X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED

SMT TELECOMM HK LIMITED Mobile Phone

Page 1 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 2 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 3 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 4 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 5 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 6 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 7 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 8 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 9 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 10 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 11 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 12 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 13 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 14 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 15 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 16 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 17 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 18 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 19 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 20 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 21 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 22 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 23 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 24 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 25 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 26 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 27 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Page 28 of X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED

In Collaboration wmi S‘ “\\—/ v13. A *IWH
fiTT M—M ' m“
L CALIBRATION LAIORATORV CNASM
V //_\\§ v curmrrou
Add:No.5l XIIeyIIaII Rflad HaidiaIImsIncI Beijing 100191 China ’Il,m.I\‘ CHAS L05"!
Tel: +86-l0-62304633-2512 Fax.+86-lO-62301633-2504
li-mail: cttl@clilnanl.cmn tllrp //\mw chinaltllcn
Client UnionTrust Certificate No: 218-60053
II
{5)
CALIBRATION CERTIFICATE
Object ESBDVS — SN13240
Calibration Procedure(s) ”1114,0401
Calibration Procedures for Dosimetric E-field Probes
Calibration date: March 28. 2015
This calibration Certificate documents the traceability to national standards, which realize the physical units of
measurements(sl). The measurements and the uncertainties with confidence probability are given on the followmg
pages and are part of the certificate
All calibrations have been conducted in the closed laboratory facility: environment temperature(22:3)°c and
humidity<70%.
Calibration Equipment used (M&TE critical for calibration)
Primary Standards ID # Cal DatetCalibrated by, Certificate No.) Scheduled Calibration
Power Meter NRPZ 101919 27-Jun-17 (CTTL, No.J17X05557) Jun-18
Power sensor NRP7291 101547 277Jun—1 7 (CTTL. No.J17X05857) Jun-18
Power sensor NRP-Z91 101548 27-Jun-17 (CTTL. No.J17X05857) Jun-18
Reference10dBAttenuator 18N50W—10dB 09—Feb—18(CTTL. No.J18X01133) Feb720
ReferenceZOdBAttenuator 18N50W~20dB 09-Feb-18(CTTL, No J18X01132) Feb-20
Reference Probe EX3DV4 SN 7464 12-Sep-17(SPEAG,No.EX3-7464_Sep17) Sec—18
DAE4 SN 1524 13-Sep-17tSPEAG, No,DAE4»1524_Sep17) Sep -18
Secondary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration
SignalGeneratorMGS700A 6201052605 27-Jun-17 (CTTL, No J17X05858) Jun-18
NelworkAnalyzer E50710 MY46110673 14-Jan-18 (CTTL, No.J18X00561) Jan 719
Name Function ignature
Calibrated by: Yu Zongying SAR Test Engineer 2
Reviewed by: Lin Hao SAR Test Engineer Tiff/7%
Approved by: Qi Dianyuan SAR Project Leader MW
Issued: March 29, 2018
This calibration certificate shall not be reproduced except in full withoutwritten approval of the laboratory
Certificate No: Z18-60053 Page I ofll
r in Collaboration mm
— r Y
E .7 '1 L Lia—9—
» cAunriAnon momronv
Add: No.5] Xucyurin Road, Hiiidian District, Beijing. l00l‘11, Chitin
'l‘ +86-l0-62304633-2512 Fax:+l§6-l0-62304633»2504
E-niail: ctt|@cliinmtl.coin Hi ;://\\'ww.chinal l.cu
Glossary:
TSL tissue simulating liquid
NORMx.y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point
CF crest factor (1/duty_cyc|e) of the RF signal
A,B,C,D modulation dependent linearization parameters
Polarization <1) G) rotation around probe axis
Polarization e e rotation around an axis that is in the plane normal to probe axis (at measurement center), i
6:0 is normal to probe axis
ConnectorAngle information used in DASY system to align probe sensor X to the robot coordinate system
Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, “lEEE Recommended Practice for Determining the Peak Spatial»Averaged
Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:
Measurement Techniques", June 2013
b) IEC 62209-1. "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from
hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)",
July 2016
o) IEC 62209-2, ”Procedure to determine the SpeoifioAbsorption Rate (SAR) for wireless communication
devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March
2010
d) KDB 865664, “SAR Measurement Requirements for 100 MHZ to 6 GHZ"
Methods Applied and Interpretation of Parameters:
- NORMx,y,z: Assessed for E-field polarization 9:0 (fSQOOMHz in TEM-cell; f>1800MHz: waveguide).
NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y.z does not effect the
E2 -field uncertainty inside TSL (see below ConvF).
o NORM(r)x,y,z = NORMx,y,z‘ frequency_response (see Frequency Response Chart). This
linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
frequency response is included in the stated uncertainty of ConvF.
a DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep
(no uncertainty required). DCP does not depend on frequency nor media.
0 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
characteristics.
0 Ax,y,z; Bx,y,z,' Cx,y,z,'VRx,y,z:A,B.C are numerical linearization parameters assessed based on the
data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
media. VR is the maximum calibration range expressed in RMS voltage across the diode.
o ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-fieid (or Temperature
Transfer Standard for fSEOOMHz) and inside waveguide using analytical field distributions based on
power measurements for f >500MHz. The same setups are used for assessment of the parameters
applied for boundary compensation (alpha. depth) of which typical uncertainty valued are given.
These parameters are used in DASYA software to improve probe accuracy close to the boundary.
The sensitivity in TSL corresponds to NORMx,y,z‘ ConvF whereby the uncertainty corresponds to
that given for ConvF. Atrequency dependent ConvF is used in DASY version 4.4 and higher which
allows extending the validity from150MHz toMOOMHz.
- Spherical isotropy (SD deviation from isotropy): in a field of low gradients realized using a flat
phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
probe tip (on probe axis). No tolerance required.
0 ConnectorAngIe.‘ The angle is assessed using the information gained by determining the NORMX
(no uncertainty required).
Cenificale N01ZlX-60053 Page 2 of II
In Collabovmion with
TTL Lug—
CALIIRATION MIGRATOIY
Add:No.§1Xucyuan Rand, Haidian Dislricl, Beijing, 10019l, China
Tel: +86-10-6230463345l2 Fax: +36-I0-62304633-2504
E-nlail‘ cul@chinaul.cmu Hup://\\'ww.ch um l.cu
Probe ESBDVB
SN: 3240
Calibrated: March 28, 2018
Calibrated for DASY/EASY Systems
(Note: nun-compatib1e with DASYZ system!)
Ceriificale No: Z18-60053 Page 3 of II
In Collaboration with
S 2 e a g
cmnrumou marmom
Add: No.5l Xucyuan Rand, llaidian District. Beijing, 10019], China
Tel: +86-10-[12304633-2512 Fax: +86-10~62304633~2504
E-mail: cttl@cllinattl.com l[np.//\V\\'w.cllina||l.cn
DASYIEASY — Parameters of Probe: ES3DV3 - SN: 3240
Basic Calibration Parameters
Sensor X Sensor Y Sensor Z Unc (k=2)
Normrpvuwmf)‘ 1.23 1.24 1.11 210.0%
I:>CP(mV)E 105.7 105.1 103.3
Modulation Calibration Parameters
UID Communication A B c D VR UncE
System Name 115 :15tu dB mV (k=2)
0 CW X 0.0 0.0 1.0 0.00 277.5 i2.2%
Y 0.0 0.0 1.0 2744
Z 0.0 0.0 1.0 254.7
The reported uncertainty of measurement is stated as the standard uncertainty of
Measurement multiplied by the coverage factor k=2, which for a normal distribution
Corresponds to a coverage probability of approximately 95%.
A The uncertainties of Norm X, Y. 2 do not affect the EZ-lield uncertainty inside TSL (see Page 5 and Page 6).
E Numerical linearizalion parameter: uncertainty not required.
E Unoerlainly is determined using the max. deviation from linear response applying rectangular distribution
and is expressed for the square of the field value.
Certificate No: 218-60053 Page 4 of It
in Collaboration With
‘TTL_L_9_
Q s e a
CALIBRATION LABORATORY
Add: No.51 Xueyuan Road. Huitlian District, Beijing, 100191.016“
T '+86-10~62304633-25l2 Fax: +86-lO-62304633-2504
I‘l-nlatl: cttl@chinattl.com Httg.//\\'ww.cliinatllxtt
DASY/EASY — Parameters of Probe: ES3DV3 - SN: 3240
Calibration Parameter Determined in Head Tissue Simulating Media
. . . G
r[MHz]C 17:12:31;in ““2239” ConvFX ConvFY ConvFZ Alphas 32:; 3:2:
750 41.9 0.89 6.37 6.37 6.37 0.40 1.30 i12.1%
835 41.5 0.90 6.13 6.13 6.13 0.40 1.46 :12.1%
1750 40.1 1.37 5.33 5.33 5.33 0.59 1.29 i12.1%
1900 40.0 1.40 5.13 5.13 5.13 0.63 1.26 142.1%
2300 39.5 1.67 5.06 5.06 5.06 0.90 1.09 142.1%
2450 39.2 1.60 4.74 4.74 4.74 0.66 1.16 142.1%
2600 39.0 1.96 4.63 4.63 4.63 0.90 1.12 142.1%
0 Frequency validity above 300 MHz of t1ODMHz only applies for DASY v4.4 and higher (Page 2). else it is restricted to
150MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated
frequency band. Frequency validity below 300 MHz is 1 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64. 128.
150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to 1110 MHz.
FAt frequency below 3 GHz, the validity of tissue parameters (E and a) can be relaxed to t10% if liquid compensation
formula is applied to measured SAR values. At frequencies above 3 GHz. the validity oftissue parameters (5 and a) is
restricted to 5%. The uncertainty ls the RSS of the ConvF uncertainty for indicated target tissue parameters.
GAlpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary
effect after compensation is always less than :t 1% for frequenoles below 3 GHZ and below 1 2% for the frequencies
between 3-6 GHz at any distance larger than halflhe probe tip diameter from the boundary.
Certificate No: 21860053 Page 5 of ti
Add
.1.
tKfi-10-62304633-25 12
E-mail: cttl@cllinanl.com
In Cailaboramn t-nrh
CALIBRATION LABORATORY
L“ 7TL__p___9_
S e a
0.51 Xucyunn Road, llaidian District, Beijing, IOOIPI. China
17.“: +86-lO-62304633-2504
I IEQI/Avww cllillattl‘clt
DASYIEASY — Parameters of Probe: ES3DV3 - SN: 3240
Calibration Parameter Determined in Body Tissue Simulating Media
. G
r[MHz]c Pelegxy, “nigfgflw ConvFX ConvFY COHVFZ Alphas '12:: 3:23"
750 55.5 0.96 6.43 6.43 6.43 0.40 1.45 i12.1%
835 55.2 0.97 6.29 6.29 6.29 0.41 1.57 4:12.104
1750 53.4 1.49 4.99 4.99 4.99 0.61 1.32 i12.1%
1900 53.3 1.52 4.50 4.80 4.90 0.64 1.30 i12.1%
2300 52.9 1.81 4.69 4.69 4.69 0.90 1.17 142.1%
2450 52.7 1.95 4.57 4.57 4.57 0.90 1.10 552.1%
2600 52.5 2.16 4.26 4.28 4.28 0.90 1.12 142.1%
C Frequency validity above 300 MHz ct t100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to
150MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated
frequency band. Frequency validity below 300 MHz is 110. 25, 40, 50 and 70 MHz for ConvF assessments at 30. 64. 128,
150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to 2110 MHz.
FAt frequency below 3 GHz. the validity ot tissue parameters (5 and or) can be relaxed to t10% if liquid compensation
formula is applied to measured SAR values, At frequencies above 3 GHz, the validity of tissue parameters (1: and o) is
restricted to :i:5%. The uncertainty is the RSS ol the Com/F uncertainty for indicated target tissue parameters.
GAlpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary
effect after compensation is always less than :t: 1% for frequencies below 3 GHz and below i 2% for the frequencies
between 3—6 GHz at any distance larger than half the probe tip diameter from the boundary.
Certificate No: 218-60053
Page (will
CALIBRAflON MIDMTORY
Add: N051 Xucyuan Road, Haidinn Dislricv, Beijing, 100191. China
161: +86-10-62304633-2512 Fax: +86-10-62304633-2504
Evmail: cul@chinam.com 1lnp://\v\v\\'chillaltl,cn
Frequency Response of E-Field
(TEM-Cell: ifi110 Exx, Waveguide: R22)
In Co11aboranon with
a TTL 5—248—9—
PPF’T‘AF‘J—‘A
\Immo—xwwam
Frequency response (normalized)
.9
U!
:71
0 500 1000 1500 2000 2500 3000
,k
f MHz
TEM 1 l 32?
Uncertainty of Frequency Response of E-field: i7.4% (k=2)
Cenificare No: Z18v60053 Page 7 of 11
In Colinbomion with
TTL Lua—
CAIJIRAYION MBOMTORV
Add‘ No.5I Xueymul Road] Haidian Dixiricl, Beijing, l00l9l, China
Tel: +86-IO-62304633-2512 Fm: +86-10-62304633-2504
E-mai. III@chinnIIl.com Hum/(www.chinanlxn
Receiving Pattern (0)), 6=0°
f=600 MHz, TEM f=1800 MHz, R22
» H.
ErrorIdB]
450 -I00 -50 O 60 '00
Ronm
I} - HOOMHz . 600MHz - 1BOOMHz ~ 2500MHzI
Uncertainty of Axial lsotropy Assessment: 11.2% (k=2)
Certificate No: 218-60053 Page 8 of 11
150
in Coiiebovau'on wnh
TTL s_pe_aa__
CALIBRATION LABORATORY
Add: No.5l Xueyunn Rand, Haidiml Dis|ric|, Beijing, 10019|,Cllina
Tel‘ +86»10-62304633»2512 Fm: +86-10~6230J633-2504
E-mail: cnl@chiuafl|vcom H|Ig'/[\V\V\V gh‘qg (Ix I
Dynamic Range f(SARhead)
(TEM cell, f = 900 MHz)
10‘
S'
é 10’
I“
I:
.E’
a:
5 10’
10‘
1o" 10“ 1o“ 10‘ 1o2
SAleW/cm’]
—I—nolcampensaled -o— compensated
E‘
'U D
t‘
[U
-I
-2 . 4—v-fii
10‘ 10' lo
IO‘ ,
SAleW/cm ]
l ~I molcompansaled o compensated I
Uncertainty of Linearity Assessment: 10.9% (k=2)
Certificate No: Zl8-60053 Page‘) Dfll
CALIBRATION LABORATORY
Add: N0,SI Xue'yuan Road, Haidian Districi, Beijing, 100191, China
Tel: +86-10~62304633-2512 Fax: “ORG-10623046334504
E-mail: cul@chinam,com Hllp'//\vww.chinatll.cn
Conversion Factor Assessment
fl l;Collubovuionewim a
f=835 MHz, WGLS R9(H_convF) f=1750 MHz, WGLS R22(H_conVF)
”0 7 * 7 y l mu
3°“ ‘ 300" 7
2.50
me
fine i
a ‘ g
E $1500
3160 7‘ :3
‘ law
me
m 5.00
coo non ‘
o 20 40 u: so Ion w 10 20 so u)
alrmnl 4mm]
+musmed —nnalxlcal +mnsuled V
Deviation from lsotropy in Liquid
1|)
05
06
0'4
o 2
E o o
"‘ .0 2
.04
as
'0 9
~18
‘50
*‘hr' zoo
I: 250
40 0m 0m >[N0 1170 0 [I70 040 nPA') cm In
Uncertainty of Spherical lsotropy Assessment: 13.2% (K=2)
Cenificate No: 218-60053 Page I0 ofll
m l;Collebavalionewim a
CALIIRATION LAIOIATORV
Add: N051 Xueytmn Road, Huidiau District, Beijing, 100191, China
'1‘ +86-10-62304633-2512 m:+se.|a.62304633-25m
E-lnail: cul@cluinaul.cum lItlQ://\\'\\iy§h “g ,t-
DASYIEASY — Parameters of Probe: ES3DV3 - SN: 3240
Other Probe Parameters
Sensor Arrangement Triangular
Connector Angle (°) 114.7
Mechanical Surface Detection Mode enabled
Optical Surface Detection Mode disable
Probe Overall Length 337mm
Probe Body Diameter 10mm
Tip Length 1 0mm
Tip Diameter 4mm
Probe Tip to Sensor X Calibration Point 2mm
Probe Tip to Sensor Y Calibration Point 2mm
Probe Tip to Sensor 2 Calibration Point 2mm
Recommended Measurement Distance from Surface 3mm
Cenificate No: 218-60053 Page 11 of 11
Calibration Laboratory of .‘v‘WiW'I/fl,
A V , Schweizerischer Kalibrie enst
. s V 2 S
Schmid & Partner % Service sulsse d'étalonnage
Engineering AG 7 //—\\ : Servizio sviuero di iaraiura
Zeughausstrasse 4:, 5004 Zurich, Switzerland ‘2, Q\ S swiss Calibration Service
'rlriinin ‘
Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: 505 0108
The Swiss Ancredilation Service is one 0' the signatories to the EA
Multilateral Agreement tor the recognition of calibration certificates
Client Auden Certificate No: D835V2-4d092J uni 8
Object D835V2 - SN:4d092
Calibration pruceduvets) 0A CAL4)5.v10
Calibration procedure for dipole validation kits above 700 MHz
Calibration date June 20, 2018
This calibration certriicare documents the traceability to national standards. which realize the physical units or measurements (Si),
The measurements and the uncertainties with confidence probability are given on the ioiiowmg pages and are part of the ceniiicate
All callbralroris have been conducted in the closed laboratory lacllity: environment temperature (22 2 3)°C arid humidity < 70%
Calibration Equipment used (M&TE Critical ior calibration)
Primary Standards ID # Cal Date (Certificate No) Scheduled Calibration
Power meter NRP SN: 104778 OérAprrie (No 21770267202673) AprrlQ
Power sensor NRPrzsi SN: 103244 04-Aprrte (No 217-02572) Apr-ii;
Power sensor NHF~291 SN: 103245 04-Apr-18 (No, 217702673) Aprrlg
Helersnce 20 dB AttEnualur SN: 5058 (20k) 04-Apr718 (No 2l 7432682) Aural?
Type»N mismatch combination SN‘ 50472 / 06327 04'Apr-18(No,2l7-02653) Apr-t9
Relerence Probe EXSDV4 SN 7349 30~Dec~i7 (No EX3-73497Deci7) Dec-l8
DAE4 SN 50‘ 26-Oct“ (No, DAE4'60170olt7) Oct-18
Secondary Standards ID it Check Date (in house) Scheduled Check
Power meter EPM-MZA SN: 8537460704 07700145 (In house check Oct-15) ln house Check Oct~t8
Power sensor HF' B481A SN USS7292733 07-Oct-15 (in house Check Oct-16) ln house check Oct-18
Power sensor HP 8431A SN MY41092317 07-Oct-15 (in house check 001716) In house Chaok‘ Oct—18
RF generator H&S SMT-Ofi SN. l00972 15-Jun-15 (in house Check Oct-i6] In house check: OctrtE
Network Analyzer HP 8753E SN: USSTQQOSBE iB~OcH11 (In house Check Oct-17l Iri house check OCt»tB
Name Function Si
Calibrated by. Claudio Leubler Laboratory Technician
Approved by, Karla Fukovic Technical Manager W
Issued: June 21,2018
This Calibration certificate shall not be reproduced except in iull Without written approval oi the laboratory
Certificate No: DB35V2»4d092,JunlB Page l Di 8
Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughaussvasse 43, 8004 Zurich, Switzerland
S Schweizerischer Kalibrierdiensl
Service suisse d‘élalonnage
C Servizio svizzero di taratura
5 Swiss calibration Service
Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108
The Swiss Accreditation Service is one oi the signatories to the EA
Multilateral Agreement for the recognition or calibration certificates
Glossary:
TSL tissue simulating liquid
ConvF sensitivity in TSL/ NORM x,y,z
N/A not applicable or not measured
Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, “IEEE Recommended Practice for Determining the Peak Spatial-
Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless
Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, “Measurement procedure for the assessment of Specific Absorption Rate
(SAR) from hand-held and body-mounted devices used next to the ear (frequency range of
300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless
communication devices used in close proximity to the human body (frequency range of 30
MHZ to 6 GHZ)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
Additional Documentation:
9) DASY4/5 System Handbook
Methods Applied and Interpretation of Parameters:
. Measurement Conditions: Further details are available from the Validation Report at the end
of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
point exactly below the center marking of the flat phantom section, with the arms oriented
parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
positioned under the liquid filled phantom The impedance stated is transformed from the
measurement at the SMA connector to the feed point. The Return Loss ensures low
reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
No uncertainty required.
- SAR measured: SAR measured at the stated antenna input powerr
. SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
connector.
. SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the
nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement
multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage
probability of approximately 95%
Certificate No: D835V274d0927Jun18 Page 2 of 8
Measurement Conditions
DASY system configuration. as far as not
rven on page 1
DASV Version DASYS V52.10.1
Extrapolation Advanced Extrapolation
Phantom Modular Flat Phantom
Distance Dipole Center - TSL 15 mm with Spacer
Zoom Scan Resolution
dx, dy. dz = 5 mm
Frequency
835 MHz 11 MHz
Head TSL parameters
The following parameters and calculations were applied.
Temperature Permittivity Conductivity
Nominal Head TSL parameters 22.0 ”C 41.5 0.90 mho/m
Measured Head TSL parameters (22.0 g 0.2) “C 40 7 a 6 % 0.93 mho/m : 6 "/0
Head TSL temperature change during test < 0.5 ”0 -~- -»--
SAR result with Head TSL
SAR averaged overt cm“ (1 g) of Head TSL Condition
SAR measured 250 mW input power 242 W/kg
SAR lor nominal Head TSL parameters
normalized to ‘lW
9.40 Wlkg 217.0 % (k=2)
SAR averaged over 10 em3 (to g) of Head TSL
condition
SAR measured
250 mW input power
155 W/kg
SAR for nominal Head TSL parameters
normalized to 1W
6.06 W/kg : 15.5 % (k=2)
Body TSL parameters
The lollowing parameters and calculations were applied.
Temperature Permittivity Conductivity
Nominal Body TSL parameters 22.0 “C 552 0,97 mho/m
Measured Body TSL parameters (22.0 2 0.2) "C 55.0 2 6 % 0.99 mno/m 2 6 "/n
Body TSL temperature change during test < 0.5 “C m,
SAR result with Body TSL
SAR averaged over 1 cm3 (1 g) of Body TSL Condition
SAH measured 250 mW Input power 2.46 W/kg
SAR lor nominal Body TSL parameters
normalized to 1W
9.68 Wlkg 1 17.0 % lk=2)
SAR averaged over 10 cm’ (10 g) of Body TSL
condition
SAR measured
250 mW input power
1.61 W/kg
SAR for nominal Body TSL parameters
normalized to 1W
6.36 Wlkg : 16.5 % (k=2)
Certificate No: D835V2-4d092_Jun18
Page 3 ol 8
Appendix (Additional assessments outside the scope of $08 0108)
Antenna Parameters with Head TSL
impedance, transformed to feed point 51.9 E: — 2.7 jfl
Return Loss , 29.9 dB
Antenna Parameters with Body TSL
Impedance. transformed to feed point 48.4 {2 - 5.1 it}
Return Loss - 25.4 dB
General Antenna Parameters and Design
Electrical Delay (one direction) L 1391 ns
After long term use with 100W radiated power. only a slight warming of the dipole near the ieedpoint can be measured.
The dipole is made 01 standard semirlgid coaxial cable The centerconductor oi the feeding line is directly connected to the
second arm ol the dipole. The antenna is therefore shortcircuited for DC-signals, On some of the dipoles, small end caps
are added to the dipole arms in order to improve matching when loaded according to the position as explained in the
"Measurement Conditions" paragraph. The SAFi data are not aflected by this change. The overall dipole length is still
according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the
ieedpolnl may be damaged.
Additional EUT Data
Manufactured by SPEAG l
Manufactured on September 15. 2009 I
Certificate No. D535V2-4d092_Jun1& Page 4 Di 8
DASYS Validation Report for Head TSL
Date: 20.06.2018
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SNz4d092
Communication System: UID 0 , CW; Frequency: 835 MHz
Medium parameters used: 1'2 835 MHz; 6 = 0.93 S/m; 1:, = 40.7; p = 1000 kg/m1
Phantom section: Flat Section
Measurement Standard: DASYS (IEEE/IEC/ANS1C631197201 l)
DASY52 Configuration:
- Probe: EX3DV4 - SN7349: ConVF(9,9. 9,9, 9.9) @ 835 MHZ; Calibrated: 30.12.2017
- ScnsorSurface: 1.4mm (Mechanical Surface Detection)
Electronics DAE4 Sn601; Calibrated: 26.10.2017
Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
DASY52 52.10.1(1476); SEMCAD X 14.6.] 1(7439)
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mleoom Scan (7x7x7)/Cube 0:
Measurement grid: dx=5mm, dy=5mm. dz=5mm
Reference Value : 62.54 V/m; Power Drift = 003 dB
Peak SAR (extrapolated) = 3.70 W/kg
SAR(1 g) = 2.42 Wlkg; SAR(10 g) = 1.55 Wlkg
Maximum Value of SAR (measured) = 3,27 W/kg
dB
’22!)
-4.4l]
-6.B|]
-8.Bl]
-11.fll]
0 dB = 3.27 W/kg = 5.15 dBW/kg
Certificate No: D835V2-4d0927Jun18 Page 5 018
Impedance Measurement Plot for Head TSL
20 Jun 2818 12:47:19
[ml 811 1 U 75 1:51.5730 —2.6541n 71.547 pr 835.9% We MHz
, x .
an
m 4" ‘ ..
1—4
i\
a ‘
1E9
ma 1‘ ‘
CH2 511 L05 5 63/ REF '29 dB 1‘:-29.9§% dB 535.690 BBB MHZ
, I l +
rm I ‘
1 Jr
as \ ‘
I l ‘ a a
i t 47
fl
1&9 _
‘ 4
H16 * J I + ,
STflRT 5'35. 366 BEE! MHZ STOP 1 635.659 989 MHZ
CemIicale No: DEGSV2-4d092_.lun18 Page 6 of B
DASY5 Validation Report for Body TSL
Date: 20.06.2018
Test Laboratory: SPEAG. Zurich. Switzerland
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d092
Communication System: UID 0 - CW; Frequency: 835 MHz
Medium parameters used: 1: 835 MHz: 6 = 0.99 S/m; c, = 55; p = 1000 kg/m1
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI €63.19—201 l)
DASY52 Configuration:
- Probe: EX3DV4 - SN7349; ConvF(10105. 10.05, 10.05) @ 835 MHZ; Calibrated: 30.12.2017
- Senaurisurface: 114mm (Mechanical Surface Detection)
- Electronics: DAE4 SI1601: Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
. DASY52 52.10.1(1476); SEMCAD X 14.6.1 1(7439)
Dipole Calibration for Body Tissue/Pin=250 mW, d:15mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: dx=5mm, dy=5n1m, dz=5mm
Reference Value = 60.95 V/m; Powcr Drift: 70.04 dB
Peak SAR (extrapolated) : 3.66 W/kg
SARU g) = 2.46 W/kg;SAR(10 g) = 1.61 Wlkg
Maximum value of SAR (measured) : 3.27 W/kg
>220
-4.4IJ
45.61]
41.80
-11.fl|1
0 dB = 3.27 W/kg = 5.15 dBW/kg
Certificate No: D835V2»4d0927Jun18 Page 7 of B
Impedance Measurement Plot for Body TSL
20 Jun 2m: 12:45:15
m 311 1 u re 1: 43.423 9 -5.952? n 37.723 Pr 835.858 BBB MH:
.- "1 "' 7‘
Del
CA
Flu g
15
Hm ~ ,-
EH2 $11 LT ls dB/REF -2ua as V “—25.33? :13 aasmae nae NH:
_'fi [
cu } y
w {
:29 I ' r 1
Hld F I I
9mm 635.8218 BBB MHz STOP 1 assme Baa MHz
Cerfificale No: DESSV2-4d092_Jun18 Page 8 ol 3
In Collaboration with “9w ‘UII’ " VI," A Will—I
\ r
*V 8/1 SEE“
CsALIBRAflDN LABORATORY
Add: No.51 Xucyuan Road, llaldian District, Beijing, IO0I91,Cllina 25A § CALIBRATION
'I‘cl: +36-l0-62304633-2079 Fax: +86710762304633—2504 '14, "I“ ‘t‘ CNAS L0570
E—mail: cttl@cl|inatll com IIllp://\\'\\'w.cllinaltl.cn
' UnionTrust Certificate No: 218-60056
lient
CALIBRATION CERTIFICATE
Object D1800V2 - SN: 2d150
Calibration Procedure(s) FF-Zt1-003-01
Calibration Procedures for dipole validation kits
Calibration date: March 23,2018
This calibration Certificate documents the traceability to national standards, which realize the physical units of
measurements(Sl), The measurements and the uncertainties with confidence probability are given on the following
pages and are part of the certificate.
All calibrations have been conducted in the closed laboratory facility: environment temperature(22:3)‘c and
humidily<70%.
Calibration Equipment used (M&TE critical for calibration)
Primary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration
Power Meter NRPZ 102083 01-Nov-17 (CTTL, N0.J17X08756) Oct-18
Power sensor NRP-ZQ1 100542 01-Nov-17 (CTTL. No.J17X08756) Oct-18
Reference Probe EXSDV4 SN 7464 12-Sep-17(SPEAG,N0.EX3-7464¥Sep17) Sep-18
DAE4 SN 1525 02-Oct»17(SPEAG,N0.DAE4—1525_Oct17) Oct-18
Secondary Standards lD # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration
Signal Generator E44380 MY49071430 13-Jan-17 (CTTL, No.J17X00286) Jan-18
NetworkAnalyzer E5239A MY55491241 29-Jun-17 (CTTL. No.J18X00561) Jun718
Name Function Signature
Calibrated by: znao Jing SAR Test Engineer {Ju
Lin Hao SAR Test Engineer fifif/VU
Approved by: Qi Dianyuan SAR Project Leader Afl/
Issued: March 26, 2018
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.
Reviewed by:
Certificate No: Z18-60056 Page I OH
AR In Collaboration with
! TTL LIN—39.—
V CALIBRATION momrorrv
Add: No.5] Xueyuan Road. Hnidian Districl. Beijing, 100191.c1iim
m: rX6-10»62304633-2079 m:45.104230163372504
t-Z-mail: c1il@chlnnlll.cnm http://wwwc|rinatchn
Glossary:
TSL tissue simulating liquid
ConvF sensitivity in TSL/ NORMx,y,z
N/A not applicable or not measured
Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013. “IEEE Recommended Practice for Determining the Peak
Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless
Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, “Procedure to measure the Specific Absorption Rate (SAR) For handheld
devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", Februan/
2005
c) IEC 62209-2, ”Procedure to measure the Specific Absorption Rate (SAR) For wireless
communication devices used in close proximity to the human body (frequency range of
3OMHz to GGHz)”, March 2010
d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz
Additional Documentation:
e) DASY4/5 System Handbook
Methods Applied and Interpretation of Parameters:
- Measurement Conditions: Further details are available from the Validation Report at the end
of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
point exactly below the center marking of the flat phantom section, with the arms oriented
parallel to the body axis.
0 Feed Point Impedance and Return Loss: These parameters are measured with the dipole
positioned under the liquid filled phantom. The impedance stated is transformed from the
measurement at the SMA connector to the feed point. The Return Loss ensures low
reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
No uncertainty required.
SAR measured: SAR measured at the stated antenna input power.
SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
connector.
. SAR fornominal TSL parameters: The measured TSL parameters are used to calculate the
nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of
Measurement multiplied by the coverage factor k=2, which for a normal distribution
Corresponds to a coverage probability of approximately 95%.
Certificate No: 218-60056 Page 2 of8
A“ In Collaboration with
_TTL M41—
v CALIBRA110N LADORATORY
Add: No.5! Xucynan Road. Haidian District. Beijing, 10019I, Chiuu
'l‘cl:+86-10-6230-1633-2079 Fax: 86-]0-62304633-2504
E-nmii: mi@ciunaul.com imp:l/www.ciiirmui.cu
Measurement Conditions
DASY system configuration. as tar as not given on page 1.
DASY Version DASY52 52.100.1446
Extrapolation Advanced Extrapolation
Phantom Triple Flat Phantom 5.1C
Distance Dipole Center - TSL 10 mm with Spacer
Zoom Scan Resolution dX. dy. dz = 5 mm
Frequency 1800 MHz :1 MHz
Head TSL parameters
The following parameters and calculations were applied.
Temperature Permittivlty Conductivity
Nominal Head TSL parameters 220 “C 40.0 1.40 mho/m
Measured Head TSL parameters (22.0 1 0.2) “C 359 x 6 % 1.37 mholm 1 6 %
Head TSL temperature change during test <1.0 °C
SAR result with Head TSL
SAR averaged over 1 cm1 (1 g) of Head TSL Condition
SAR measured
250 mW Input power
9.88 mW/g
SAR for nominal Head TSL parameters
normalized to 1W
39.9 mWIg t 18.8 % («=2)
SAR averaged over 10 cm} (10 g) of Head TSL Candilion
SAR measured
250 mW input power
5.24 mWIg
SAR for nominal Head TSL parameters
normalized to 1W
21.1mW/g 118.7 % (k=2)
Body TSL parameters
The following parameters and calculations were applied.
Temperature Permittlvlty Conductivity
Nominal Body TSL parameters 22 0 “C 53.3 1.52 mho/m
Measured Body TSL parameters (22.0 1 0.2) “C 54.4 16 % 1 56 mholm t 6 %
Body TSL temperature change during test <10 “C ----
SAR result with Body TSL
SAR averaged over1 cm3 (1 g) of Body TSL Condition
SAR measured
250 mW input power
10,1mW/g
SAR for nominal Body TSL parameters
normalized to 1W
39.9 mW lg $18.8 "In (k=2)
SAR averaged over“) cm" (10 g) of Body TSL COHdiliOVi
SAR measured
250 mW input power
535mW/g
SAR for nominal Body TSL parameters
normalized to 1W
21.2 mW I9 5: 18.7 "In (k=2)
Cenificate No: 218-60056 Page 3 oft?
8 ln Collaboration with
ET T L 5—w_9__
V CAUBRA'HON LABORATORY
Add‘ No.5] XucyuanRoad. linidian Districl Beijing, H1019]. China
-62304633-2504
Tel +86-l0-62304633-2079 Fax: +86-
E-mnil: cltl@chinaltlt€oln http://wwwchinant.cn
Appendix (Additional assessments outside the scope of CNAS L0570)
Antenna Parameters with Head TSL
Impedance, transformed to feed point 46.90- 291]!)
Return Loss - 27.2dB
Antenna Parameters with Body TSL
Impedance, transformed to feed point 43.807 2.90m
Return Loss - 22.7dB
General Antenna Parameters and Design
Electrical Delay (one direction) 1.124 ns
After long term use with 100W radiated power, only a slight warming of the dipole nearthe feedpoint can
be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly
connected to the second arm of the dipole. The antenna is therefore short-circuitecl for DC-slgnals. On some
of the dipoles. small end caps are added to the dipole arms in order to improve matching when loaded
according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not
affected by this change The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered
connections near the leedpoint may be damaged.
Additional EUT Data
Manufactured by
SPEAG
Cerlificate Nu: Zl 23-60056
Page 4 01‘8
r“ In Collaboration with
T 11 M!!—
v CALIBRATION LABORATORY
Add: No.51 thcyuau Road, llaidian District, Beijing. 100191. China
Tel: +86-l0-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cltl@cl|inattl.com llltp://\v\v\\'.chinalll.cn
DASY5 Validation Report for Head TSL Date: 03.23.2018
Test Laboratory: CTTL, Beijing, China
DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2(I150
Communication System: UID 0, CW; Frequency: 1800 MHZ; Duty Cycle: 1:1
Medium parameters used: f= 1800 MHz; 6 = 1.365 S/m; er : 38.93; p = 1000 kg/m3
Phantom section: Center Section
Measurement Standard: DASY5 (IEEE/lEC/ANSI C63.19»2007)
DASY5 Configuration:
- Probe: EX3DV4 ~ SN7464; C0nvF(8.42, 8.42, 8.42); Calibrated: 9/12/2017;
0 Sensor—Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1525; Calibrated: 10/2/2017
I Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1 161/1
- Measurement SW: DASY52, Version 5210 (0); SEMCAD X Version 14.6.10
(7417)
System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cubc 0: Measurement grid:
dx=5mm, dy:5mm, dz=5n1m
Reference Value : 103.1 V/m; Power Drift = 006 dB
Peak SAR (extrapolated) = 18.2 W/kg
SAR(1 g) = 9.88 W/kg; SAR(10 g) = 5.24 W/kg
Maximum value of SAR (measured) = 15.2 W/kg
dB
-3.35
>61]
-1 0.06
43.42
L.
-1 6.77
0 dB = 15.2 Wlkg = 11.82 dBW/kg
Ceitificale No: Zl 8-60056 Page 5 of8
Q In Collubomticn with
:TTLMl—
_\/
CALIBRAHON LABORATORY
Add: No.51 Xueyufln Road, Haidian District, Beijing, I00l9l, China
Tel: MIG-10623046334079 Fax: +86-I0-62304633-2504
E-nmil: clll@chinau1.com hllpzl/www chinanlu
Impedance Measurement Plot for Head TSL
T! 1 511 chM WOODdB/ 0.00dB
50.00
40.00
30.00
20.00
1000
0.00
40.00 —‘\ —1-
40.00 \ f
43000
40.00
-50.00
1 cm: Stan 1.600006H1— 3m 2.oooooeHz
- sn Smfln1.000U/ VOOU '
1 1400 GHz 2717 (13
> 1 moo GHl 45.90 0
30.43 pF 0291 r)
2 >ChI: Slan 1.60000 GHZ ~ Slop 2.00000 GHZ
[A 7.; ._...——~."_ ~77 7 "7, ‘
Cenificate No: 218—60056 Page 6 of 8
9“ In Collaboration wrrh
T H M
v CALIBRATION LABORATORY
Add: No.51 Xueyuau Road. Iiaidialt DISIrlCl, Beijing. 100191, China
Tel: +86-I0»62304633-2079 Fax: +86-10-6230463372504
E-mail: cul@chinaul.com Imp //www.chixmu|,cn
DASYS Validation Report for Body TSL Date: 03.23.2018
Test Laboratory: CTTL, Beijing, China
DUT: Dipule 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2(I150
Communication System: UID 0, CW; Frequency: [800 MHz; Duty Cycle: 1:1
Medium parameters used: f= 1800 MHZ; c : 1.563 S/m; er > 54.35; p : 1000 kg/m3
Phantom section: Right Section
Measurement Standard: DASYS (lEEE/lEC/ANSI C63.19—2007)
DASYS Configuration:
. Probe: EX3DV4 - SN7464; ConvF(8.45, 8.45, 8.45); Calibrated: 9/12/2017;
0 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 8111525; Calibrated: 10/2/2017
- Phantom: Triple Flat Phantom 5,1C; Type: OD 000 P51 CA; Serial: 1 161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10
(7417)
System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:
dx=5mm, dFSmm, dz=5mm
Reference Value = 94.67 V/m; Power Drift = -0.02 dB
Peak SAR (extrapolated) = 18.3 W/kg
SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.35 W/kg
Maximum value of SAR (measured) : 15.5 W/kg
{1.34
45.67
-1 11.01
-1 3.34
L.
46.813
0 (ID = 15.5 Wlkg = 11.90 (lBW/kg
Cenificate No: 218-60056 Page 7 018
be In Collaboration with
TTL LIN—39.—
» cmmnou mourn"
Add: No.51 Xuewan Road. Haidian District, Beijing, l00l9l, China
Tel: +86-10-62304633-2079 Fax: +86-l0-62304633-2504
E-mnil: cul@chinaul.cam l\I|p://\\'uwchinanlcn
Impedance Measurement Plat for Body TSL
Tr 1 SH LogM 1000GB/ 00MB
50.00
40 00
30.00
20.00
10.00
0.00
40.00 L‘K - JF— ——-
~20.00 ‘ W
730.00
40.00
-§0.00
~22 70 dB
Ch‘l: Start 1.60000 GHz -—- Stu 200000 SH:
1800 GHz 43 77 n
30 45 pF -2 00 n
2 >Ch1: Stan 1.60000 GHZ —
Slop 2.00000 GHZ
Cenificate No: 21860056 Page 8 of 8
Calibration Laboratory of
Schmid 8r Partner
Engineering AG
Zeughausslrasse “3, 8004 Zurich, Swilzerland
Schweizerisctier Kalibrierdienst
Service suisse d'e'talonnage
Servizio svizzeru di iaraiura
Swiss Calibration Service
Accredited by the Swrss Accreditation Service (SAS) Accreditation No.: SCS 0108
The Swiss Accreditation Service is one at the signatories to the EA
Multilateral Agreement tor the recognition of calibration certificates
Client Auden Certificate No: D1 SDDV2-5d01 8_Jun18
Obiecl D1900V2 - SN:5d018
Calibration Procedures} QA CAL-05.v10
Calibration procedure lor dipole validation kits above 700 MHz
Calibration dale June 21, 2018
This calibration ccnrhcare documenis the lraceahility to national standards, which realize the physical units of measurements (Sly
The measurements and the uncenamiies with confidence probability are given on me iollowlng pages and are pan oi the cenrlrcaie.
All calibrations have been conducted In the closed laboratory iaclllty‘ environment temperature (22 z 3)°C and humidity < 70%.
Calibration Equipment used (M&TE critical lor calibration)
Primary Standards lD 1‘ Cal Date (Certificate No) Scheduled Calibration
Power meter NFtP SN: 104775 M-APMB (No. 217'02572/02673) ADM 9
Power Sensor NFlP-Z91 SN: 103244 OdrApr-18(No. 21102672} ADM 5
Power sensor NHP-ZQ‘ SN: 103245 04-Apr-16 (No, 2‘7-02673J Apr-(9
Relerence 20 dB Attenuator SN; 5056 (20k) 04-Apr-18 (No 217702682) AprrlQ
TyperN mismatch Combination SN: 5047 2 / 06327 04'Apr'13 (No. 217-02683) Apr-19
Relevance Probe EXSDV4 SN. 7349 304360717 (No. EX3»7349,DeCl7) DeC'15
DAE4 SN. 501 26-Oct»17(No DAE44501706H7) Oct-18
Secondary Siandards lD # Check Dale (In house) Scheduled Check
Power rneler EF'MVMZA 5N: (3537480704 07-Oct-15 (In house check 00‘716) In house Check: Oct-18
Power sensor HF 8481A SN: USS7292783 07-00145 (In house check Oct-16) In house check: OCHB
Power sensor HF' 8481A SN MY41092317 07-00145 (in house check Oct-16) In house Check. Oct-18
HF generator RES SMT-OS SN 100972 15-Jun-15 (in house check Oct-16) In house check: OCHB
Network Analyzer HP 8753E SN USS7390585 18-Oct-01 (in house Check Oct-l 7) in house check’ Oct-l8
Name Function
Signature
Calibrated by Jeton Kmrati Lahnratnry Technician q‘é W
Approved by: Katla Fokovic Technical Manager flfl
lssued: June 21‘ 2013
This calibration certificate shall not be reproduced except in lull without Written approval oi the laboratory.
Certificate No D1900V2r5d0187Jun18 Page 1 cl 8
Download: X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Mirror Download [FCC.gov]X565 Mobile Phone RF Exposure Info FCC_SAR_Appendix_C1 SMT TELECOMM HK LIMITED
Document ID3952574
Application IDWQ+yDQUeBpimi5MhPNpy7Q==
Document DescriptionFCC_SAR_Appendix_C1
Short Term ConfidentialNo
Permanent ConfidentialNo
SupercedeNo
Document TypeRF Exposure Info
Display FormatAdobe Acrobat PDF - pdf
Filesize334.41kB (4180106 bits)
Date Submitted2018-08-06 00:00:00
Date Available2018-08-06 00:00:00
Creation Date2018-07-24 11:23:18
Producing SoftwareKONICA MINOLTA bizhub C308
Document Lastmod2018-07-31 14:46:10
Document TitleFCC_SAR_Appendix_C1
Document CreatorKM_C308

Source Exif Data [exif.tools]:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : No
Create Date                     : 2018:07:24 11:23:18+08:00
Creator                         : KM_C308
Modify Date                     : 2018:07:31 14:46:10+08:00
XMP Toolkit                     : Adobe XMP Core 5.4-c005 78.147326, 2012/08/23-13:03:03
Metadata Date                   : 2018:07:31 14:46:10+08:00
Creator Tool                    : KM_C308
Format                          : application/pdf
Document ID                     : uuid:b632b308-190d-4602-b8ac-3e4c210531e2
Instance ID                     : uuid:ef72414d-ea8c-4719-8bf3-a03cd157cbd4
Producer                        : KONICA MINOLTA bizhub C308
Page Count                      : 28