date (in house)
Scheduled Check
Power meter EPM-442A
SN: GB37480704
Power sensor HP 8481A
In house check: Oct-16
In house check: Oct-16
Power sensor HP 8481A
SN: US37292783
SN: MY41092317
07-0ct-15 (No. 21 7-02222)
07-0ct-15 (No. 217-02222)
RF generator R&S SMT-06
SN: 100972
07-0ct-1 5 (No. 217-02223)
15--Jun-1 5 (in house check Jun-15)
In house check: Oct-16
In house check: Oct-16
Network Analyzer H P 8753E
SN: US37390585
18-·0ct-01 (in house check Oct-15)
In house check: Oct-16
Name
Function
Calibrated by:
Leif Klysner
Laboratory Technician
Approved by:
Katja Pokovic
Technical Manager
Signature
o/~
~~
Issued: June 27. 2016
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.
Certificate No: D750V3 -1078_Jun1 6
Page 1 of 8
Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
Schweizerischer Kalibrierdienst
Service suisse d'etalonnage
Servizio svizzero di taratura
Swiss Calibration Service
Accreditation No.:
Accredited by the Swiss Accreditation Service (SAS)
SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL
ConvF
NIA
tissue simulating liquid
sensitivity in TSL / NORM x,y,z
not applicable or not measured
Calibration is Performed According to the, Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommiended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless
Communications Devices: Measuremi:mt Techniques", June 2013
b) IEC 62209-1 , "Procedure to measure the Specific Absorption Rate (SAR) for hand-held
devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)",
February 2005
c) IEC 62209-2, "Procedure to determirn:? the Specific Absorption Rate (SAR) for wireless
communication devices used in close proximity to the human body (frequency range of 30
MHz to 6 GHz)" , March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
Additional Documentation:
e) DASY 4/5 System Handbook
Methods Applied and Interpretation of Pa1rameters:
• Measurement Conditions: Further details are available from the Validation Report at the end
of the certificate. All figures stated in the certificate are valid at the frequency indicated.
• Antenna Parameters with TSL: The diipole is mounted with the spacer to position its feed
point exactly below the center markin!~ of the flat phantom section, with the arms oriented
parallel to the body axis.
• Feed Point Impedance and Return Loss: These parameters are measured with the dipole
positioned under the liquid filled phantom. The impedance stated is transformed from the
measurement at the SMA connector to the feed point. The Return Loss ensures low
reflected power. No uncertainty required .
• Electrical Delay: One-way delay betwieen the SMA connector and the antenna feed point.
No uncertainty required.
• SAR measured: SAR measured at th1~ stated antenna input power.
• SAR normalized: SAR as measured, normalized to an input power of 1 Wat the antenna
connector.
• SAR for nominal TSL parameters: Thie measured TSL parameters are used to calculate the
nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement
multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage
probability of approximately 95%.
Certificate No: 0 750V3-1 078_Jun16
Page 2 of 8
Measurement Conditions
DASY system con f1gurat1on, as ar as not ! iven on paqe 1.
DASY Version
DASY5
Extrapolation
Advanced Extrapolation
Phantom
V52.8.8
Modular Flat Phantom
Distance Dipole Center - TSL
15 mm
Zoom Scan Resolution
dx, dy, dz = 5 mm
Frequency
750 MHz ± 1 MHz
w ith Spacer
Head TSL parameters
Th e fo II owing
. parameters and calculations were app ied.
Nominal Head TSL parameters
Measured Head TSL parameters
Head TSL temperature change during test
Temperature
Permittivity
Conductivity
22.0 °C
41 .9
0 .89 mho/m
(22.0 ± 0.2) °C
41 .3 ±6 %
0.90 mho/ m ± 6 %
< 0.5 °C
----
----
SAR result with Head TSL
SAR averaged over 1 cm 3 (1 g) of Head TSL
SAR measured
Condition
250 mW input power
2.07 W /kg
normalized to 1 W
8.18 W/kg ± 17.0 % (k=2)
SAR for nominal Head TSL parameters
SAR averaged over 10 cm3 (10 g) of Head TSL
SAR measured
condition
250 mW input power
1.36 W /kg
normalized to 1 W
5.39 W/kg ± 16.5 % (k=2)
SAR for nominal Head TSL parameters
Body TSL parameters
Th e fo II owinq
. parameters an d ca Icu Iat1ons
were app r1ed
Nominal Body TSL parameters
Measured Body TSL parameters
Body TSL temperature change during test
Temperature
Permittivity
Conductivity
22.0 °c
55.5
0 .96 mho/m
(22.0 ± 0.2) °C
54.6 ±6 %
0.98 mho/m ± 6 %
< 0.5 °C
----
----
SAR result with Body TSL
SAR averaged over 1 cm3 (1 g) of Body TSL
SAR measured
SAR for nominal Body TSL parameters
SAR averaged over 10 cm3 (1 O g) of Body TSL
SAR measured
SAR for nominal Body TSL parameters
Certificate No: 0 750V3-1078_Jun1 6
Condition
250 mW input power
2. 20 W /kg
normalized to 1W
8.63 W/kg ± 17.0 % (k=2)
condition
250 mW input power
1.44 W /kg
normalized to 1W
5.67 W/kg :t 16.5 % (k=2)
Page 3 of 8
Appendix (Additional assessments outside the scope of SCS 0108)
Antenna Parameters with Head TSL
Impedance, transformed to feed point
54.5 .Q - 0.7 j.Q
Return Loss
- 27.4 dB
Antenna Parameters with Body TSL
Impedance, transformed to feed point
49.9 .Q - 2.9 j.Q
Return Loss
- 30.9 dB
General Antenna Parameters and Design
I Electrical Delay (one direction)
1.034 ns
After long term use with 1OOW radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable . The center conductor of the feeding line is directly connected to the
second arm of the dipole . The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps
are added to the dipole arms in order to improve matching when loaded according to the position as explained in the
"Measurement Conditions" paragraph. The SAR data am not affected by this change. The overall dipole length is still
according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the
feedpoint may be damaged.
Additional EUT Data
Manufactured by
SPEAG
Manufactured on
November 15, 2012
Certificate No: D750V3-1078_Jun1 6
Page 4 of 8
DASY5 Validation Report for Head TSL
Date: 22.06.2016
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1078
Communication System: UID O - CW; Frequency: 750 MHz
Medium parameters used: f = 750 MHz; cr = 0.9 S/m; Er= 41.3; p = lOOO kg/m
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSl C63.19-201 l)
DASY52 Configuration:
•
Probe: EX3DV4- SN7349; ConvF(l0.17, 10.17, 10.17); Calibrated: 15.06.2016;
•
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
•
Electronics: DAE4 Sn601; Calibrated: 30.12.2015
•
Phantom: Flat Phantom 4.9L; Type: QDOOOP49AA; Serial: 1001
•
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)
Dipole Calibration for Head Tissue/Pin=250 mW, d=lSmm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: dx=5mrn, dy=5mm, dz=5mrn
Reference Value= 57 .85 V/m; Power Drift= 0.0 l dB
Peak SAR (extrapolated)= 3.07 W/kg
SAR(l g) = 2.07 W/kg; SAR(lO g) = 1.36 W/kg
Maximum value of SAR (measured)= 2.73 W/kg
dB
-2.00
-4.00
-6.00
-8.00
-10.00
0 dB= 2.73 W/kg = 4.36 dBW/kg
Certificate No: 0750V3-1078_Jun16
Page 5 of 8
Impedance Measurement Plot for Head TSL
22 J u n 201 6
[filJ S11
2 : 54. 502
1 LI FS

I-
-~
Avg
15
•
CH2
S11
2: -27.392 dB
5 dB i REF -20 dB
LOl3
T"
"t
-r
750.000 000 MHz
..
Ct,.
._
+-t
'-~
.....
..
+-
+-
.._
....
"1
+-
/ "
\ii
.L
-+-
t""
+-
....
++
STOP '350.000 000 MHz
START 550. 000 000 MHz
Certificate No: D750V3-1078_Jun16
Page 6 of 8
DASY5 Validation Report for Body TSL
Date: 22.06.2016
Test Laboratory: SPEAG, Zurich, Switzerland
OUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1078
Communication System: UID O - CW; Frequency: 750 MHz
Medium parameters used: f = 750 MHz; cr = 0.98 Sim; er= 54.6; p = 1000 kg/m3
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-201 l)
DASY52 Configuration:
•
Probe: EX3DV4 - SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 15.06.2016;
•
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
•
Electronics: DAE4 Sn601 ; Calibrated: 30.12.2015
•
Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
•
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)
Dipole Calibration for Body Tissue/Pin=250 mW, d=l5mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference VaJue = 56.86 Y/m; Power Drift= -0.02 dB
Peak SAR (extrapolated)= 3.26 W/kg
SAR(l g) = 2.2 W/kg; SAR(IO g) = 1.44 W/kg
Maximum value of SAR (measured) = 2.91 W/kg
dB
-2.00
-4.00
-6.00
-8.00
-10.00
0 dB = 2.91 W/kg = 4.64 dBW/kg
Certificate No: D750V3-1078_Jun1 6
Page 7 of 8
Impedance Measurement Plot for Body TSL
!IBI] S11
1 LI FS
1: 49.904 o
-2.8613 o
22 Jun 201 6
74. 164 pF
1 0 : 1 1 : 25
750. 000 000 MHz
750 MHz
Del
Ct.
-l
•
CH2
S11
LOG
5 dB i REF -20 dB
1:-30.855 dB
+-
750.000 000 MHz
....
+-
Ct.
START 550. 000 000 MHz
Certificate No: D750V3-1078_Jun16
+-
+-
S TOP 950.000 000 r1Hz
Page 8 of 8
Calibration Laboratory of
Schmid & Partner
Engineering AG
Schweizerischer Kalibrierdienst
Service suisse d'etalonnage
Zeughausstrasse 43, 8004 Zurich , Switzerland
Servizio svizzero di taratura
Swiss Calibration Service
Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.:
SC$ 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client
Auden
Certificate No:
D835V2-4d092_Jun16
CALIBRATION CERTIFICATE
Object
D835V2 - SN:4d092
Calibration procedure(s)
QA CAL-05.v9
Calibration procedure, for dipole validation kits above 700 MHz
Calibration date:
June 22, 2016
This calibration certificate documents the traceability to national s.tandards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probabiility are given on the following pages and are part of the certificate.
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity< 70%.
Calibration Equipment used (M&TE critical for calibration)
Primary Standards
ID #
Cal Date (Certificate No.)
Scheduled Calibration
Power meter NAP
SN: 104778
06-Apr-16 (No. 217-02288/02289)
Apr-17
Power sensor NRP-Z91
SN: 103244
06-Apr-1 6 (No. 217-02288)
Apr-17
Power sensor NRP-Z91
SN: 103245
06-Apr-16 (No. 217-02289)
Apr-1 7
Reference 20 dB Attenuator
SN: 5058 (20k)
05-Apr-16 (No. 217-02292)
Apr-1 7
Type-N mismatch combination
SN: 5047.2 / 06327
05-Apr-16 (No. 217-02295)
Apr- 17
Reference Probe EX3DV4
SN: 7349
1s..Jun-16 (No. EX3-7349_Jun16)
Jun-17
DAE4
SN: 601
30·-Dec-15 (No. DAE4-601_ Dec15)
Dec-16
Secondary Standards
ID #
Check Date (in house)
Scheduled Check
Power meter EPM-442A
SN: GB37480704
Power sensor HP 8481A
Power sensor HP 8481 A
SN: US37292783
07-0ct-15 (No. 217-02222)
07·-0ct-15 (No. 217-02222)
In house check: Oct-16
In house check: Oct-1 6
RF generator R&S SMT-06
SN: 100972
07··0Ct-15 (No. 217-02223)
15--Jun-1 5 (in house check Jun-15)
In house check: Oct-16
Network Analyzer HP 8753E
SN: US37390585
18--0ct-01 (in house check Oct-15)
In house check: Oct-16
Name
Function
Calibrated by:
Claudio Leubler
Laboratory Technician
Approved by:
Katja Pokovic
Technical Manager
SN: MY4109231 7
In house check: Oct-16
Issued: June 27, 2016
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.
Certificate No: 0835V2-4d092_Jun 16
Page 1 of 8
Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Schweizerischer Kalibrierdienst
Service suisse d'etalonnage
Servizio svizzero di taratura
Swiss Calibration Service
Accreditation No.:
SCS 0108
Multilateral Agreement for the recognition of calibration certifiicates
Glossary:
TSL
ConvF
NIA
tissue simulating liquid
sensitivity in TSL / NORM x,y,z
not applicable or not measured
Calibration is Performed According to the! Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless
Communications Devices: Measurem1ent Techniques'', June 2013
b) IEC 62209-1 , "Procedure to measure the Specific Absorption Rate (SAR) for hand-held
devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)" ,
February 2005
c) IEC 62209-2, "Procedure to determinB the Specific Absorption Rate (SAR) for wireless
communication devices used in close proximity to the human body (frequency range of 30
MHz to 6 GHz)" , March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
Additional Documentation:
e) DASY 4/5 System Handbook
Methods Applied and Interpretation of Pa1rameters:
• Measurement Conditions: Further details are available from the Validation Report at the end
of the certificate. All figures stated in the certificate are valid at the frequency indicated.
• Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
point exactly below the center markin!g of the flat phantom section, with the arms oriented
parallel to the body axis.
• Feed Point Impedance and Return Loss: These parameters are measured with the dipole
positioned under the liquid filled phantom. The impedance stated is transformed from the
measurement at the SMA connector to the feed point. The Return Loss ensures low
reflected power. No uncertainty required .
• Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
No uncertainty required.
• SAR measured: SAR measured at th1e stated antenna input power.
• SAR normalized: SAR as measured, normalized to an input power of 1 Wat the antenna
connector.
• SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the
nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement
multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage
probability of approximately 95%.
Certificate No: D835V2-4d092_Jun16
Page 2 of 8
Measurement Conditions
DASY svstem confiquration , as far as not c iven on page 1.
DASY Version
DASY5
Extrapolation
Advanced Extrapolation
V52.8.8
Modular Flat Phantom
Phantom
with Spacer
15mm
Distance Dipole Center - TSL
Zoom Scan Resolution
dx, dy, dz = 5 mm
Frequency
835 MHz ± 1 MHz
Head TSL parameters
The fo Ilowina parameters and calculations were applied.
Nominal Head TSL parameters
Measured Head TSL parameters
Head TSL temperature change during test
Temperature
Permittivity
Conductivity
22.0 °C
41.5
0.90 mho/m
(22.0 ± 0.2) °C
41.0 ± 6 %
0.92 mho/m ± 6 %
< 0.5 °c
----
----
SAR result with Head TSL
SAR averaged over 1 cm 3 (1 g) of Head TSL
SAR measured
Condition
250 mW input power
2.40 W/kg
normalized to 1W
9.42 W/kg ± 17.0 % (k=2)
SAR for nominal Head TSL parameters
condition
SAR averaged over 10 cm (10 g) of Head TSL
SAR measured
250 mW input power
1.55 W/kg
normalized to 1W
6.11 W/kg ± 16.5 % (k=2)
SAR for nominal Head TSL parameters
Body TSL parameters
The followina parameters and calculations were applied.
Nominal Body TSL parameters
Measured Body TSL parameters
Body TSL temperature change during test
Temperature
Permittivity
Conductivity
22.0 °c
55.2
0.97 mho/m
(22.0 ± 0.2) °C
54.4 ± 6 %
1.01 mho/m ± 6 %
< 0.5 °C
----
........
SAR result with Body TSL
SAR averaged over 1 cm 3 (1 g) of Body TSL
SAR measured
SAR for nominal Body TSL parameters
SAR averaged over 10 cm (10 g) of Body TSL
SAR measured
SAR for nominal Body TSL parameters
Certificate No: 0 835V2-4d092_Jun1 6
Condition
250 mW input power
2.48 W/kg
normalized to 1W
9.59 W/kg ± 17.0 % (k=2)
condition
250 mW input power
1.61 W/kg
normalized to 1W
6.27 W/kg ± 16.5 % (k=2)
Page 3 of 8
Appendix (Additional assessments outsid,e the scope of SCS 0108)
Antenna Parameters with Head TSL
51 .7 Q - 2.7 jQ
Impedance, transformed to feed point
- 30.1 dB
Return Loss
Antenna Parameters with Body TSL
47.4 Q - 4 .5 jQ
Impedance, transformed to feed point
- 25.5 dB
Return Loss
General Antenna Parameters and Design
1.390 ns
Electrical Delay (one direction)
After long term use with 1OOW radiated power, only a sli!Jht warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semi rigid coaxial cable. The center conductor of the feeding line is directly connected to the
second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps
are added to the dipole arms in order to improve matching when loaded according to the position as explained in the
"Measurement Conditions" paragraph. The SAR data am not affected by this change. The overall dipole length is still
according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the
feedpoint may be damaged.
Additional EUT Data
Manufactured by
SPEAG
Manufactured on
September 15, 2009
Certificate No: D835V2-4d092_Jun1 6
Page 4 of 8
DASYS Validation Report for Head TSL
Date: 22.06.2016
Test Laboratory: SPEAG, Zurich, Switzerland
OUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d092
Communication System: UID O - CW; Frequency: 835 MHz
Medium parameters used: f = 835 MHz; cr = 0.92 S/m; Er = 41; p = 1000 kg/m
Phantom section: Flat Section
Measurement Standard: DASY5 (IBEE/IBC/ANSI C63.19-2011)
DASY52 Configuration:
•
Probe: EX3DV4 - SN7349; ConvF(9.72, 9.72, 9.72); Calibrated: 15.06.2016;
•
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
•
Electronics: DAE4 Sn60 I; Calibrated: 30 . 12.2015
•
Phantom: Flat Phantom 4.9L; Type: QDOOOP49AA; Serial : 1001
•
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:
Measure ment grid: dx=5mrn, dy=5rnrn, dz=5mm
Reference Value= 61.93 V/m; Power Drift= 0.02 dB
Peak SAR (extrapolated)= 3.61 W/kg
SAR(l g) =2.4 W/kg; SAR(lO g) = 1.55 W/kg
Maximum value of SAR (measured)= 3.19 W/kg
dB
-2.23
-4.45
-6.68
-8.90
-11.13
0 dB= 3. 19 W/kg = 5.04 dBW/kg
Certificate No: 0835V2-4d092_Jun1 6
Page 5 of 8
Impedance Measurement Plot for Head TSL
[fill S 1 1
1: 5 1. 71 5 n
1 IJ FS
-2.65 4 3 ,"I
2 2 Jun 2 010
7 1.810 pF
835.00 0 000 MHz
12: 1 3: 1 1
! : - 3 0.051 dB
83
5 . 000 0 r00 MHz
Del
C,:,.
Avg
16
Hi d
CH2
S1 1
LOG
5 dB i REF -20 dB
- ~--+--
1-Cl,,
-+--
~-1
-__
- _.__ - ·----1-
Hid
_J_--+
1 -
_..J._____
S TART 03 5 . 000 0 00 ~1Hz
Certificate No: D835V2-4d092_Jun1 6
S TOP 1 0 3 5.00 0 000 MH z
Page 6 of 8
DASY5 Validation Report for Body TSL
Date: 22.06.2016
Test Laboratory: SPEAG, Zurich, Switzerland
OUT: Dipole 835 MHz; Type: D835V2; Serial:: D835V2 - SN:4d092
Communication System: UID O - CW; Frequency: 835 MHz
Medium parameters used: f = 835 MHz; cr = 1.01 Sim; Sr = 54.4; p = 1000 kg/m 3
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-201 l)
DASY52 Configuration:
•
Probe: EX3DV4 - SN7349; ConvF(9.73, 9.73, 9.73); Calibrated: 15.06.2016;
•
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
•
Electronics: DAE4 Sn60 I; Calibrated: 30.12.2015
•
Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
•
DASY52 52.8.8(1258); SEMCAD X 14.6t.10(7372)
Dipole Calibration for Body Tissue/Pin=250 mW, d=l5mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 60.12 V/m; Power Drift = -0.0 I dB
Peak SAR (extrapolated)= 3.63 W/kg
SAR(] g) = 2.48 W /kg; SAR(l O g) = 1.61 W/kg
Maximum value of SAR (measured)= 3.26 W/kg
dB
-2.15
-4.30
-6. 45
-8.60
-10 .75
0 dB = 3.26 W/kg = 5.13 dBW/lkg
Certificate No: D835V2-4d092_Jun16
Page 7 of 8
Impedance Measurement Plot for Body TSL
lrn1) S 11
1 U FS
1: 4 7.44 7 f,
22 Jun 2 016 11:22 :12
-4.4922 n 42. 4 3 0 pF
8 3 5.000 000 MHz
Del
Ci:.
- ~ ;i.-J
Hld
CH2
LOG
S11
~5 dB i _R_lf -20 dB
,-
1:- 25. 50gl dB
t"
8)5.000 000 MHz
+-
f--
t-
--
-+- - - -
Hld
-+
START 6 3 5.000 000 MHz
Certificate No: D835V2-4d092_Jun1 6
Page 8 of 8
STOP 1 0 3 5.000 000 MH z
Calibration Laboratory of
Schmid & Partner
Engineering AG
Schweizerischer Kalibrierdienst
Service suisse d'etalonnage
Servizio svizzero d i taratura
Zeughausstrasse 43, 8004 Zurich, Switzerland
Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.:
Swiss Calibration Service
SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client
Auden
Certificate No:
D1750V2-1023_Jun16
CALIBRATION CERTIFICATE
Object
D1750V2 - SN:1023
Calibration procedure(s)
QA CAL-05 .v9
Calibration procedure for dipole validation kits above 700 MHz
Calibration date:
June 23, 2016
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.
Calibration Equipment used (M&TE critical for calibration)
Scheduled Calibration
Primary Standards
ID#
Cal Date (Certificate No.)
Power meter NAP
SN: 104778
06-Apr-16 (No. 217-02288/02289)
Apr-17
Power sensor NRP-Z91
06-Apr-16 (No. 217-02288)
Apr-17
Power sensor NRP-Z91
SN: 103244
SN: 103245
06-Apr-16 (No. 217-02289)
Apr-17
Reference 20 dB Attenuator
SN: 5058 (20k)
05-Apr-16 (No. 217-02292)
Apr-1 7
Type-N mismatch combination
SN: 5047.2 / 06327
05-Apr-16 (No. 217-02295)
Apr-1 7
Reference Probe EX3DV4
SN: 7349
15-Jun-16 (No. EX3-7349_Jun16)
DAE4
SN: 601
30-Dec-15 (No. DAE4-601 _Dec15)
Jun-17
Dec-16
Secondary Standards
ID #
ChHck Date (in house)
Scheduled Check
Power meter EPM-442A
SN: GB37480704
07-0ct-15 (No. 217-02222)
In house check: Oct-16
Power sensor HP 8481A
SN: US37292783
07-0ct-15 (No. 217-02222)
In house check: Oct-16
Power sensor HP 8481 A
SN: MY41092317
07-0ct-15 (No. 217-02223)
In house check: Oct-16
RF generator R&S SMT-06
SN: 100972
15-,Jun-15 (in house check Jun-15)
In house check: Oct-16
Network Analyzer HP 8753E
SN: US37390585
18-0ct-01 (in house check Oct-15)
In house check: Oct-1 6
Name
Function
Calibrated by:
Michael Weber
Laboratory Technician
Approved by:
Katja Pokovic
Technical Manager
liiler~~
Issued: June 27, 2016
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.
Certificate No: D1750V2-1 023_Jun16
!Page 1 of 8
Calibration Laboratory of
Schmid & Partner
Engineering AG
Schweizerischer Kalibrierdienst
Servizio svizzero di taratura
Zeughausstrasse 43, 8004 Zurich, Switzerland
Accredited by the Swiss Accreditation Service (SAS)
Service suisse d'etalonnage
Swiss Calibration Service
Accreditation No.:
SCS 0108
The Swiss Accreditation Service i s one of the signatories to tlhe EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL
ConvF
N/A
tissue simulating liquid
sensitivity in TSL / NORM x,y,z
not applicable or not me·asured
Calibration is Performed According to the! Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless
Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1 , "Procedure to measure the Specific Absorption Rate (SAR) for hand-held
devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)",
February 2005
c) IEC 62209-2, "Procedure to determinB the Specific Absorption Rate (SAR) for wireless
communication devices used in close proximity to the human body (frequency range of 30
MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
Additional Documentation:
e) DASY4/5 System Handbook
Methods Applied and Interpretation of Pa1rameters:
• Measurement Conditions: Further details are available from the Validation Report at the end
of the certificate. All figures stated in the certificate are valid at the frequency indicated.
• Antenna Parameters with TSL: The diipole is mounted with the spacer to position its feed
point exactly below the center markin!~ of the flat phantom section, with the arms oriented
parallel to the body axis.
• Feed Point Impedance and Return Loss: These parameters are measured with the dipole
positioned under the liquid filled phantom. The impedance stated is transformed from the
measurement at the SMA connector to the feed point. The Return Loss ensures low
reflected power. No uncertainty required.
• Electrical Delay: One-way delay betwi3en the SMA connector and the antenna feed point.
No uncertainty required .
• SAR measured: SAR measured at thH stated antenna input power.
• SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
connector.
• SAR for nominal TSL parameters: ThB measured TSL parameters are used to calculate the
nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement
multiplied by the coverage factor k=2, whiclh for a normal distribution corresponds to a coverage
probability of approximately 95%.
Certificate No: 0 1750V2-1023_Jun 16
Page 2 of 8
Measurement Conditions
D ASY system con fiquration, as far as not ~ iven on paqe 1 .
DASY Version
DASY5
Extrapolation
Advanced Extrapolation
Phantom
V52.8.8
Modular Flat Phantom
Distance Dipole Center - TSL
10 mm
with Spacer
Zoom Scan Resolution
dx, dy, dz = 5 mm
Frequency
1750 MHz± 1 MHz
Head TSL parameters
Th e followinq parameters and calcu lations were applied.
Temperature
Permittivity
Conductivity
22.0 °c
40. 1
1.37 mho/m
(22.0 ± 0.2) °C
39.2 ±6 %
1.35 mho/m ± 6 %
----
----
Nominal Head TSL parameters
Measured Head TSL parameters
Head TSL temperature change during test
< 0.5
°c
SAR result with Head TSL
SAR averaged over 1 cm 3 (1 g) of Head TSL
SAR measured
Condition
250 mW input power
9.01 W/kg
normalized to 1W
36.2 W/kg :t: 17.0 % (k=2)
SAR for nominal Head TSL parameters
SAR averaged over 10 cm3 (1 O g) of Head TSL
SAR measured
condition
250 mW input power
SAR for nominal Head TSL parameters
normalized to 1W
4 .78 W/kg
19.2 W/kg
:t:
16.5 % (k=2)
Body TSL parameters
The followinq parameters and calcu Iat1ons
were applied.
Nominal Body TSL parameters
Measured Body TSL parameters
Body TSL temperature change during test
Temperature
Permittivity
Conductivity
22.0 °C
53.4
1.49 mho/m
(22.0 ± 0.2) °C
53.0 ±6 %
1.46 mho/m ± 6 %
< 0.5 °C
----
--·-
SAR result with Body TSL
SAR averaged over 1 cm 3 (1 g) of Body TSL
SAR measured
SAR for nominal Body TSL parameters
SAR averaged over 1O cm 3 (1 O g) of Body TSL
SAR measured
SAR for nominal Body TSL parameters
Certificate No: 01 750V2-1023_Jun 16
Condition
250 mW input power
8 .99 W/kg
normalized to 1W
36.4 W/kg ± 17.0 % (k=2)
condition
250 mW input power
4.79 W/kg
normalized to 1W
19.3 W/kg ± 16.5 % (k=2)
Page 3 of 8
Appendix (Additional assessments outside the scope of SCS 0108)
Antenna Parameters with Head TSL
so.a n + 0.2 jn
Impedance, transformed to feed point
Return Loss
- 41 .6 dB
Antenna Parameters with Body TSL
Impedance, transformed to feed point
47.0
Return Loss
n - 0.4 jn
- 29.7 dB
General Antenna Parameters and Design
I Electrical Delay (one direction)
1.217 ns
After long term use with 1OOW radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the
second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps
are added to the dipole arms in order to improve matching when loaded according to the position as explained in the
"Measurement Conditions" paragraph. The SAR data an:i not affected by this change. The overall dipole length is still
according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the
feedpoint may be damaged.
Additional EUT Data
Manufactured by
SPEAG
Manufactured on
August 20, 2009
Certificate No: 01750V2-1023_Jun16
Page 4 of 8
DASY5 Validation Report for Head TSL
Date: 23.06.2016
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1023
Communication System: UID O - CW; Frequency: 1750 MHz
Medium parameters used: f = 1750 MHz; cr = 1.35 Sim; er = 39.2; p = 1000 kg/m 3
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-201 I)
DASY52 Configuration:
•
Probe: EX3DY4 - SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 15 .06.20 16;
•
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
•
Electronics: DAE4 Sn601 ; Calibrated: 30.12.20 15
•
Phantom: Flat Phantom 5.0 (front); Type: QDOOOP50AA; Serial: I 001
•
DASY52 52.8.8(1258); SEMCAD X 14.6. 10(7372)
Dipole Calibration for Head Tissue/Pin=:250 mW, d=lOmm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value= 104.4 V/m; Power Drift = -0.C)I dB
Peak SAR (extrapolated)= 16.5 W/kg
SAR(l g) = 9.01 W/kg; SAR(lO g) = 4.78 W/kg
Maximum value of SAR (measured) = 13.9 W/kg
dB
-3.60
-7.20
-10.80
-14.40
-18.00
0 dB= 13.9 W/kg = 11.43 dBW /kg
Certificate No: D1750V2-1023_Jun16
IPage 5 of 8
Impedance Measurement Plot for Head TSL
[l;J!I] S 11
1 U FS
1: 50. 820
(!
01. 2€112 il
23 Jun 2016 12:35:4s
18. 29& pH
1 750. 00€1 000 MHz
Del
Hld
..l.
CH2
S 11
LqQ
T5 dB / ~F - 20 dB
- - -- - -
Cll.
1~
-+
-t-
Hld
000 .,.0 00 MHz
4-- - - + - -
- - - i- - - t - START 1 550.000 000 MHz
Certificate No: D1750V2-1023_Jun1 6
STOP 1 950. 000 000 MHz
Page 6 of 8
DASY5 Validation Report for Body TSL
Date: 23.06.2016
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1023
Communication System: UID O - CW; Frequency: 1750 MHz
Medium parameters used: f = 1750 MHz; 0 = 1.46 Sim; Er= 53; p = 1000 kglm 3
Phantom section: Flat Section
Measurement Standard: DASY5 (lEEEIIBCIANSI C63.19-201 l )
DASY52 Configuration:
•
Probe: EX3DV4 - SN7349; ConvF(8.25, 8.25, 8.25); Calibrated: 15.06.2016;
•
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
•
Electronics: DAE4 Sn601; Calibrated: 30.12.2015
•
Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
•
DASY52 52.8.8( 1258); SEMCAD X 14.6.10(7372)
Dipole Calibration for Body Tissue/Pin=250 mW, d=lOmm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid : dx=5mm, dy=5mm, dz=5mm
Reference Value= 100.9 Vim; Power Drift= -0.04 dB
Peak SAR (extrapolated)= 15.9 Wlkg
SAR(l g) = 8.99 W/kg; SAR(lO g) = 4.79 W/kg:
Maximum value of SAR (measured)= 13.6 Wlkg
dB
-3.60
-7.20
-10.80
-14.40
-18.00
0 dB= 13.6 Wlkg = 11.34 dBW'lkg
Certificate No: D1750V2-1023_Jun16
Page 7 of 8
Impedance Measurement Plot for Body TSL
23 Jun 2 01 &
[fill S11
1 U FS
1: 47. 021 fl
-416.0 2 mr: 218.E,1 pF
1 2 :35: 03
1 750.000 000 MHz
•
r~
Del
Ct.
.L_
\.
Av 9
15
-~
,_
Hl ,j
CH2
S11
LO_G
5 dB i REF -20 dB
1:-29. 5&'? dB
-+- -
Cl!.
- ·-
,-
---
+ ~
-1
_;------=--:;
_.
...
-~
_.____
--+-
- - < - - -~-
•
-+
~ -
sl
-Hld
+..-
_.__
1 750. 000 ,000 MHz
-+
I-
-4--
-.- -
.J...._
START 1 550. 000 000 MHz
Certificate No: D1750V2-1023_Jun16
S TOP 1 950. 000 000 MHz
Page 8 of 8
--1
....
Calibration Laboratory of
Schmid & Partner
Engineering AG
Schweizerischer Kalibrierdienst
Service suisse d'etalonnage
Servizio svizzero di taratura
Zeughausstrasse 43, 8004 Zurich, Switzerland
Swiss Calibration Service
Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.:
SCS 0108
The Swiss Accreditation Service is one of the signatories to, the EA
Multilateral Agreement for the recognition of calibration certificates
Client
Auden
Certificate No:
D1900V2-5d018_ Jun16
CALIBRATION CERTIFICATE
Object
D1900V2 - SN:5d018
Calibration procedure(s)
QA CAL-05.v9
Calibration procedure for dipole validation kits above 700 MHz
Calibration date:
June 21, 2016
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% .
Calibration Equipment used (M&TE critical for calibration)
Primarv Standards
ID#
Cal Date (Certificate No.)
Scheduled Calibration
Power meter NAP
SN: 104778
06-Apr-16 (No. 217-02288/02289)
Apr-17
Power sensor NRP-Z91
06-Apr-16 (No. 217-02288)
Apr-17
Power sensor NRP-291
SN: 103244
SN : 103245
06-Apr-16 (No. 217-02289)
Apr-17
Reference 20 dB Attenuator
SN: 5058 (20k)
05-Apr-16 (No. 217-02292)
Apr- 17
Type-N mismatch combination
SN: 5047.2 / 06327
05-Apr-16 (No. 217-02295)
Apr-17
Reference Probe EX3DV4
SN : 7349
15-,Jun-16 (No. EX3-7349_Jun16)
Jun-17
DAE4
SN: 601
30-Dec-15 (No. DAE4-601 _Dec15)
Dec-16
Secondarv Standards
ID #
Check Date (in house)
Scheduled Check
Power meter EPM-442A
SN: GB37480704
07-0ct-15 (No. 217-02222)
In house check: Oct-16
Power sensor HP 8481A
SN: US37292783
07-0ct-15 (No. 217-02222)
In house check: Oct-16
Power sensor HP 8481A
SN: MY4109231 7
07-0ct-15 (No. 217-02223)
In house check: Oct-16
RF generator R&S SMT-06
SN: 100972
15-.lun-15 (in house check Jun-15)
In house check: Oct-16
Network Analyzer HP 8753E
SN: US37390585
18-0ct-01 (in house check Oct-15)
In house check: Oct-16
Name
Function
Calibrated by:
Michael Weber
Laboratory Technician
Approved by:
Katja Pokovic
Technical Manager
Issued: June 28, 2016
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.
Certificate No: 0 1900V2-5d018_Jun1 6
Page 1 of 8
Calibration Laboratory of
Schmid & Partner
Engineering AG
Schweizerischer Ka librierdienst
Servizio svizzero di tarat ura
Zeughausstrasse 43, 8004 Zurich , Switzerland
Service suisse d'etalonnage
Swiss Calibration Service
Accreditation No.:
Accredited by the Swiss Accreditation Service (SAS)
SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certiificates
Glossary:
TSL
ConvF
N/A
tissue simulating liquid
sensitivity in TSL / NORM x,y,z
not applicable or not mHasured
Calibration is Performed According to th,~ Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless
Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1 , "Procedure to measure the Specific Absorption Rate (SAR) for hand-held
devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)" ,
February 2005
c) IEC 62209-2, "Procedure to determinie the Specific Absorption Rate (SAR) for wireless
communication devices used in close proximity to the human body (frequency range of 30
MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
Additional Documentation:
e) DASY4/5 System Handbook
Methods Applied and Interpretation of Pa,rameters:
• Measurement Conditions: Further details are available from the Validation Report at the end
of the certificate. All figures stated in the certificate are valid at the frequency indicated.
• Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
point exactly below the center marking of the flat phantom section, with the arms oriented
parallel to the body axis.
• Feed Point Impedance and Return Loss: These parameters are measured with the dipole
positioned under the liquid filled phantom. The impedance stated is transformed from the
measurement at the SMA connector to the feed point. The Return Loss ensures low
reflected power. No uncertainty requined.
• Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
No uncertainty required .
• SAR measured: SAR measured at the stated antenna input power.
• SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
connector.
• SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the
nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement
multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage
probability of approximately 95%.
Certificate No: 0 1900V2-5d018_Jun 16
f~age 2 of 8
Measurement Conditions
DASY system confiquration , as far as not 1
2.4500000 GHz -·23.980 dB
40.00
30.00
20.00
10. 00
0,000
-20.00
-30. 00
10. 00
- 1
-50.00
~(m 511 Smith (R+jX) Scale 1.000U [Fl Del]
>1
2,4500000 Gli:z
52. 795 n
5.8811 n
··------,,.-----·
1· Start 2.25 GHz
Ce11ificate No: 216-97067
IffiW lOOHz
Page 6 of8
Stop 2.65 Gu
!m[i
In Collaboration with
'ZY;speag
CALIBRATION LABORATORY
Add: No.51 Xucymm Road, IIaidian District, Beijing, JOO 191, China
Tel: +86-10-62304633-2079
Fax: +86-10-62304633-2504
E·mail: cttl@chinattl.com
l Ittp://www.chinattl.cn
DASYS Validation Report for Body TSL
Date: 05.12.2016
Test Laboratory: CTTL, Beijing, China
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 835
Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: I: I
Medium parameters used: f = 2450 MHz; a= 1.963 S/111; Er= 52.81; p = I 000 kg/m 3
Phantom section: Center Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63. 19-2007)
DASY5 Configuration:
•
•
Probe: EX3DV4- SN7307; ConvF(7.22, 7.22, 7.22); Calibrated: 2/19/2016;
Sensor-Surface: 2111111 (Mechanical Surface Detection)
Electronics: DAE4 Sn771; Calibrated: 2/2/2016
Phantom: Triple Flat Phantom 5. IC; Type: QD 000 P5 I CA; Serial: 1161/1
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,
dy=5mm, dz=5mm
Reference Value= 97.17 V/m; Power Drift= 0.01 dB
Peak SAR (extrapolated)= 25.9 W/kg
SAR(l g) = 13 W/kg; SAR(lO g) = 6.14 W/kg
Maximum value of SAR (measured)= 19.6 W/kg
dB
-4.26
-B.53
-12.79
-17 .06
-21.32
0 dB= 19.6 W/kg = 12.92 dBW/kg
Certificate No: Zl6-97067
Page 7 of8
In Collaboration with
a g
CALIBRATION LABORATORY
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079
Fnx: +86-!0-62304633-2504
Ewmail; cttl@chinattl.com
Http://www.chinattl.cn
Impedance Measurement Plot for Body TSL
Trl Sll Log
50.00
>1
-~1ag 10:·oodB/
Ref
·o. ooo·as
[Fi]
2.4500000 GH2 -24.64°'9'ds
.JO. 00
30.00
20.00
10.00
o. 000
-10, 00
-20.00
-30.00
-40.00
-50.00
~~
>1
~~~~~~~~~
Ai.----------------------------- -----------,-----
s11 sm1th (R+jx) scale 1.ooou (Fl oe1J
2.4500000 GH:z
50.033 n
5.8669 n
381.1_2.--pH-
///
T ·start 2.25 GHt
Ce11ificate No: Z 16-97067
---~---
IFBW 100Hi
Page 8 of8
/"
Stop 2,65 GHz
Dlf
Calibration Laboratory of
Schmid & Partner
Engineering AG
Schweizerischer Kalibrierdienst
Service suisse d'etalonnage
Servizio svizzero di taratura
Zeughausstrasse 43, 8004 Zurich, Switzerland
Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.:
Swiss Calibration Service
SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client
BV ADT CN (Auden)
Certificate No:
EX3-3873_Sep16
CALIBRATION CERTIFICATE
Object
EX3DV4 - SN:3873
Calibration procedure(s)
QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6
Calibration procedure for dosimetric E-field probes
Calibration date:
September 1, 2016
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.
Calibration Equipment used (M&TE critical for calibration)
Primary Standards
ID
Cal Date (Certificate No.)
Scheduled Calibration
Power meter NRP
SN: 104778
06-Apr-16 (No. 217-02288/02289)
Apr-17
Power sensor NRP-Z91
SN: 103244
06-Apr-16 (No. 217-02288)
Apr-17
Power sensor NRP-Z91
SN: 103245
06-Apr-16 (No. 217-02289)
Apr-17
Apr-17
Reference 20 dB Attenuator
SN : S5277 (20x)
05-Apr-16 (No. 217-02293)
Reference Probe ES3DV2
SN: 3013
31-Dec-15 (No. ES3-3013 Dec15)
Dec-16
DAE4
SN: 660
23-Dec-15 (No. DAE4-660_ Dec15)
Dec-16
Secondary Standards
ID
Check Date (in house)
Scheduled Check
Power meter E4419B
SN: GB41293874
06-Apr-16 (in house check Jun-16)
In house check: Jun-18
PowersensorE4412A
SN : MY41498087
06-Apr-16 (in house check Jun-16)
In house check: Jun-18
PowersensorE4412A
SN: 000110210
06-Apr-16 (in house check Jun-16)
In house check: Jun-18
RF generator HP 8648C
SN: US3642U01700
04-Aug-99 (in house check Jun-16)
In house check: Jun-18
Network Analyzer HP 8753E
SN: US37390585
18-0ct-01 (in house check Oct-15)
In house check: Oct-16
Name
Function
Calibrated by:
Leif Klysner
Laboratory Technician
Approved by:
Katja Pokovic
Technical Manager
Signature
q~
~£4
Issued: September 2, 2016
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.
Certificate No: EX3-3873_ Sep 16
Page 1 of 11
Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich , Switzerland
Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Schweizerischer Kalibrierdienst
Service suisse d'etalonnage
Servizio svizzero di taratura
Swiss Calibration Service
Accreditation No.:
SCS 0108
Glossary:
TSL
NORMx,y,z
ConvF
DCP
CF
A, B,C,D
Polarization cp
Polarization S
Connector Angle
tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORMx,y,z
diode compression point
crest factor (1/duty_cycle) of the RF signal
modulation dependent linearization parameters
cp rotation around probe axis
S rotation around an axis that is in the plane normal to probe axis (at measurement center),
i.e., S = 0 is normal to probe axis
information used in DASY system to align probe sensor X to the robot coordinate system
Calibration is Performed According to the Following Standards:
a)
IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific
Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
Techniques", June 2013
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices
used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
Methods Applied and Interpretation of Parameters:
•
•
•
•
•
•
•
•
•
NORMx,y,z: Assessed for E-field polarization S = 0 (f:,; 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E -field
uncertainty inside TSL (see below ConvF).
NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
in the stated uncertainty of ConvF.
DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW
signal (no uncertainty required). DCP does not depend on frequency nor media.
PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
characteristics
Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, Dare numerical linearization parameters assessed based on
the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
media. VR is the maximum calibration range expressed in RMS voltage across the diode .
ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer
Standard for f :,; 800 MHz) and inside waveguide using analytical field distributions based on power
measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for
boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are
used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds
to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent
ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
MHz.
Spherical isotropy (30 deviation from isotropy): in a field of low gradients realized using a flat phantom
exposed by a patch antenna.
Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip
(on probe axis). No tolerance required.
Connector Angle: The angle is assessed using the information gained by determining the NORMx (no
uncertainty required ).
Certificate No: EX3-3873_ Sep16
Page 2 of 11
EX3DV4 - SN:3873
September 1, 2016
Probe EX3DV4
SN:3873
Manufactured:
Calibrated:
March 13, 2012
September 1, 2016
Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)
Certificate No: EX3-3873_Sep1 6
Page 3 of 11
EX3DV4- SN:3873
September 1, 2016
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873
Basic Calibration Parameters
Norm (uV/(V/m/)A
DCP (mV) 0
Sensor X
SensorY
SensorZ
Unc (k=2)
0.36
97.0
0.44
96.4
0.48
97.5
± 10.1 %
Modulation Calibration Parameters
UID
Communication System Name
cw
dB
0 .0
0.0
0.0
dBVµV
0.0
0.0
0.0
dB
1.0
1.0
0.00
1.0
VR
mV
133.3
148.6
148.2
Unc"
(k=2)
±2.5 %
The reported uncertainty of measurement is stated as the standard uncertainty of measurement
multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage
probability of approximately 95%.
The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).
Numerical linearization parameter: uncertainty not required.
E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the
field value.
Certificate No: EX3-3873_Sep16
Page 4 of 11
EX3DV4- SN:3873
September 1, 2016
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873
Calibration Parameter Determined in Head Tissue Simulating Media
f (MHz)c
Relative
Permittivity F
Conductivity
(Sim) F
ConvF X
ConvF Y
ConvF Z
AlphaG
Depth"
(mm)
Unc
(k=2)
750
41.9
0.89
10.26
10.26
10.26
0.38
0.80
± 12.0 %
835
41.5
0.90
9.78
9.78
9.78
0.30
1.01
± 12.0 %
900
41.5
0.97
9.66
9.66
9.66
0.45
0.80
± 12.0 %
1750
40.1
1.37
8.57
8.57
8.57
0.38
0.80
± 12.0 %
1900
40.0
1.40
8.30
8.30
8.30
0.32
0.80
± 12.0 %
2300
39.5
1.67
7.91
7.91
7.91
0.31
0.88
± 12.0 %
2450
39.2
1.80
7.42
7.42
7.42
0.32
0.80
± 12.0 %
2600
39.0
1.96
7.29
7.29
7.29
0.28
0.80
± 12.0 %
5250
35.9
4.71
5.09
5.09
5.09
0.35
1.80
± 13.1 %
5600
35.5
5.07
4.67
4.67
4.67
0.40
1.80
± 13.1 %
5800
35.3
5.27
4.76
4.76
4.76
0.40
1.80
± 13.1 %
c Frequency validity above 300 MHz of± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to± 50 MHz. The
uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity
below 300 MHz is± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency
validity can be extended to ± 110 MHz.
F At frequencies below 3 GHz, the validity of tissue parameters ( 8 and cr) can be relaxed to ± 10% if liquid compensation formula is applied to
measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (8 and cr) is restricted to± 5%. The uncertainty is the RSS of
the ConvF uncertainty for indicated target tissue parameters.
G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is
always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip
diameter from the boundary.
Certificate No: EX3-3873_Sep16
Page 5 of 11
September 1, 2016
EX3DV4- SN:3873
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873
Calibration Parameter Determined in Body Tissue Simulating Media
f (MHz)c
Relative
Permittivitv F
Conductivity
(5/m)F
ConvF X
ConvFY
ConvF Z
AlphaG
OepthG
lmml
Unc
(k=2)
750
55.5
0.96
9.73
9.73
9.73
0.42
0.87
+ 12.0 %
835
55.2
0.97
9.90
9.90
9.90
0.40
0.90
+ 12.0 %
900
55.0
1.05
9.55
9.55
9.55
0.49
0.80
± 12.0 %
1750
53.4
1.49
8.13
8.13
8.13
0.41
0.80
± 12.0 %
1900
53.3
1.52
7.85
7.85
7.85
0.40
0.80
± 12.0 %
2300
52.9
1.81
7.65
7.65
7.65
0.39
0.80
+ 12.0 %
2450
52.7
1.95
7.46
7.46
7.46
0.32
0.80
+ 12.0 %
2600
52.5
2.16
7.32
7.32
7.32
0.27
0.80
+ 12.0 %
5250
48.9
5.36
4.39
4.39
4.39
0.45
1.90
+ 13.1 %
5600
48.5
5.77
3.74
3.74
3.74
0.55
1.90
+ 13.1 %
5800
48.2
6.00
3.97
3.97
3.97
0.55
1.90
+ 13.1 %
c Frequency validity above 300 MHz of± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to± 50 MHz. The
uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity
below 300 MHz is± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency
validity can be extended to ± 11 O MHz.
F At frequencies below 3 GHz, the validity of tissue parameters (E and er) can be relaxed to± 10% if liquid compensation formula is applied to
measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (E and er) is restricted to± 5%. The uncertainty is the RSS of
the ConvF uncertainty for indicated target tissue parameters.
G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is
always less than ± 1% for frequencies below 3 GHz and below± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip
diameter from the boundary.
Certificate No: EX3-3873_Sep16
Page 6 of 11
EX3DV4- SN:3873
September 1, 2016
Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)
1.5
1.4 ·······················,······················r·····················,·······················:······················r·····················:······
..
.'
............... ..........
1.3 ...............................................................................................................................
''
.'
.'
'u
Q)
ro
''
'''
''
''
''
'''
''
······················j·······················1······················;·······················j······················ (·····················1······
1.2
'0
1. 1 --- .. ---··--··········-~---·················--·:•••.••• ••...... .••••••• f ••.•..•.••••.....••.... ; ...................... ~- -- -··················-i-----.._,
Q)
C/)
1.0
C/)
0..
()'
- ~: ..__
0 .9
Q)
0-
0.7
!,
!,
!,
T =J=-·~t==:t ~=J
+ : + +
..'
0.8
Q)
'-
LL
..
::,
- --:i
.. ------·... -------- ···-···
.. ........... ·······.......................................
................................
···~·····.
0.6 ------- ........... ... ......
.'
.'
.'
..''
..
.'..'
250 0
3000
0.5 -+---'---.L..-.L__L..._.;----1.----1...---'----L--+---'---'-----'--.L__;--i----1.----'---'---+---'---'--...J...._-'----i-'---'---'---'--...J...._-i-'----L..J
1000
500
1500
2000
f [MHz]
TEM
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)
Certificate No: EX3-3873_Sep 16
Page 7 of 11
EX3DV4- SN:3873
September 1, 2016
Receiving Pattern (), .S = 0°
f=1800 MHz,R22
f=600 MHz,TEM
- -00
--.
--- ·- -
13!;
__..
180
___
--..
., ..-
......
45
'\
,, ' o.i
•
04
·-
45
oa ' oe
.· ..
.,
315
':mi
•
•y
...
-0.5
•
Tot
- - 2io
•
[!::
.'
Roll [0 ]
50
100
•
•
...:
•==~·~:·~
·~=~.:er~~:~~·==·•:~.....
00
315
----------·-1··------------------J -----·-----------·--r·-------------······1······--------------·r··----------------·-1·-------------------1·----------.
225
0.5
. . -·
225
•
-----
135
·- ·
Tot
90
''
''
-150
-100
- 0
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)
Certificate No: EX3-3873_Sep16
Page 8 of 11
1 0
EX3DV4- SN:3873
September 1, 2016
Dynamic Range f(SARhead)
(TEM cell , feva1= 1900 MHz)
-···+·+· ·l·i-:-tlt······•···•··>-·HH·:-1--····+··-:--.. --:-·MHi· ····+··l· +H-:·>H ····· ·l-···f••:··•·:·iH·~ · ····.(•••i••
•!•Mli
·····1···1·· ·1·:-rr11······r···r··:·:·r1·:r·····:····:·-~·-rrr111······:···:··1·1·rr11······r···r··:··r·r11r1··1··,-·:·1·r:1
; i 11\ili 1 1; 1/Hii
······I. ··1-·>-t·H-:·H· · ···-:- ···l-'·<··l·:·H·!·:······ ·:···-<·+·:·M I H······l···!· ·)·l·}ViH··. ·-·:·-··' ·{··!- HH·:·-···· i ··+·l· {·l · Hl
10 4
·::.::\:\\_'.::;;:::::::!:::;::'.-:: .; '. ;/ ::::: \ :_'.:: ~~ ~- ;:;;\.·::. -: ::'. / :~:( \ :'. :::·:.~::::: :-:'. '.:'. './·::::: \ :~:::: '.:'. :!'. ~
······;···;····;·; ;·;;;······;···;· :·-:;;;;;·····;······'. ·;·;·;;;;·· ··;···;··;·;·;;·;;;·····;··-:· ;··;;·;;;·;·····;···;····;·;·;;;
roC
.·····r-·1_·1· 1·1t111···-··;···[··r ·;·rnn·····r·· :·-~·rri :~
;.·-···1···1··1·rr-r11:·····t···r·T·r-r1 rn··· ··T··r·1·T1·111
.Ql
(f)
: :,
0.
l 1 llHH l l l liiiH : i; :::li~ l 1: l!H\
..... :___ :.. : _;_;,; : :: ______ : ___ : ..' _: _:; :_:: ..... : ...:..... : :_: : : ....... :. __ : __ :_ :_; ; ;;. ______; ... : . _: 1,: :: : .•. .• :___ :__ ·.; :_::;
10 5
: : : : : : :::
: : : : : ::::
: .. : . : :::
·:
·:
: : : :: :::
: 1 : ;::::
j :i!1[[j
10 2
! : : : : :::
rrn~ li :11rr ; :rr:1rr1:11:::
;'1j[j11
i1:lf [iT!i!\J fH[!)]!
1Q·3
: : : : : i :::
' '' '
•. . i
10 1
: : : : : : :::
'.: !! !! !:
: ! : :: :::
·.····...... ·!... ·:.. :·.·.·: : : ::;..........·.·
..·:.·· ··..... ·... ·.. ·. ·.·.···
: :: ; : :
..... ... ' .. '.,.··.···...... ' ... ' ..'.'.' ' '.' ' ..... ..... .. ·
10 3
10-1
1()"·2
1fli]r ]I1Jji\i
J j J!liii :
10°
102
101
103
SAR [mW/c m3]
[!]
• I
compensated
not compensated
in
:2.
.....
UJ
-1
-2
10-3
1 0-2
10-1
100
SAR [mW/cm3]
_!J
101
102
rn
compensat ed
not compensated
Uncertainty of Linearity Assessment: ± 0.6% (k=2)
Certificate No: EX3-3873_ Sep 16
Page 9 of 11
103
EX3DV4- SN:3873
September 1 , 2016
Conversion Factor Assessment
f = 835 MHz,WGLS R9 (H_convF)
f = 1900 MHz,WGLS R22 (H_convF)
35
30
25
I~
20
15
15
10
1.oi
----
05
OO..--J.J--r-'---..--'-~-..____,._.____._,_..__~..........___.'-'-'---'-l
10
15
20
z [mm]
25
....!..J
JO
35
.. ~
-- .
~~~~.~--,-.-·~--~~1- ..LI.-
40
10
15
25
20
z (mm)
...!.]
....!..J
anoly1)ool
rreosurt'd
rrrasured
Deviation from Isotropy in Liquid
Error(~, S), f = 900 MHz
1.0
0.8
0.6
c. 0 .4
~ 0.2
0 .0
o -0.2
·i
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0 .2
0.4
0.6
0.8
1.0
Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)
Certificate No: EX3-3873_Sep1 6
30
Page 10 of 11
35
40
EX3DV4- SN:3873
September 1, 2016
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873
Other Probe Parameters
Sensor Arrangement
Triangular
Connector Angle (
25
Mechanical Surface Detection Mode
enabled
Optical Surface Detection Mode
disabled
Probe Overall Length
337 mm
Probe Body Diameter
10 mm
Tip Length
9mm
Tip Diameter
2.5mm
Probe Tip to Sensor X Calibration Point
1 mm
Probe Tip to Sensor Y Calibration Point
1 mm
Probe Tip to Sensor Z Calibration Point
1 mm
Recommended Measurement Distance from Surface
Certificate No: EX3-3873_Sep16
Page 11 of 11
1.4 mm
Calibration Laboratory of
Schmid & Partner
Engineering AG
Schweizerischer Kalibrierdienst
Service suisse d'etalonnage
Servizio svizzero di taratura
Z eughausstrasse 43, 8004 Zurich, Switze rland
Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.:
Swiss Calibration Service
SCS 0108
The Swiss Accreditation Service is one of the signatories to tlhe EA
Multilateral Agreement for the recognition of calibration certificates
Clie nt
Auden
Certificate No:
EX3-7346_Jun16
CALIBRATION CERTIFICATE
Object
EX3DV4 - SN:7346
Calibration procedure(s)
QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.vS, QA CAL-25.v6
Calibration procedure for dosimetric E-field probes
Calibration date:
June 23, 2016
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity< 70%.
Calibration Equipment used (M&TE critical for calibration)
Primary Standards
ID
Cal Date (Certificate No.)
Scheduled Calibration
Power meter NRP
SN: 104778
06-Apr-16 (No. 217-02288/02289)
Apr-17
Power sensor NRP-Z91
SN: 103244
06-Apr-16 (No. 217-02288)
Apr-17
Power sensor NRP-Z91
SN: 103245
06-Apr-16 (No. 217-02289)
Apr-17
Reference 20 dB Attenuator
SN: S5277 (20x)
05-Apr-16 (No. 217-02293)
Apr-17
Reference Probe ES3DV2
SN: 3013
31-Dec-15 (No. ES3-3013 Dec15)
Dec-16
DAE4
SN: 660
23-Dec-15 (No. DAE4-660 Dec15)
Dec-16
Secondary Standards
ID
Check Date (in house)
Scheduled Check
Power meter E4419B
SN : GB41293874
06-Apr-16 (in house check Jun-16)
In house check: Jun-18
Power sensor E4412A
SN: MY41498087
06-Apr-16 (in house check Jun-16)
In house check : Jun-18
Power sensor E4412A
SN: 000110210
06-Apr-16 (in house check Jun-16)
In house check: Jun-18
RF generator HP 8648C
SN: US3642U01700
04-Aug-99 (in house check Jun-16)
In house check: Jun-18
Network Analyzer HP 8753E
SN : US37390585
18-0ct-01 (in house check Oct-15)
In house check: Oct-16
Name
Function
Calibrated by:
Jeton Kastrati
Laboratory Technician
Approved by:
Katja Pokovic
Technical Manager
Issued: June 27, 2016
This calibration certificate shall not be reproduced except in full wi1thout written approval of the laboratory.
Certificate No: EX3-7346_ Jun1 6
1°age 1 of 38
Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
Accredited by the Swiss Accreditation Service (SAS)
Schweizerischer Kalibrierdienst
Service suisse d'etalonnage
Servizio svizzero di taratura
Swiss Calibration Service
Accreditation No. :
SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certi1r.cates
Glossary:
TSL
NORMx,y.z
ConvF
DCP
CF
A. B , C , D
Polarization 

1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y, z does not affect the E 2 -field uncertainty inside TSL (see below ConvF). NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4 .2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, 8 , C, Dare numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Ass,essed in flat phantom using E-field (or Temperature Transfer Standard for f s 800 MHz) and inside waveguide using analytical fie ld distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4 .4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. Spherical isotropy (30 deviation from isotropy1: in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds, to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required) . Certificate No: EX3-7346_ Jun1 6 Page 2 of 38 EX3DV4 - SN:7346 June 23, 2016 Probe EX3DV4 Sf\J:7346 Manufactured : Calibrated: October 13, 2014 June 23, 2016 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-7346_ Jun16 Page 3 of 38 EX3DV4- SN:7346 June 23. 2016 DASY/EASY - Parameters of Probe: EX3DV4 - SN:7346 Basic Calibration Parameters SensorX Sensor Y SensorZ Unc (k=2) 0.54 96.7 0.53 101 .9 0.48 95.7 ± 10.1 % Norm (µV/(V/m)2t DCP (mV)u Modulation Calibration Parameters UID Communication System Name dB cw .x 0 .0 0.0 .z 0.0 dB V µV 0.0 0.0 0.0 dB VR mV Unc" (k=2) 1.0 0.00 141.6 144.6 ±3.5 % 1.0 1.0 139.3 Note: For details on UID parameters see Appendix. Sensor Model Parameters C1 C2 fF 65.03 44.82 59.16 fF 492.8 332.2 456.1 v-1 T1 T2 T3 ms.v- 2 v-1 T6 ms v-2 TS ms.v- 1 36.81 35.16 38.06 15.9 9.071 8.3'1 1.208 0.595 1.06 4 .981 5.01 5.043 1.288 0.585 0.14 0.503 1.005 1.007 1.008 T4 The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2 , which for a normal distribution corresponds to a coverage probability of approximately 95%. The uncertainties of Norm X.Y,Z do not affect the E 2-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. e Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Certificate No: EX3-7346_Jun1 6 Page 4 of 38 EX3DV4- SN:7346 June 23, 2016 DASY/EASY - Parameters o•f Probe: EX3DV4 - SN:7346 Calibration Parameter Determined in Head Tissue Simulating Media f (MHz) c Relative Permittivitv F Conductivity (S/m )F Corw F X ConvF Y ConvF Z Alpha G Oepth {.i (mm) Unc (k=2) 750 41 .9 0.89 10.48 10.48 10.48 0.38 1.02 + 12.0 % 835 41.5 0.90 10.26 10.26 10.26 0 .54 0.80 + 12.0 % 900 41.5 0.97 9.90 9.90 9.90 0.35 0.95 + 12.0 % 1450 40.5 1.20 8.93 8.93 8.93 0.42 0.80 + 12.0 % 1750 40.1 1.37 8.53 8.53 8.53 0.37 0.82 + 12.0 % 1900 40.0 1.40 8. 17 8.17 8.1 7 0.33 0.80 + 12.0 % 2000 40.0 1.40 8. 14 8.14 8.1 4 0.33 0.86 ± 12.0 % 2300 39.5 1.67 7.68 7.68 7.68 0.38 0.80 ± 12.0 % 2450 39.2 1.80 7.36 7.36 7.36 0 .33 0.87 + 12.0 % 2600 39.0 1.96 7."16 7. 16 7.16 0.35 0.88 ± 12.0 % 3500 37.9 2.91 6.135 6.85 6.85 0.43 0.99 ± 13.1 % 5250 35.9 4.71 5.31 5.31 5.31 0.35 1.80 ± 13.1 % 5600 35.5 5.07 4.36 4 .36 4.36 0.50 1.80 ± 13.1 % 5750 35.4 5.22 4.fi2 4.62 4.62 0.50 1.80 + 13.1 % c Frequency validity above 300 MHz of± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is± 10, 25, 40. 50 and 70 MHz for ConvF assessments at 30. 64. 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz. the validity of tissue parameters(~ and er) can be relaxed to± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (& and er) is restricted to± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than± 1% for frequencies below 3 GHz and below± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-7346_Jun16 Page 5 of 38 EX3DV4- SN :7346 June 23, 2016 DASY/EASY - Parameters of Probe: EX3DV4 - SN:7346 Calibration Parameter Determined in Body Tissue Simulating Media f (MHz) c Relative Permittivity F Conductivity (Sim) F Con1vF X ConvF Y ConvF Z Alpha G (mm) Unc (k=2) 750 55.5 0.96 10.06 10.06 10. 06 0.53 0.80 + 12.0 % 835 55.2 0.97 9.87 9.87 9.87 0.36 1.03 + 12.0 % 900 55.0 1.05 9.91 9.91 9.91 0.44 0.90 ± 12.0 % 14 50 54.0 1.30 8. 55 8.55 8 .55 0.32 0.80 ± 12.0 % 17 50 53.4 1.49 8.22 8.22 8.22 0.38 0.86 + 12.0 % 1900 53.3 1.52 7.92 7.92 7.92 0.39 0.86 + 12.0 % 2000 53.3 1.52 8.07 8.07 8.07 0.42 0.84 ± 12.0 % 2300 52.9 1.8 1 7.66 7.66 7.66 0.43 0.83 ± 12.0 % 2450 52.7 1.95 7.55 7.55 7.55 0.47 0.80 ± 12.0 % 2600 52.5 2.16 7 ..28 7.28 7.28 0.40 0.80 ± 12.0 % 3500 51 .3 3.31 6.48 6.48 6.48 0.50 0.95 ± 13. 1 % 5250 48.9 5.36 4.58 4.58 4.58 0.50 1.90 ± 13.1 % 5600 48.5 5.77 3.:80 3.80 3.80 0.55 1.90 ± 13.1 % 5750 48.3 5.94 4 .01 4.01 4.01 0.55 1.90 ± 13. 1 % Depth " c Frequency validity above 300 MHz of± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30. 64 , 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz. the validity of tissue parameters (sand cr) can be relaxed to± 10% if liquid compensation formula is applied to measured SAR values . At frequencies above 3 GHz. the validity of tissue parameters (e and cr) is restricted to± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are detem,ined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below± 2 % for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-7346_Jun16 Page 6 of 38 EX3DV4- SN:7346 June 23, 2016 Frequency Ftesponse of E-Field (TEM-Cell:ifi1 110 EXX, Waveguide: R22) 1.5 1.4 .. ... . . ..-.... ·-. -....... - -- - --. -- . -- .... -- ...·- .. - -- ... -.·- ...... - -~. ... -... ... ........ .... -- ....... .. -· .. . . . . ... -....... -- . • , ... -- .. -. -·. -.. -- ..... •,' ..... -·. - .' ..' ..' ..' .' CJ) .' --- . -- ... -.............. -. -- ... -- ... -....... ........ .' .. .. -. -- . -- .. -...... -. .~-. .... . ro 1.2 . .. . --....... -.. -. -- .. --.. .. -- . -.. -... ---......··-.......... -- ..... .......... '' ...' ''. 1. 1 -------··· -·--·-· -----·r. --·· ---------· ·--·--·· ·;·. -·--·-·-----------··-·f: -· - - - -- - - -· - · -· · · · - - - - - ~· - - · - -· · ·• - - - - · - - -· · - · t: --··-·-··----·-·---·--1--· ·· - ---. 1.3 C/) a. 1.0 J.... . . . ......t;.... .......................l ...~..................~......................;.............. ....,..__..____... · - .... - 0.9 .............................................. '. CJ) ::, .. C, 'I .... C/) 0.8 ..' .. .. . - ...................................... ....~--.-· .. - ........ ·- ............... -.................. .. ..' 0.7 0.6 LL '-' CJ) • - ------- - -----·-····················----------------------··········· ·• ···--·· ·····-· · ·· · · ········· · ·····--·········•,o' ,,, ............. ······ ··· ····· -0 0.5 - ~.1..._1-.......1.......;...--1....__.__,_......._...--J........J_....L--L......_;.....-'-.....I........L......l....-;....._--1..--1....--'--;..........a..__"--''--+~ 500 1000 1500 2000 2500 f [MHz] ...!J R22 TEM Uncertainty of Frequenc:y Response of E-field: ± 6.3% (k=2) Certificate No: EX3-7346_Jun16 Page 7 of 38 3000 EX3DV4- SN:7346 June 23. 2016 Receiving Pattern (), 3 = 0° f=600 MHz,TEM f=1800 MHz,R22 90 90 .. 45 135 .. 18C 02 04 -. . 225 • ... iib ·.:. ,ac •• • • o;,,, o• •z o~ oa • Tot •y •z ----------·- --------------------1------------------· ··r·-----------------·1' ··-------------------r·------------------------------------- --1··--·------.. .. .. "l~ ·-------i-+------~~:*-4~-~Jt~ ...;. 00 .......A:.. -0 5 315 225 • • in 08 315 Tot 05 (!6 ... -150 .. .'' ..' -'100 .'' ''' -50 ... ..' .' .' .:.;F-'F.....-~ - .. 100 Roll[°] _J 1800 MHz Uncertainty of Axial ls;otropy Assessment:± 0.5% (k=2) Certificate No: EX3-7346_Jun1 6 Page 8 of 38 .' 50 .... 1 0 EX3DV4- SN:7346 June 23, 2016 Dynamic Range f{SARhead) (TEM ce·II , fevar= 1900 MHz) 105 104 (1J .Ql (/) :5 0.. C: 10 3 10 2 10-2 101 10° SAR [mW/cm3] _!_] [!] not com pensated co ..... ,{ o... -1 -, 1Q3 compensated . . :,·. . . ,: . .:. . ..·.·'. . . . . . ... "i'i" . . . . .. . . . . ....iii. . . ._. . . .. . ' . ' " i . . " ; · jj ·;j . .. . .. ·~,:f~:s4:.~:ii~u:t:L;4~;::; :~~:: '! ... ,.~ )) . . .. :: ~ . !! .,!,,,:_ i~ ~.'= .· ·.·, ,·.:, ,.-.~ .•• /~\ -2 10·3 10·2 10-1 100 SAR [mW/cm3] ....!J not compensated 101 102 rn compensated Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-7346_Jun1 6 J=>age 9 of 38 103 EX3DV4- SN:7346 June 23, 2016 Conversion Factor Assessment f= 835 MHz,WGLS R9 (H_convF) f = 1900 MHz,WGLS R22 (H_convF) 40 · 35 30 ., 3 0- •••.... 25 a, 20 .. Q'. 15 15 10 '0 . . . ·l 05- oo-~T" 0 -,------L.----~--_,_j -10 15 20 25 30 35 -,-L--- 40 z [mm] 10 15 J..- ---'- 20 25 z (mmJ ...!J ...!J rreasured rreasured ana tyucal Deviation fro1m Isotropy in Liquid Error (cj>, S), f = 900 MHz C: ·i 1.0 0.8 0.6 0.4 0 .2 0 .0 -0.2 315 -1 .0 -0.8 -0.6 -0.4 -0.:2 0.0 0.2 0.4 0.6 0.8 1.0 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Certificate No: EX3-7346_Jun1 6 ___J__j_J..__ 30 Page 1O of 38 35 .J.. L 40 s Schmid & Par1ner Engineering AG a g Zeughausstrasse 43, 8004 Zu rich. Switzerland Phone +41 44 245 9700, Fax +41 44 24 5 9779 i nfo@speag.com. http ://www. speag. com IMPORTANT NOTICE USAGE OF THE DAE 4 The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the fo llowing points: Battery Exchange : The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out. Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag . This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation . The package shall be marked to indicate that a fragile instrument is inside. E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets . Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure , the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements . Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. Important Note: Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. Important Note: Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. Important Note: To prevent damage of the DAE probe connector pins , use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. Schmid & Partn er Engineering TN_BR040315AD DAE4.doc 11 . 12.2009 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich , Switzerland Accredited by the Swiss Accreditation Service (SAS) Schweizerischer Kalibrierdienst Service suisse d'etalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No. : SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BV ADT CN (Auden) Certificate No: DAE4-1341 _Aug16 CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BM - SN: 1341 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: August 29, 2016 This calibration certificate documents the traceability to national standards , which realize the physical units of measurements (SI). T he measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% . Calibration Equipment used (M& TE critical for calibration) Primary Standards Keithley Multimeter Type 2001 I SN: 0810278 Cal Date (Certificate No.) Scheduled Calibration 09-Sep-15 (No: 17153) Sep-16 Secondary Standards ID# Check Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 05-Jan-16 (in house check) In house check: Jan-17 Cali brator Box V2.1 SE UMS 006 AA 1002 05-Jan-16 (in house check) In house check: Jan-17 Name Function Calibrated by: Dominique Steffen Technician Approved by: Fin Bomholt Signature Deputy Technical Manager Issued: August 29, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1341_ Aug16 Page 1 of 5 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) Schweizerischer Kalibrierdienst Service suisse d'etalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system. Methods Applied and Interpretation of Parameters • DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. • Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. • The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. • DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. • Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. • Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. • AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage • Input Offset Measurement Output voltage and statistical results over a large number of zero voltage measurements. • Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. • Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. • Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. • Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-1341_Aug16 Page 2 of 5 DC Voltage Measurement AID - Converter Resolution nominal High Range: 1LS8 = 6.1µV, full range= -100 ... +300 mV Low Range: 1LSB = 61 nV , full range= -1 ....... +3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec High Range 403.714 ± 0.02% (k=2) 403.944 ± 0.02% (k=2) 403.651 ± 0.02% (k=2) Low Range 3.98549 ± 1.50% (k=2) 4.00465 ± 1.50% (k=2) 3.99812 ± 1.50% (k=2) Calibration Factors Connector Angle 170.5 ° ± 1 ° Connector Angle to be used in DASY system Certificate No: DAE4-1341 _Aug16 Page 3 of 5 Appendix (Additional assessments outside the scope of SCS0108) 1. DC VotaQe L"meantv High Range Reading (µV) Difference (µV) Error(%) ChannelX + Input 199995.85 0.08 0.00 ChannelX + Input 20005.83 4.01 0.02 ChannelX - Input -19998.95 1.59 -0.01 ChannelY + Input 199995.85 0.07 0.00 ChannelY + Input 20002.44 0.65 0.00 Channel Y - Input -20001.07 -0.54 0.00 ChannelZ + Input 199996.01 0.46 0.00 ChannelZ + Input 20000.52 -1.20 -0.01 ChannelZ - Input -19999.96 0.74 -0.00 Reading (µV) Difference (µV) Low Range Error(%) ChannelX + Input 2001 .72 0.24 0.01 ChannelX + Input 202.27 0.36 0.18 ChannelX - Input -197.13 0.91 -0.46 ChannelY + Input 2001.81 0.44 0 .02 ChannelY + Input 200.86 -0.89 -0.44 ChannelY - Input -1 99.26 -1.07 0 .54 ChannelZ + Input 2001.64 0.30 0.01 Channel Z + Input 200.73 -1 .03 -0.51 Channel Z - Input -198.89 -0.56 0.28 2. Common mode sensitivity DASY measurement parameters : Auto Zero Time: 3 sec; Measurin q time: 3 sec Common mode Input Voltage (mV) Channel X ChannelY ChannelZ High Range Average Reading (µV) Low Range Average Reading (µV) 200 12.32 11.09 - 200 -10.1 7 -11.00 200 -6.1 7 -6.53 - 200 4.10 4.19 200 -21.37 -22. 16 - 200 21.13 20.83 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measurinq time: 3 sec Input Voltage (mV) Channel X (µV) Channel Y (µV) ChannelZ(µV) ChannelX 200 -4.1 8 -2.69 Channel Y 200 6.12 -1.73 ChannelZ 200 10.16 2.60 Certificate No: DAE4-1341 _Aug16 Page 4 of 5 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measurinq time: 3 sec High Range (LSB) Low Range (LSB) ChannelX 15983 17119 ChannelY 15927 16553 ChannelZ 16264 16639 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MQ Average (µV) min. Offset (µV) max. Offset (µ V) Std. Deviation (uV) ChannelX 1.33 0.39 2.35 0.42 ChannelY -0.53 -1.56 0.59 0.41 ChannelZ -1.44 -2.48 -0.16 0.45 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Res1stance (Typical values for information) Zeroing (kOhm) Measuring (MOhm) ChannelX 200 200 ChannelY 200 200 ChannelZ 200 200 8. Low Battery Alarm Voltage (Typical values for information) Alarm Level (VDC) Typical values Supply(+ Vee) +7.9 Supply (- Vee) -7.6 9. Power Consumpt1on (Typical values for information) Typical values Switched off (mA) Stand by (mA) Transmitting (mA) Supply(+ Vee) +0.01 +6 +14 Supply (- Vee) - 0.01 -8 -9 Certificate No: DAE4-1 341 _Aug16 Page 5 of 5 s Schmid & Partner Engineering AG a g Zeughausstrasse 43, 8004 Zurich. Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com IMPORTANT NOTICE USAGE OF THE DAE 4 The DAE unit is a delicate , high precision instrum«:!nt and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out. Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The paclnnector pins, use great care when installing the probe to the DAE. Carefully connect thE! probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the coninector. The same care shall be used when disconnecting the probe from the DAE. Schmid & Partner Engineering TN_BR040315AD DAE4.doc 11 .12.2009 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'etalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No. : Accredited by the Swiss Accreditation Service (SAS) SCS 0108 The Swiss Accreditation Service is one of the signatories to tlile EA Multilateral Agreement for the recognition of calibration certificates Client Auden Certificate No: DAE4-905_Jun16 !CALIBRATION CERTIFICATE Object DAE4 - SD 000 004 IBK - SN: 905 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: June 22, 2016 T his calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probab ility are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory faci lity: environment temperature (22 ± 3)°C and humidity < 70% . Calibration Equipment used (M&TE critical for calibration) Primary Standards Keithley Multimeter Type 2001 I SN: 0810278 Cal Date (Certificate No.) Scheduled Calibration 09-·Sep-15 (No: 17153) Sep-16 Check Date (in house) Scheduled Check Secondary Standards ID# Auto DAE Calibration Unit SE UWS 053 AA 1001 05--Jan-16 (in house check) In house check: Jan-17 Calibrator Box V2.1 SE UMS 006 AA 1002 In house check: Jan- 17 Name Function Calibrated by: Dominique Steffen Technician Approved by: Fin Bomholt 05--Jan-16 (in house check) Signature Deputy Technical Manager Issued: June 22, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-905_Jun 16 Page 1 of 5 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) Schweizerischer Kalibrierdienst Service suisse d'etalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No. : SCS 0108 The Swiss Accreditation Service is one of the signatories to tlhe EA Multilateral Agreement for the recognition of calibration certificates Glossary DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system. Methods Applied and Interpretation of Pairameters • DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrumEmt traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. • Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. • The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. • DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. • Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. • Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. • AD Converter Values with inputs .shorted: Values on the internal AD converter corresponding to zero input volta~Je • Input Offset Measurement Output voltage and statistical results over a large number of zero voltage measurements. • Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. • Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. • Low Battery Alarm Voltage: Typical value for information . Below this voltage, a battery alarm signal is generated. • Power consumption: Typical valu«3 for information. Supply currents in various operating modes. Certificate No: DAE4-905_Jun16 Page 2 of 5 DC Voltage Measurement AID • Converter Resolution nominal HighRange: 1LSB= 6.1µV , tullrange= -100 .. .+300mV Low Range: 1LSB = 61 nV . full range= -1 . .... .. +3mV DASY measurement parameters: Auto Zero Time: 3: sec; Measuring time: 3 sec High Range 404.683 ± 0.02% (k=2) 405.232 ± 0.02% (k=2) 404.815 ± 0.02% (k=2) Low Range 3.98074 ± 1.50% (k=2) 4.00183 ± 1.50% (k=2) 3.99763 ± 1.50% (k=2) Calibration Factors Connector Angle 269.0 Connector Angle to be used in DASY system Certificate No: DAE4-905_Jun16 Page 3 of 5 ±1 Appendix (Additional assessments outsidle the scope of SCS0108) 1. DC Vo ItaQe L.meanty High Range Reading (µ.V) Difference (µ V) Error(%) ChannelX + Input 199992.4::l - 1.76 -0.00 ChannelX + Input 20001.63 1.32 0.0 1 ChannelX - Input -19999.90 2.02 -0.01 ChannelY + Input 199987.7El -6.61 -0.00 ChannelY + Input 19995.86 -4.49 -0.02 ChannelY - Input -20000.22, 1.57 -0.01 ChannelZ + Input 199992.3~) -2.00 -0.00 ChannelZ + Input 19995.03 -5.12 -0.03 ChannelZ - Input -20000.4B 1.42 -0.01 Reading (µ V) Difference (µV) Low Range Error(%) ChannelX + Input 2000.08 0.04 0.00 ChannelX + Input 200.55 0.07 0.03 ChannelX - Input -199.28 -0.03 0.02 ChannelY + Input 2000.27 0.08 0.00 ChannelY + Input 200.65 -0.12 -0.06 ChannelY - Input -199.27 -0. 17 0.08 ChannelZ + Input 2000.30 0.24 0.0 1 ChannelZ + Input 199.95 -0.61 -0.31 ChannelZ - Input -199.92 -0.62 0.31 2. Common mode sensitivity OASY measurement parameters: A uto Zero T1me: 3 sec; Measu nnq time: 3 sec Common mode Input Voltage (mV) ChannelX ChannelY Channel Z High Range Average Reading (µV) Low Range Average Reading (µV) 200 8.82 7.40 • 200 -7.07 -8.74 200 8.09 7 .82 · 200 -8.60 -8.90 200 1.50 1.30 · 200 -2.84 -2.92 3. Channel separation DASY measurement parameters: Auto Zero T1me: 3: sec; Measunnq time: 3 sec Input Voltage (mV) Chanm:!I X (µV) Channel Y (µ V) Channel Z (µV) ChannelX 200 5.88 -1 .06 ChannelY 200 9..49 6.99 Channel Z 200 9 .. 56 7.65 Certificate No: DAE4-905_Jun16 Page 4 of 5 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec· Measuring time· 3 sec High Range (LSB) Low Range (LSB) ChannelX 15898 16839 Channel Y 16137 14613 ChannelZ 16368 15992 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MQ Average (µV) min. Offaet (µV) max. Offset (µV) Std. Deviation (uV) ChannelX -4.09 -4.B5 -2.84 0 .31 ChannelY -0.23 -1.76 0.56 0.38 ChannelZ -0.45 -1.77 1.62 0.54 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. nput Res1stance (Typical values for information) Zeroing (kOhm) Measuring (MOhm) ChannelX 200 200 ChannelY 200 200 Channel Z 200 200 8. L ow Battery Al arm V0 Itage Typical values (Typical values for information) Alarm Level (VDC) Supply(+ Vee) +7.9 Supply (- Vee) -7.6 9. p ower C onsump· 10n (Typical values for information) Typical values Switched off (mA) Stand by (mA) Transmitting (mA) Supply(+ Vee) +0.01 +6 + 14 Supply (- Vee) - 0.01 -8 -9 Certificate No: DAE4-905_Jun 16 Page 5 of 5 FCC SAR Test Report Appendix D. Photographs of EUT and Setup Report Format Version 5.0.0 Report No. : SA170512W003 Issued Date : May 22, 2017

Download: Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Mirror Download [FCC.gov]Z6200CA LTE OBDII Hotspot RF Exposure Info SAR Report-2 ZTE Corporation
Document ID3426832
Application IDk96e8VlmbGVTdTocpcUjtg==
Document DescriptionSAR Report-2
Short Term ConfidentialNo
Permanent ConfidentialNo
SupercedeNo
Document TypeRF Exposure Info
Display FormatAdobe Acrobat PDF - pdf
Filesize334.16kB (4176975 bits)
Date Submitted2017-06-14 00:00:00
Date Available2017-06-15 00:00:00
Creation Date2017-06-13 16:09:04
Producing SoftwareAdobe Acrobat Standard DC 15 Paper Capture Plug-in
Document Lastmod2017-06-13 16:28:47
Document TitleSAR Report-2
Document CreatorPDFCreator Version 1.7.3
Document Author: amqian

Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : No
Encryption                      : Standard V1.2 (40-bit)
User Access                     : Print, Modify, Annotate, Fill forms, Extract, Assemble, Print high-res
Author                          : amqian
Create Date                     : 2017:06:13 16:09:04+08:00
Modify Date                     : 2017:06:13 16:28:47+08:00
Subject                         : 
Has XFA                         : No
XMP Toolkit                     : Adobe XMP Core 5.6-c015 84.159810, 2016/09/10-02:41:30
Format                          : application/pdf
Creator                         : amqian
Description                     : 
Title                           : SA170512W003_LTE OBDII Hotspot_Z6200CA_FCC SAR_Report
Creator Tool                    : PDFCreator Version 1.7.3
Metadata Date                   : 2017:06:13 16:28:47+08:00
Keywords                        : 
Producer                        : Adobe Acrobat Standard DC 15 Paper Capture Plug-in
Document ID                     : uuid:db94bedf-9097-4b0a-b28e-b4a1823c8983
Instance ID                     : uuid:0844d6ac-caef-4a4b-ab1f-42671dbf36d6
Page Count                      : 83
EXIF Metadata provided by EXIF.tools

Facebook Twitter Google+ RSS © FCCID.io 2018