UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.

MAXWEST INTERNATIONAL LIMITED. Mobile Phone

Page 1 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 2 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 3 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 4 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 5 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 6 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 7 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 8 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 9 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 10 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 11 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 12 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 13 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 14 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 15 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 16 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 17 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 18 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 19 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 20 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 21 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 22 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 23 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 24 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 25 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 26 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Page 27 of UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.

PROBE CALIBRATION CERTIFICATES
w m
oS incotsbontionvith «J MR _ ::fi
TTVL s _p e 2 9 _ iss ONAS :
Soigmg~  calisration e zy causrktion
1 Ro, Haldan Distict Bmz 10019 China m chas Losro
(aaats *
Client BACL Certificate No: — Z18—60353
CALIBRATION CERTIFICATE
Object Exsovs — SN:zoz0
Calbration Procedure(s) Erzi—00001
Callbration Procedures for Dosimatric E—field Probes
Calibration date: September 30, 2018
This callbration Certificate documents the traceabilty to national standards, which realize the physical units of
measurements(1). The measurements and the uncertainties with confidence probabilty are given on the following
pages and are part ofthe cortficate.
All calibrations have been conducted in the closed laboratory facilty: environment temperature@zs3} and
humidity«70%.
Galibration Equipment used (M&TE criical for callbration)
Primary Standards 1D # _ Gal Dale(Galibrated by, Gertiicate No Scheduled Galibration
Power Meter — NRP2 | 101919 20—Jun—18 (GTTL, No.J18X05032) Juno
Power sensor .NRP—Z01.| 101547 20—Jun—18 (CTTL, No.118X085032) Jun—10
Power sensor NRP—291. | 101548 20—Jun—18 (GTTL, No.J18X05032) Jun—19
Reference10dBAttenuator | 18N50W—1048 — 08—Feb—18(CTTL, NoJ18X0O1133) Feb—20
Reference20dBAttenuator | 18N50W—2008 — 09—Feb—18(CTTL, No.J18X01132) Feb20
Reference Probe EXSDV4 | SN 3846 25—Jan—18(SPEAGNo.EX3—3846_Jan18) .. Jan—10
paes sN777 15—Dec—17(SPEAG, No.DAE4—777_Dect7) . Dec—18
Secondary Standards n# Cal Date(Calibrated by, Certficate No.) ... Scheduled Calibration
SignalGeneratorMG3700A | 6201052605 .. 21—Jun—18 (CTTL, No.J18X05033) Jun—19
Network Analyzer E8071C | MY46110873___14—Jan—18 (CTTL, No.J18X00561) Jan—19
[ Name Function Signature
Satierated by: Yu Zongying SAR Test Engineer é,v«%
Reviewed hy Lin Heo SAR Test Engineer R qffif M
Approved by Qi Dianyuan SAR Project Leader oiz __—
Issued: October 09, 2018
| This calibration certiicate shall not be reproduced except in full without writen approval of the laboratory.
Certifcate No: Z18—60353 Page i of 11
To: sne—oaasotessasts
Emil: exlchinatlcom
Glossary:
TSL tissue simulating liquid
NORMcyz sensitvity in free space
ConyF sensitvity in TSL / NORMx. yz
DCP diede compression point
or crest factor (1/duty_cycle) of the RF signal
ABCD modulation dependent linearization parameters
Polarization ® @ rotation around probe axis
Polarization 6 8 rotation around an axis that is in the plane normal to probe axis (at measurement canter),
8=0 is normal to probe axis
Connector Angle _ information used in DASY system to align probe sensor X to the robot coordinate system
Calibration is Performed According to the Following Standards:
a) IEEE Std 1528—2013, ‘IEEE Recommended Practice for Determining the Peak Spatia—Averaged
Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:
Measurement Techniques‘, June 2013
b) IEC 62209—1, ‘Measurement procedure for the assessment of Specific Absorption Rate (SAR) from
hand—held and body—mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)‘,
July 2016
) IEC 62209—2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication
devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)®, March
2010
d) KDB 865564, ‘SAR Measurement Requirements for 100 MHz to 6 GHz"
Methods Applied and Interpretation of Parameters:
* NORMx y,z: Assessed for E—field polarization 8=0 (fs900MHz in TEM—cell; > 1800MHz: waveguide)
NORMx yz are only intermediate values, ie., the uncertainties of NORMxy,z does not effect the
E" —feld uncertainty inside TSL (see below ConvF)
+ NORM(Mcy.z= NORMy,z" frequency_response (see Frequency Response Chart). This
linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
frequency response is included in the stated uncertainty of ConvF.
* DCPxy,2: DCP are numerical linearization parameters assessed based on the data of power sweep
(no uncertainty required). DCP does not depend on frequency nor media.
* PAR: PAR is the Peak to Average Ratlo that is not calibrated but determined based on the signal
characteristics
* Auyz Buyz: CoyzVRxy.2AB.C are numerical linearization parameters assessed based on the
data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
media, VR is the maximum callbration range expressed in RMS voltage across the diode.
* ConvF and Boundary Effect Parameters: Assessed in flat phantom using E—field (or Temperature
Transfer Standard for fs800MHz) and inside waveguide using analytical feld distributions based on
power measurements for f >800MHz. The same setups are used for assessment of the parameters
applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given.
These parameters are used in DASY4 software to improve probe accuracy close to the boundary.
The sensitivity in TSL corresponds to NORMx y.2" ConvF whereby the uncertainty corresponds to
that given for ConvF. A frequency dependent Cony is used in DASY version 4.4 and higher which
allows extending the validity from:50MFz to:100MHz.
* Spherical isotropy (3D deviation from isotropy); in a field of low gradients realized using a flat
phantom exposed by a patch antenna.
* Sensor Offsct: The sensor offset corresponds to the offset of virtual measurement center from the:
probe tip (on probe axis). No tolerance required
* Connector Angle: The angle is assessed using the information gained by determining the NORMs
(no uncertainty required)
Cortificate No: 718—60353 Page 2 of 11
i w S in Coliberntion vith
@TTL s p_e a q
\\iigmmzze~— CALIERATIONLABORATORY
Tok »86—10
Eomal ut
Road, Haldian Disict Beling, 100191, China
Fae +86—10—62504633—2504
HMipZhcwwchinalen
Probe EX3DV4
SN: 7329
Calibrated: September 30, 2018
Calibrated for DASY/EASY Systems
(Note: non—compatile with DASY2 system!)
Certificate No: Z18—60353 Pages of 11
oS in colberitionuith
@7 TL M
Cmm CALIBRATION LABORATORY
Alds No.S1 Xveyuan Road, Haidian Distict Beling, 100191; Ching
Tok «6—l0.m0ienaste . Facc one—dosasoiensasts
Enuil: tl@chinatlcom Hipshwsouchinatlen
DASY/EASY — Parameters of Probe: EX3DV4
Basic Calibration Parameters
— SN: 7329
Sensor K Sensor Y Sensor Z Une (ke2)
Norm(pVi(VimY) o48 0.40 47 £10.0%
DCP(mV)® 98.8 1062 | 99.1
Modulation Calibration Parameters
UID _ | Communication A a c b va Une
System Name dB dBipV ds mV (ke2)
o cw x |oo _|o0 10 0.00 __| 1624 _| £2.8%
vy__[oo _|oo 10 1476
2 0.0 0.0 11.0 158.5
Corresponds to a coverage probability of approximately 95%
The reported uncertainty of measurement is stated as the standard uncertainty of
Measurement multiplied by the coverage factor k=2, which for a normal distribution
A The uncertainties of Norm X, Y, Z do not affect the E—field uncertainty inside TSL (see Page 5 and Page 6).
® Numerical inearization parameter: uncertainty not required.
©Uncertainly is determined using the max. dviation from linear response applying rectangular distribution
and is expressed for the square of the field value
Certificate No: 18—60383 Page 4 of i
in Cotaboration wih
causramion Lasorarory
é—‘TTl: s _ p e a g _
Add: No.S1 Xueyuan Road, Hadian Disvict,Beling. 100191, China
Tek «ne—1—azsdress2st2
Emal: clachinant com Je
Fax: +86—10—ea30r63—2504
DASY/EASY — Parameters of Probe: EX3DV4 — SN: 7329
Calibration Parameter Determined in Head Tissue Simulating Media
m a
tuble® Fei:i::::;y — c""‘:;f:;":y ConvFX | ConvE¥ | ConvF 2 | Alpha® D(::’r:‘") :::';';
750 a0 se iooi | jooi | jooi | 040 | 080 | £121%
soo as CBd gss | s6s | ass | 016 | 130 | £121%
1750 a0.1 137 a3s | s3s | 635 | om | 105 | +121%
~18v0 400 140 si0 | aio | 810 | 030 | 085 |+121%
2450 30.2 1.80 7.62 762 7.62 0.64 0.70 _| £12.1%
2600 se0 196 Tss | 73e | 7se | oso | on | £121%
5200 360 456 as2 | s52 | s52 | o4s | 120 | +133%
sa00 35.0 are sz | 528 | 52e | 045 | 120 | 2133%
seoo 355 s07 am | anm | «m | oso | 120 | +193%
seo0 353 s27 46e | 46e | 468 | os0 | 150 | £133%
© Frequency valdity above 300 MHz of 100M only applies for DASY vé.4 and higher (Page 2), else t is restrcted to
+50MHz. The uncertainty is the RSS of ConvE: uncerlainty at calbration frequency and the uncertainty for the indicated
frequency band. Frequency vality below 300 MHz is + 10, 25, 40, 50 and 70 Miz for ConvE: assessments at 30, 64, 128,
150 and 220 MHiz respectively. Above 5 GHz frequency valdity can be extended to + 110 MHz.
"Atfrequency below 3 GHz, the validty of issue parameters (t and 0) can be relaxed to +10% ifliquid compensation
formula is applied to measured SAR values. At frequencies above 3 GHz, the valldty of issue parameters (¢ and 0) is
restrcted to £5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tssue parameters
@AlphalDepth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary
effect ater compensation is always less than + 1% for frequencies below 3 GHz and below * 2% for the frequencies
between 3—6 GHz at any distance larger than halfthe probe tip diameter from the boundary.
Certificate No: 718—60353
Page s of 11
!\[: in Colsborationwith
s p e a g
‘/ cAusranon tasorarory
Add: No.S1 Xueyuan Road, Hadion Distric Hcling, 100191, China
"Teh «to—106250160.2512 . Favi eB I040iG33—2s0H
Emal: tl@shinattcom tpenowchination
DASY/EASY — Parameters of Probe: EX3DV4 — SN: 7329
Calibration Parameter Determined in Body Tissue Simulating Media
abe F;:'I::“:I:y; c""j:f:‘)’i“’ ConvF X | ConvFY | ConvE Z | Alpha® D(::’r:; (l:('fz')'
Tso 555 use __| i6023 | jo2s | i023_| 640 _| 080| +12.1%
2oo s50 105 are | a7e |_ars _| oz3 | 125 | 2121%
Trso saa 149 0s | _sos _| _a05_| 025| 1.05_| =121%
1900 53.3 152 7.70 7.70 7.70 0.21 1.15 +12.1%
2a50 s27 195 Tar _| 747 _| 147 _| ose | o83 | 2121%
2600 525 216 7.12 712 LAF 0.65 0.72 £12.1%
s200 400 5.30 ase | as2 | 492 | 050 | 150 | £133%
5300 48.9 5.42 4.79 4.79 4.79 0.50 1.50 +18.3%
seoo 485 577 ane | a14 | 414 | os0 | 140 | 133%]
seoo | _ 462 £.00 aar | 437 | 437 _| os0 | 136 | 123%
© Frequency validty above 300 Miz of +100MHz only apples for DASY vd.4 and higher (Page 2}, else itis restricted to
+50MHz. The uncertainty is the RSS of Conv uncertainty at callbration frequency and the uncertainty for the indicated
frequency band. Frequency valdty below 300 MFiz is + 10, 25, 40, 50 and 70 Mz for ConvE assessments at 30, 64, 128,
150 and 220 Miz respectively. Above 5 GHz frequency valdity can be extended to + 110 MHz.
*At frequency below 3 GHz, the validty of tissue parameters (t and 0) can be relaxed to +10% if liquid compensation
formula is applled to measured SAR values. At frequencies above 3 GHz, the valldty of issue parameters (c and 0) is
restreted to £5%. The uncertaity is the RSS of the ConvE: uncertainty for indicated target tissue parameters.
@AlphaDepth are determined during calbration, SPEAG warrants that the remaining deviation due to the boundary
effect ater compensation is always less than + 1% for frequencies below 3 GHz and below + 2% for the frequencies
between 3—6 GHz at any distance larger than half the probe tip diameter from the boundary.
Cortificate No: 718—60383 Page 6 of 1
In Callsboretion with
e= 7 7 s p e a q ___
$ e a
causranon tasoratory
Add: No 31 Xucyuan Rood, Hidian District Beljing, 100191; China
Tel »ac—1o—czs0re03.25t2 ienss
E—mail: ctl@chinatlcom fopolhnwuchinatl en
Frequency Response of E—Field
(TEM—Cell: ifi110 EXX, Waveguide: R22)
Frequency response (normalized)
0 500 1000 1500 2000 2500 3000
Cz f [MHz s
TEM MHe] Rz’{
Uncertainty of Frequency Response of E—field: £7.4% (k=2)
Centificate No: 718—60353 Page 7 of 11
TT sg es a
Add:NoS1 Xueyuan Road, Haidian Dive 100191, China
Tek »be—10—ga30te33.2812 Fix: 8 enraso
Emait tl@chinart com Unpuwwsschinatl on
Receiving Pattern (®), 0=0°
f=600 MHz, TEM f=1800 MHz, R22
Erora®)
ooo 4
so o so 100
Roll
(—»— 100MHz +—6OOMz __—*~ 1800MHz __—+— 2500MHz)
Uncertainty of Axial Isotropy Assessment: +1.2% (k=2)
Certificate No: Z18—60383 Page # of 11
" in Coloborationwith
T TL z1 _p_e s a._ .
cauBrAnon Lanoratory
Add: No.S1 Xusyuan Road. Haidian Distict Bejing, 100191; China
Tol +86—10—6aa0r322512 ... ravceRe—IO. 23046332504
Eemall ctliichinatkcom Hhiphinowchiatl c
Dynamic Range f(SARnead)
(TEM cell, f= 900 MHz)
Input Signal[yV)
10° 10‘ 10° 10‘
SAR[mW/cm‘]
~#— compent
10 10
18° 10‘
SARImWicm‘
—#—Inot compensated —#— compensated
Uncertainty of Linearity Assessment: 20.9% (k=2)
Certificate No: 218—60353 Page 9 of 11
§7TTLs" 6 e a q _
causranion Lagoratory
Add: No.31 Xueyuan Rood, Haidian District, eling. 100191, China
Toh te—rensoressasie ... receseioanniemsaesn
E—mil ctl@ctinatcom Iiplswoscchinatlcn
Conversion Factor Assessment
1=750 MHz, WGLS R9(H_convF) _ f=1750 MHz, WGLS R22(H_convF)
ase — — | uo — —
10
ce
os
o«
o2
zAis
«10 came oo aso coze o aze cce ote om 10
Uncertainty of Spherical Isotropy Assessment; £3.2% (K=2)
Certificate No: 218—60383 Page 10 of 11
TT sw e%a a _
causranon tasorarory
Add: No.S1 Xueyuan Road, oidian Disvict, Bciing, 100191, China
Te «se—i6ezsotessst2 se—ioezsonszaso:
E—mall etlchinatlcom Mipu/howscchinatl on
DASY/EASY — Parameters of Probe: EX3DV4 — SN: 7329
Other Probe Parameters
| Sensor Arrangement Triangular
| Connector Angle (*) 44.7
Mechanical Surface Detection Mode enabled
Optical Surface Detection Mode disable
Probe Overall Length 337mm
Probe Body Diameter 10mm
Tip Length 9mm
Tip Diameter 2.5mm
Probe Tip to Sensor X Calibration Point 1mm
Probe Tip to Sensor Y Calibration Point 1mm
Probe Tip to Sensor Z Calibration Point 1mm
Recommended Measurement Distance from Surface | 1.4mm
Certificate No: 218—60383 Page 11 of 1t
DIPOLE CALIBRATION CERTIFICATES
Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughavsstrasse 43,8004 Zurich,Swbzeriand
Schwrizoricher Kalbriersienst
gg Stniceauisse #stalomage
Sorvicl sviszero i tratura
$ snios Cattoraton Service
Acorested by t Suis Acrestaton Savicn (SA8) Accredtation io: SCS 0108
The Suis Acereditaton Servics is one ofthe signateries to the EA
Mutitaterat Agreementfo the rocogrition of catiration centicates
ctem . BACL certicats no: D750V3—1167_Nov16
CALIBRATION CERTIFICATE I
Obieet brsova— SN:11e7
Gattraton procecurets OA CAL—06.v9
Callbration procedure for dipole validation kits above 700 MHz
Caltraion date November 08, 2016
Ti caltraion cerifcato documonts the raceatliy to raoralstandards, whch eatze t physical ts o measiromonts(81) |
The measurements and the uncorainios with eontide n probsbiy an given on t {oloning pages and aropar of ha contate
Al caltrations have bean corductd in thoclasnd laboraloy acl: endronmonttomporature (2 a ) C and humidiy < 70%
Caltraton Eipment used (MBTE crfeafr atbcabion}
pimary Standarts |o# Calbate (Gortiematio) Scnedided Catbraton
Pover meve yee sn rowye o6 Aprs (ie—2rr—orzsavee00) beeir
Poser seaso: NP zo1 s tososs o6 t0r—18 (o.2rz—0zz00) heear |
| pone sensornme—zo1 | an: tosaes 06 Anr1 (No.2rr—ca000) heerr
Relerence 20 dB Atorsater | sn—sose eon 05 Apr—18 (lo.2tr—az000) hoeir
| Troe 1t mimate contunaton . | s—sorr.2rosser . osaeis tho. 21702009) Aeerr
Relererce Probs ©GDV4 | se zow 16 Jun—16 (o. E7300 Juntd) Jind?
oags sn 60 30 tee—18 No.DAEA01_Bects) Brors
Seconday Standards Jn « Check Date t rouse) senedides Creck
Poner mater EPM—<25.4 08
Impedance, transformed to feed point
Retum Loss
Antenna Parameters with Body TSL
General Antenna Parameters and Design
Electical Delay (one cirection) 1033ns
Alter long term use with 100W radiated power, only a slight warming of the cipole near the feedpoint can be measured.
The dipole is made of standard sermiigid coaxial cable. The center conductor of the feeding Ine is drecty connected to the
secand arm of the dipole. The antenna is therefore short—circuted for DC:—signals. On some ol the dipoles, small end caps
are added to the dipole arms in order to improve matching when loaded according to the postion as explained in the
‘Measurement Conditions® paragragh. The SAR data are not affected by this change. The overall diole length is sil
sceording to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the
feedpoint may be damaged.
Additional EUT Data
[Nansescreasy __________] wee
Ccorerin.soe
Corticate No: D7S0V3—1167_Novi6 Page 4 of 8
DASY5 Validation Report for Head TSL
Date: 08.11,2016
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 — SN:1167
ID 0 — CW; Frequency: 750 MHz
750 MHz: a=0.92 S/m; a, = 41. 1; p = 1000 kg/m
lt Section
Measurement Stundard: DASY5 (IEEE/AIEC/ANSI C63.19—201 1
DASY52 Configuration:
* Probe:
X3DV4 — SN7349; ConvF(10.07, 10.07, 10.07); Calibrated: 15.06.2016;
* Sensor—Surface: 1.4mm (Mechanical Surface Detection)
* Electronies: DAE4 Sn601; Calibrated: 30.12.2015
* Phantom: Flat Phantom 4.9L; Type: QDOOOP49AA:; Serial: 1001
); SEMCAD X 14.6.10(7372)
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: dx=Smm, dy=Smm, dz=Smm
Reference Valu .22 V/m: Power Drift =0.01 dB
Peak SAR (extrapolated) = 3.17 W/kg
SAR(I g) =2.12 Wike: SAR(IO g)= 1.38 We
Maximum value of SAR (measured) = 2.82 Wike
4B
220
~4.40
5.60
<11.00
0 dB = 2.82 W/ke = 4.50 dBW/ke
Certicate No: D750V3—1167_Novt6 Page 5 t 8
Impedance Measurement Plot for Head TSL
a new z01e
iss
ber
w & A
ene on _ uoo _ cbzngr  %/
Apptoved by: Liu We Deputy Director of SEM Department. ,:Ql q
Issued: October 27, 2016
This calibration certficate shall not be reproduced excapt in full without witten approval of the Iaboratory.
Certificate No: 16—97196 Page 1 of s
* in Calsboration win
T TL
caumramon LaoRrarory
Add: NoSH Xueyuam Road, Meidimn Oc Being 100191 Chiw
Tok ~K6—10—i2sided207 . x sai—l—ia3dinisastt
femall ctl@chinanl com i hrwscctioatt on
Glossary:
TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMy.z
NA not applicable or not measured
Calibration is Performed According to the Following Standards:
a) IEEE Sid 1528—2013, "IEEE Recommended Practice for Determining the Peak
Spatial—Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless
Communications Devices: Measurement Techniques®, June 2013
b) IEC 62209—1, "Procedure to measure the Specific Absorption Rate (SAR) For hand—held
devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)*, February
2005
c) IEC 62209—2, ‘Procedure to measure the Specific Absorption Rate (SAR) For wireless
communication devices used in close proximity to the human body (frequency range of
30MHz to 6GHz)®, March 2010
d) KDBS65664, SAR Measurement Requirements for 100 MHz to 6 GHz:
Additional Documentation:
e) DASY4/5 System Handbook
Methods Applied and Interpretation of Paramoters:
* Measurement Conditions: Further details are available from the Validation Report at the end
of the certificate. All figures stated in the certificate are valid at the frequency indicated.
* Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
point exactly below the center marking of the flat phantom section, with the arms oriented
parallel to the body axis.
* Feed Point Impedance and Return Loss: These parameters are measured with the dipole
positioned under the liquid filled phantom. The impedance stated is transformed from the
measurement at the SMA connector to the feed point. The Return Loss ensures low
reflected power. No uncertainty required.
+ Electrical Delay: One—way delay between the SMA connector and the antenna feed point.
No uncertainty required.
+ SAR measured: SAR measured at the stated antenna input power.
+ SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
connector.
* SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the
nominal SAR result
The reported uncertainty of measurement is stated as the standard uncertainty  of
Measurement multiplied by the coverage factor k=2, which for a normal distribution
Corresponds to a coverage probability of approximately 95%.
Cenlficate No: 216—97196 Page 2 of%
Add: No S1 Xueyuan Rood, Haidian Disrit Beijng. 100191, China
Tek at6—10.60304633—2000 ... ucsO 4001632504
C—mai: ctl@chinat com Higphnnschinatln
Measurement Conditions
DASY system confiquration. asfar as not gven on page 1
DASY Version pasvse s20.0.1258
Extrapolation Advanced Extrapolation
Phantom Triple Flat Phantom 5.10
Distance Dipole Genter — TSL 10 mm wih Spacer
Zoom Scan Resolution ds, dy, dz = 5 mm
Frequency 1900 Nz a 1 MHz
Head TSL parameters
The folowing parameters and calculations were applied
Temporature Pormitivity Conductivity
Nominal Head TSL parameters 220°0 100 140 mhoim
Measured Head TSL parameters @ao#02‘c 40126 % 1.39 mhoim +6 %
Head TSL temperature change during test .. <1.0 °C — —
SAR result with Head TSL
SAR averaged over 1_cm"_(f g) of Head TSL Condiion
SAR measured 250 mW input power 10.0 mW1 g
SAR for nominal Head TSL parameters normalized to 1W .. | 40.3 mW 9 £20.8 % (k=2)
SAR averaged over 10 cm" (10.g) of Head TSL Condiion
SAR measured 250 mW input power 525 mW/g
SAR for nominal Head TSL parameters normalized to 1W ... | 21.4 mW /g 2204 % (ke2)
Body TSL parameters
The follwing parameters and calculations were applied
Temperature Permitivity Conductivity
Nominal Body TSL parameters 220°0 saa 1.52 mhoim
Measured Body TSL parameters gzo02)‘c sas£6% 1.50 mhoim £6%
Body TSL temperature change during test| .. <1.0°C —— —
SAR result with Body TSL
SAR averaged over 1_cnr‘_(1 g) of Body TSL Condiion
SAR measured 250 mW input power 102mW19
SAR for nominal Body TSL parameters normalized to 1W ... | 41.t mW q £20.8 % (ke2)
SAR averaged over 10 cm‘. (10 g) of Body TSL Condition
SAR measured 250 mW input power 5.40 mW/g
SAR for nominal Body TSL parameters normalized to 1W ... | 21.7 mW /9 £20.4 % (K=2)
Certificate No: 216—97196 Page s ofs
r\w in Colaboration with
m®7°7TJ, s _p_e _ a g _ __
Add: No.51 Xueswan Road, Haidia Disrict Beling. 100191 China
Tok «06—10—62501632—2000 ... P en l boi€inastt
E—mall ctl@chinatlcom Hopshwwnchinatlen
Appendix
Antenna Parameters with Head TSL
| impedance, transtormed to fead point so.in+ «.370
Return Loss —27208
Antenna Parameters with Body TSL
Impedance, transformed to feed point asan+a 770
Retum Loss —25.008
General Antenna Parameters and Design
Elecirical Delay (one direction) 1.304 ns
Affer long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can
be measured.
The dipole is made of standard semiigid coaxial cable. The center conductor of the feeding line is directly
connected to the second arm of the dipole. The antenna is therefore short—circuited for DC—signals. On some
of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded
according to the position as explained in the Measurement Conditions" paragraph. The SAR data are not
affected by this change. The overall dipole length is stil according to the Standard
No excessive force must be applied to the dipole arms, because they might band or the soldered
connections near the feedpoint may be damaged.
Additional EUT Data
Manufactured by seeac
Centificate No: Z16—97196 Paged of s
Ti ies _
ze
causranow Laporarory
Add: No.S1 Xueyuan Rood, Haidian Distric Beijng 100191, China
Tel +86—1062301003—2070 ... Tw «te—ld.entoim2s0¢
E—mal: cl@ichinatl.com Miphinowchinatlen
DASYS Validation Report for Head TSL Date: 10252016
Test Laboratory: CTTL, Beijing, China
DUT: Dipole 1900 MHz; Type: D1900V2; Seriz
Communication System: UID 0, CW; Frequen
Medium parameters used: {= 1900 MHz; 0 =
Phantom section: Center Section
Measurement Standard: DASY5 (IEEE/AEC/ANSI C63.19—2007)
DASY3 Configuration:
1900V2 — SN: 513
900 MHz; Duty Cycle: 1:1
85 S/m; er = 40.11; p = 1000 kg/m3
* Probe: EX3DV4 — SN7433; ConvF(7.98, 7.98, 7.98); Calibrated: 9/26/2016;
* Sensor—Surface: 2mm (Mechanical Surface Detection)
+ Electronics: DAE4 Sn777; Calibrated: 2016—08—22
+ Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
* Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)
System Performance Check/Zoom Sean (7x7x7) (7x7x7)/Cube 0: Measurement grid:
dx=Smm, dy=mm, dz=Smm
Reference Value =98.24 V/m; Power Drift =—0.01 dB
Peak SAR (extrapolated) = 18.2 Wke
SAR(L g) = 10 W/kz; SAR(IO g) = 5.25 Wikg
Maximum value of SAR (measured) = 14.3 Wke
aB
4.43
—6.07
—10.30
413.74
ypecm un
0 dB = 14.3 Wikg = 11.55 dBW/kg
Certificate No: 16—97196 Page S ofs
r\” in Colsboration wih
@TTL s—p_e—a_ q
Add: No.S1 Xueya Road. Haidian Disrct Beling. 100191, China
Te «ne—t0—aa3Bte33—2070 . Pax te—IO—insoiGs 2s
E—mal: ctl@chinat com Hapziwaincchinattn
Impedance Measurement Plot for Head TSL
i sit tes is 10. 00007 wer s.oode TR
zon
wres
bim 5is seten (a+fi) serte 1.0004 e bel]
so.oee o acsse0 o ses.ts— o
a: 2.s0o0000 o
resupor rewimole
Certificate No:Z16—97196 Page 6 of s
stemmicom m
!\* in Collaboration with
Add: No.S1 Xueyuan Rood. Haidian Ditic, Beling, 100191, China
Tok «t6—10—60304603—2070 P en dOm0iet2—2504
E—mail: l@chinatl.con Hope/Nwschination
DASYS Validation Report for Body TSL Date: 10.25.2016
Test Laboratory: CTTL, B . China
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V 2 — SN: 543
Communication System: UID 0, CW; Frequen 900 MHz; Duty Cyele: 1:1
Medium parameters used: £= 1900 MHz; & = 1.504 S/m; x, p = 1000 ke/im‘
Phantom section: Center Section
Measurement Standard: DASY5 (
DASY3 Configuration:
C/ANSI C63.19—2007)
* Probe: EX3DV4 — SN7433; ConvF(7.7, 7.7, 7.7); Calibrated: 9/26/2016;
+ Sensor—Surface: 2mm (Mechanical Surface Detection)
* Electronics: DAEA $n777; Calibrated: 2016—08—22
* Phantom: Triple Flat Phantom 5.1C; Type: QD 000 PS1 CA; Serial: 1161/1
* Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)
System Performance Check/Zoom Sean (7x7x7) (7x7x7)/Cube 0: Measurement grid:
dx=Smm, dy=Smm, de=Smm
Reference Value = 99.20 V/m; Power Drift = —0.03 dB
Peak SAR (extrapolated) = 17.9 W/ke
SAR(T g) = 10.2 W/kgs SAR(10 g)
Maximum value of SAR (measured) = 14.4 Wike
d8
325
0 dB = 144 W/kg = 11.58 dBW/kg
Certifieate No:Z16—97196 Page 7 of 8
fi/ ; Corhbwlnonew R
causeanon Lasoraror
Add: No.S1 Xusyuan Road. Haldian Disvict, Bejng, 100191, China
Tok +s6—In—s23016332000 . P ede—I»i230i63ase
E—mail: t@chinat con Hapshwwncchinatlen
Impedance Measurement Plot for Body TSL
Ti sit tog way 15.00007 ner o. ooo [
999 ror—a.soceeo0 ons =Bs. 909 c
—so.c0
birm sis setch (aip9 seate 2.0000 Cer oet]
m a.sse000 on an.ser n szsto o. ns inar —
i mmtnoe wowisooi smai ce m
Certificate No: 216—97196 Page s ofs
Download: UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Mirror Download [FCC.gov]UNOCLAMX1 Mobile Phone RF Exposure Info SAR Probe & Dipole Cal Cert MAXWEST INTERNATIONAL LIMITED.
Document ID4124799
Application IDCGfQHvu8CwmBXqKnZ/zNsQ==
Document DescriptionSAR Probe & Dipole Cal Cert
Short Term ConfidentialNo
Permanent ConfidentialNo
SupercedeNo
Document TypeRF Exposure Info
Display FormatAdobe Acrobat PDF - pdf
Filesize114.47kB (1430830 bits)
Date Submitted2018-12-31 00:00:00
Date Available2018-12-31 00:00:00
Creation Date2018-10-15 20:00:07
Producing SoftwareAcrobat Distiller 7.0 (Windows)
Document Lastmod2018-12-31 10:43:13
Document TitleSAR Probe & Dipole Cal Cert
Document CreatorPScript5.dll Version 5.2
Document Author: DG06245

Source Exif Data [exif.tools]:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : No
Author                          : DG06245
Create Date                     : 2018:10:15 20:00:07+08:00
Modify Date                     : 2018:12:31 10:43:13-08:00
XMP Toolkit                     : Adobe XMP Core 5.2-c001 63.139439, 2010/09/27-13:37:26
Producer                        : Acrobat Distiller 7.0 (Windows)
Creator Tool                    : PScript5.dll Version 5.2
Metadata Date                   : 2018:12:31 10:43:13-08:00
Format                          : application/pdf
Creator                         : DG06245
Title                           : Microsoft Word - SAR_Calibration Certificate_Probe 7329.doc
Document ID                     : uuid:4085d70f-be37-4464-94f2-9fdda77d30a3
Instance ID                     : uuid:c8ba850d-b761-46c9-84bf-b053054e8abd
Page Count                      : 27